
by Doug Lowe

Java™

A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_58961X ffirs.qxd 3/29/05 3:24 PM Page i

C1.jpg

01_58961X ffirs.qxd 3/29/05 3:24 PM Page iv

by Doug Lowe

Java™

A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_58961X ffirs.qxd 3/29/05 3:24 PM Page i

Java™ All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Java is a trademark of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PAR-
TICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMEN-
DATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005923064

ISBN-13: 978-0-7645-8961-4

ISBN-10: 0-7645-8961-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RU/QU/QV/IN

01_58961X ffirs.qxd 3/29/05 3:24 PM Page ii

www.wiley.com

About the Author
Doug Lowe has been writing computer programming books since the guys who
invented Java were still in high school. He’s written books on COBOL, Fortran,
Visual Basic, for IBM mainframe computers, mid-range systems, PCs, Web pro-
gramming, and probably a few he’s forgotten about. He’s the author of more
than 30 For Dummies books, such as Networking For Dummies (7th Edition),
Networking For Dummies All-in-One Desk Reference, PowerPoint 2003 For
Dummies, and Internet Explorer 6 For Dummies. He lives in that sunny All-
American City Fresno, California, where the motto is, “It’s a sunny, All-American
City,” with his wife and the youngest of his three daughters. He’s also one of
those obsessive-compulsive decorating nuts who puts up tens of thousands of
lights at Christmas and creates computer-controlled Halloween decorations
that rival Disney’s Haunted Mansion. Maybe his next book should be Tacky
Holiday Decorations For Dummies.

01_58961X ffirs.qxd 3/29/05 3:24 PM Page iii

01_58961X ffirs.qxd 3/29/05 3:24 PM Page iv

Dedication
To Debbie, Rebecca, Sarah, and Bethany.

Author’s Acknowledgments
I’d like to thank project editor Kim Darosett, who did a great job of managing
all the editorial work that was required to put this book together in spite of a
short schedule and oft-missed deadlines, and acquisitions editor Katie Feltman
who made the whole project possible. I’d also like to thank John Purdum who
gave the entire manuscript a thorough technical review, tested every line of
code, and offered many excellent suggestions, as well as copy editor Rebecca
Senninger who made sure the i’s were crossed and the t’s were dotted (oops,
reverse that!). And, as always, thanks to all the behind-the-scenes people who
chipped in with help I’m not even aware of.

01_58961X ffirs.qxd 3/29/05 3:24 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form located
at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Kim Darosett

Acquisitions Editor: Katie Feltman

Copy Editor: Rebecca Senninger

Technical Editor: John Purdum

Editorial Manager: Leah Cameron

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Maridee Ennis

Layout and Graphics: Andrea Dahl,
Lauren Goddard, Stephanie D. Jumper,
Melanee Prendergast, Heather Ryan,
Julie Trippetti

Proofreaders: John Greenough, Leeann Harney,
Jessica Kramer, Arielle Mennelle,
Carl Pierce

Indexer: Ty Koontz

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_58961X ffirs.qxd 3/29/05 3:24 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Book I: Java Basics...7
Chapter 1: Welcome to Java..9
Chapter 2: Installing and Using Java Tools ...21
Chapter 3: Working with TextPad...35
Chapter 4: Using Eclipse..43

Book II: Programming Basics.......................................63
Chapter 1: Java Programming Basics...65
Chapter 2: Working with Variables and Data Types...83
Chapter 3: Working with Numbers and Expressions ...113
Chapter 4: Making Choices..141
Chapter 5: Going Around in Circles (Or, Using Loops)..161
Chapter 6: Pulling a Switcheroo ...187
Chapter 7: Adding Some Methods to Your Madness ...199
Chapter 8: Handling Exceptions ...217

Book III: Object-Oriented Programming......................235
Chapter 1: Understanding Object-Oriented Programming..237
Chapter 2: Making Your Own Classes ..249
Chapter 3: Working with Statics ...265
Chapter 4: Using Subclasses and Inheritance...273
Chapter 5: Using Abstract Classes and Interfaces ...293
Chapter 6: Using the Object and Class Classes ..305
Chapter 7: Using Inner Classes ...329
Chapter 8: Packaging and Documenting Your Classes ..339

Book IV: Strings, Arrays, and Collections....................353
Chapter 1: Working with Strings...355
Chapter 2: Using Arrays...371
Chapter 3: Using the ArrayList Class ...397
Chapter 4: Using the LinkedList Class ...409
Chapter 5: Creating Generic Collection Classes ...419

02_58961X ftoc.qxd 3/29/05 3:24 PM Page vii

Book V: Programming Techniques431
Chapter 1: Programming Threads ..433
Chapter 2: Network Programming..453
Chapter 3: Using Regular Expressions...475
Chapter 4: Using Recursion...491

Book VI: Swing...505
Chapter 1: Swinging into Swing ..507
Chapter 2: Handling Events...521
Chapter 3: Getting Input from the User ...537
Chapter 4: Choosing from a List ...563
Chapter 5: Using Layout Managers ..585

Book VII: Web Programming......................................603
Chapter 1: Creating Applets ..605
Chapter 2: Creating Servlets ...613
Chapter 3: Using Java Server Pages ...633
Chapter 4: Using JavaBeans ..647

Book VIII: Files and Databases663
Chapter 1: Working with Files ...665
Chapter 2: Using File Streams ...679
Chapter 3: Database for $100, Please...703
Chapter 4: Using JDBC to Connect to a Database ..717
Chapter 5: Working with XML ...733

Book IX: Fun and Games ...751
Chapter 1: Fun with Fonts and Colors ...753
Chapter 2: Drawing Shapes ...767
Chapter 3: Using Images and Sound...789
Chapter 4: Animation and Game Programming..803

Index ...821

02_58961X ftoc.qxd 3/29/05 3:24 PM Page viii

Table of Contents
Introduction..1

About This Book...2
How to Use This Book ...3
How This Book Is Organized...3

Book I: Java Basics ...3
Book II: Programming Basics ..3
Book III: Object-Oriented Programming ..4
Book IV: Strings, Arrays, and Collections..4
Book V: Programming Techniques ...4
Book VI: Swing ..4
Book VII: Web Programming ...4
Book VIII: File and Database Programming ...4
Book IX: Fun and Games..5
This book’s Web site ..5

Icons Used in This Book..5
Where to Go from Here..6

Book I: Java Basics ...7

Chapter 1: Welcome to Java .9
What Is Java, and Why Is It So Great?..9

Platform independence ...10
Object orientation ..11
The Java API..12
The Internet...12

Comparing Java to Other Languages...13
Important Features of the Java Language...15

Type checking...15
Automatic memory management...17
Exception handling ..17

On the Downside: Java’s Weaknesses ...18
Java Version Insanity ...19
What’s in a Name? ..20

Chapter 2: Installing and Using Java Tools .21
Downloading and Installing the Java Development Kit.............................21

Downloading the JDK...22
Installing the JDK..23
Perusing the JDK folders ...23
Setting the path ..24

02_58961X ftoc.qxd 3/29/05 3:24 PM Page ix

Java All-in-One Desk Reference For Dummiesx

Using Java’s Command-Line Tools...25
Compiling a program ...26
Compiling more than one file..26
Using Java compiler options...27
Running a Java program ..29
Using the javap command...31
Other Java command-line tools..32

Using Java Documentation..32
JS2E API Docs..33
Java Language Specification ...34

Chapter 3: Working with TextPad .35
Downloading and Installing TextPad ...35
Editing Source Files..36
Compiling a Program ...38
Running a Java Program..40
Running an Applet..41

Chapter 4: Using Eclipse .43
Getting Some Perspective on Eclipse ..44
Understanding Projects...46
Creating a Simple Project ..47
Adding a Class File ...52
Running a Program ..56
Debugging a Java Program..57

Stepping through your programs...57
Examining variables ...59
Setting breakpoints ..60

Refactoring Your Code...61

Book II: Programming Basics63

Chapter 1: Java Programming Basics .65
Looking At the Infamous Hello, World! Program..65
Dealing with Keywords..68
Working with Statements ..70

Types of statements...71
White space...71

Working with Blocks ..72
Creating Identifiers ..73
Crafting Comments ..74

End-of-line comments ..74
Traditional comments..75
JavaDoc comments ..76

02_58961X ftoc.qxd 3/29/05 3:24 PM Page x

Table of Contents xi

Introducing Object-Oriented Programming..76
Understanding classes and objects ...76
Understanding static methods ...76
Creating an object from a class ..77
A program that uses an object ...78
So what’s the difference?...80

Importing Java API Classes...81

Chapter 2: Working with Variables and Data Types 83
Declaring Variables ..83

Declaring two or more variables in one statement..........................84
Declaring class variables...84
Declaring instance variables...85
Declaring local variables ...86

Initializing Variables...88
Initializing variables with assignment statements88
Initializing variables with initializers ...89

Using Final Variables (Or Constants)...89
Working with Primitive Data Types ...90

Integer types ...91
Floating-point types ...93
The char type..94
The boolean type..95
Wrapper classes ...96

Using Reference Types ..96
Working with Strings..98

Declaring and initializing strings..98
Combining strings ..99
Converting primitives to strings ..99
Converting strings to primitives ..100

Converting and Casting Numeric Data ..101
Automatic conversions..101
Type casting ..102

Understanding Scope...102
Shadowing Variables..104
Printing Data with System.out..105

Standard input and output streams...105
Using System.out and System.err...107

Getting Input with the Scanner Class ..107
Importing the Scanner class ...108
Declaring and creating a Scanner object...109
Getting input ...109

Getting Input with the JOptionPane Class ..111

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xi

Java All-in-One Desk Reference For Dummiesxii

Chapter 3: Working with Numbers and Expressions 113
Working with Arithmetic Operators ..113
Dividing Integers ..116
Combining Operators ..118
Using the Unary Plus and Minus Operators ...119
Using Increment and Decrement Operators...120
Using the Assignment Operator ...122
Using Compound Assignment Operators ...123
Using the Math Class ...124

Constants of the Math class..125
Mathematical functions ...126
Creating random numbers ..129
Rounding functions ..131

Formatting Numbers..133
Weird Things about Java Math ...136

Integer overflow..136
Floating-point weirdness ...137
Dividing by zero..138

Chapter 4: Making Choices .141
Using Simple Boolean Expressions ..141
Using If Statements ..144

Simple if statements...144
if-else statements..146
Nested if statements ..147
else-if statements..151

Mr. Spock’s Favorite Operators (The Logical Ones, of Course).............153
Using the ! operator ...153
Using the & and && operators..154
Using the | and || operators ..155
Using the ^ operator ..156
Combining logical operators...157

Using the Conditional Operator ...159
Comparing Strings..159

Chapter 5: Going Around in Circles (Or, Using Loops) 161
Your Basic while Loop ...162

The while statement ..162
A counting loop ..162

Breaking Out of a Loop..163
Looping Forever ...164

Letting the user decide when to quit...165
Another way to let the user decide..166

Using the continue Statement ..167
do-while Loops ...168
Validating Input from the User ...170

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xii

Table of Contents xiii

The Famous for Loop...173
The formal format of the for loop ..173
Scoping out the counter variable ...176
Counting even numbers ..177
Counting backwards ..177
for loops without bodies ...178
Ganging up your expressions ...179
Omitting expressions ...181
Breaking and continuing your for loops..181

Nesting Your Loops..182
A simple nested for loop ...182
A guessing game ...183

Chapter 6: Pulling a Switcheroo .187
else-if Monstrosities...187
A Better Version of the Voter Machine Error Decoder Program............189
Using the switch Statement ..190
A Boring Business Example Complete with Flowchart191
Putting if Statements Inside switch Statements.......................................193
Creating Character Cases..194
Falling through the Cracks..195

Chapter 7: Adding Some Methods to Your Madness199
The Joy of Methods ...199
The Basics of Making Methods...200

An example..201
Another example ..202

Methods That Return Values ..204
Declaring the method’s return type...205
Using the return statement to return the value..............................205
Using a method that returns a type ...206
You gotta have a proper return statement......................................206
Another version of the guessing game program208

Using Methods That Take Parameters ..211
Declaring parameters ..211
Scoping out parameters ..212
Understanding pass-by-value..213
Yet another example of the guessing game program.....................214

Chapter 8: Handling Exceptions .217
Understanding Exceptions..217

Witnessing an exception..219
Finding the culprit ..219

Catching Exceptions ..220
A simple example ...221
Another example ..222

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xiii

Java All-in-One Desk Reference For Dummiesxiv

Handling Exceptions with a Pre-emptive Strike223
Catching All Exceptions at Once ..225
Displaying the Exception Message ..226
Using a finally Block...227
Handling Checked Exceptions..229

The catch-or-throw compiler error..229
Catching FileNotFoundException...230
Throwing the FileNotFoundException...231
Throwing an exception from main ...232
Swallowing exceptions...232

Throwing Your Own Exceptions...233

Book III: Object-Oriented Programming235

Chapter 1: Understanding Object-Oriented Programming237
What Is Object-Oriented Programming? ...237
Understanding Objects..238

Objects have identity...239
Objects have type...240
Objects have state..240
Objects have behavior...241

The Life Cycle of an Object ...242
Working with Related Classes...243

Inheritance ..243
Interfaces...244

Designing a Program with Objects...244
Diagramming Classes with UML...245

Drawing classes ..246
Drawing arrows...248

Chapter 2: Making Your Own Classes .249
Declaring a Class ..249

Picking class names ...250
What goes in the class body ...250
Where classes go ..251

Working with Members ...253
Fields..253
Methods...253
Understanding visibility ..254

Getters and Setters ..254
Overloading Methods ..257
Creating Constructors ...258

Basic constructors ...258
Default constructors ..259
Calling other constructors ..260

More Uses for this ..262
Using Initializers...263

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xiv

Table of Contents xv

Chapter 3: Working with Statics .265
Understanding Static Fields and Methods ...265
Working with Static Fields...266
Using Static Methods...267
Counting Instances ..268
Preventing Instances ...271
Using Static Initializers ..271

Chapter 4: Using Subclasses and Inheritance 273
Introducing Inheritance...273

Plains, trains, and automobiles ..274
Playing games ...275
A businesslike example ...276
Inheritance hierarchies..276

Creating Subclasses ...277
Overriding Methods...278
Protecting Your Members ...279
Using this and super in Your Subclasses ..280
Inheritance and Constructors ..281
Using final..283

Final methods ...283
Final classes ..283

Casting Up and Down ..284
Determining an Object’s Type ..286
Poly What? ..287
Creating Custom Exceptions ..289

The Throwable hierarchy..289
Creating an exception class ..290
Throwing a custom exception ..291

Chapter 5: Using Abstract Classes and Interfaces 293
Using Abstract Classes ..293
Using Interfaces..296

Creating a basic interface..296
Implementing an interface ..297
Using an interface as a type ..298

More Things You Can Do with Interfaces..299
Adding fields to an interface...299
Extending interfaces ..299
Using interfaces for callbacks...300

Chapter 6: Using the Object and Class Classes 305
The Mother of All Classes: Object..305

Every object is an Object ..305
Using Object as a type ...306
Methods of the Object class ...307
Primitives aren’t objects ...308

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xv

Java All-in-One Desk Reference For Dummiesxvi

The toString Method..309
Using toString ...309
Overriding toString ..310

The equals Method ..311
Using equals ..312
Overriding the equals method..313

The clone Method ..316
Implementing the clone method ..317
Using clone to create a shallow copy ..320
Creating deep copies ...321

The Class Class...327

Chapter 7: Using Inner Classes .329
Declaring Inner Classes ...329

Understanding inner classes...330
An example..330

Using Static Inner Classes ...333
Using Anonymous Inner Classes ..334

Creating an anonymous class ...335
Tick Tock with an anonymous class ..336

Chapter 8: Packaging and Documenting Your Classes 339
Working with Packages..339

Importing classes and packages...339
Creating your own packages...340
An example..342

Putting Your Classes in a JAR File ..343
jar command-line options ...344
Archiving a package ...345
Adding a jar to your classpath ...346
Running a program directly from an archive..................................346

Using JavaDoc to Document Your Classes..347
Adding JavaDoc comments...347
Using the javadoc command...350
Viewing JavaDoc pages..351

Book IV: Strings, Arrays, and Collections353

Chapter 1: Working with Strings .355
Reviewing Strings...355
Using the String Class..357

Finding the length of a string ..359
Making simple string modifications...360
Extracting characters from a string ...360
Extracting substrings from a string ...361

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xvi

Table of Contents xvii

Splitting up a string ..363
Replacing parts of a string ..365

Using the StringBuilder and StringBuffer Classes....................................365
Creating a StringBuilder object ..366
Using StringBuilder methods..367
A StringBuilder example..369

Using the CharSequence Interface...369

Chapter 2: Using Arrays .371
Understanding Arrays ...371
Creating Arrays...372
Initializing an Array..373
Using for Loops with Arrays ...374
Solving Homework Problems with Arrays ..375
Using the Enhanced for Loop ...377
Using Arrays with Methods ..378
Using Two-Dimensional Arrays ..379

Creating a two-dimensional array ..380
Accessing two-dimensional array elements....................................381
Initializing a two-dimensional array...382
Using jagged arrays..382
Going beyond two dimensions ...384

A Fun but Complicated Example: A Chess Board385
Using the Arrays Class...392

Filling an array ..393
Sorting an array ..393
Searching an array..394
Comparing arrays...394
Converting arrays to strings ...395

Chapter 3: Using the ArrayList Class .397
The ArrayList Class..398
Creating an ArrayList Object ..401
Adding Elements ..402
Accessing Elements ...403
Printing an ArrayList ...403
Using an Iterator...404
Updating Elements...406
Deleting Elements ..407

Chapter 4: Using the LinkedList Class .409
The LinkedList Class..409
Creating a LinkedList ...413
Adding Items to a LinkedList ..414
Retrieving Items from a LinkedList ..416
Updating LinkedList Items ..417
Removing LinkedList Items...417

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xvii

Java All-in-One Desk Reference For Dummiesxviii

Chapter 5: Creating Generic Collection Classes 419
Why Generics?..420
Creating a Generic Class ...421
A Generic Stack Class ..422
Using Wildcard Type Parameters...426
A Generic Queue Class ..427

Book V: Programming Techniques431

Chapter 1: Programming Threads .433
Understanding Threads...433
Creating a Thread...434

Understanding the Thread class ..435
Extending the Thread class...436
Creating and starting a thread..437

Implementing the Runnable Interface ..438
Using the Runnable interface..438
Creating a class that implements Runnable....................................439
Using the CountDownApp class ...440

Creating Threads That Work Together..442
Synchronizing Methods...446
Threadus Interruptus ..447

Finding out if you’ve been interrupted..447
Aborting the countdown ...449

Chapter 2: Network Programming .453
Understanding Network Programming..453

IP addresses and ports ..454
Host names, DNS, and URLs..455
Telnet ...455

Getting Information about Internet Hosts...456
The InetAddress class..456
A program that looks up host names ..458

Creating Network Server Applications..460
The Socket class ..461
The ServerSocket class..462

Introducing BART...463
The BartQuote class ..464
The BartServer program ...465
The BartClient program...468

BartServer 2.0 ...471

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xviii

Table of Contents xix

Chapter 3: Using Regular Expressions .475
A Program for Experimenting with Regular Expressions........................476
Basic Character Matching...478

Matching single characters...479
Using predefined character classes ...479
Using custom character classes...481
Using ranges..482
Using negation ..483
Matching multiple characters...483
Using escapes ...485
Using parentheses to group characters ..485
Using the | symbol...487

Using Regular Expressions in Java Programs...488
The String problem ..488
Using regular expressions with the String class.............................489
Using the Pattern and Matcher classes ...489

Chapter 4: Using Recursion .491
The Classic Factorial Example..491

The non-recursive solution ...491
The recursive solution...492

Displaying Directories ...494
Writing Your Own Sorting Routine...497

Understanding how Quicksort works ..498
The sort method...499
The partition method...500
Putting it all together ...502

Book VI: Swing ...505

Chapter 1: Swinging into Swing .507
Some Important Swing Concepts You Need to Know..............................507

Understanding what Swing does ..507
The Swing class hierarchy...508

I’ve Been Framed! ...510
Hello, World! in Swing ..511
Positioning the Frame On-Screen...513
Using the JPanel Class ...514
Using Labels..516
Creating Buttons ..518
A Word about the Layout of Components...520

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xix

Java All-in-One Desk Reference For Dummiesxx

Chapter 2: Handling Events .521
Examining Events ...521
Handling Events..524
The ClickMe Program ..526
Using Inner Classes to Listen for Events...528
Adding an Exit Button..530
Catching the WindowClosing Event...532
The ClickMe Program Revisited ...534

Chapter 3: Getting Input from the User .537
Using Text Fields ..537

Looking at a sample program ...539
Using text fields for numeric entry ..541
Creating a validation class ..543

Using Text Areas...544
The JTextArea class ...545
The JScrollPane class...547

Using Check Boxes...548
Using Radio Buttons ..551
Using Borders ...553
Designing a Pizza-Ordering Program ...556
Using Sliders ...559

Chapter 4: Choosing from a List .563
Using Combo Boxes ...563

Creating combo boxes ...565
Getting items from a combo box ..566
Handling combo box events ...567

Using Lists...567
Creating a list ..569
Getting items from a list ..570
Changing list items...571

Using Spinners..573
Using Trees ...575

Building a tree...576
Creating a JTree component ...579
Getting the selected node ...580
Putting it all together ...581

Chapter 5: Using Layout Managers .585
Introducing Layout Managers...585
Using Flow Layout..587
Using Border Layout ..588

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xx

Table of Contents xxi

Using Box Layout ...590
Using Grid Layout ..592
Using GridBag Layout ..593

Sketching out a plan...594
Adding components to a GridBag ..595
Working with GridBagConstraints..597
A GridBag layout example...598

Book VII: Web Programming603

Chapter 1: Creating Applets .605
Understanding Applets..605
The JApplet Class...606
Looking At a Sample Applet..607
Creating an HTML Page for an Applet ...611
Testing an Applet ...611

Chapter 2: Creating Servlets .613
Understanding Servlets ...613
Using Tomcat ..614

Installing and configuring Tomcat..615
Starting and stopping Tomcat ..617
Testing Tomcat ...618

Creating a Simple Servlet ..619
Importing the servlet packages..619
Extending the HttpServlet class ...619
Printing to a Web page...620
Responding with HTML ...620

Running a Servlet ...623
An Improved HelloWorld Servlet ...623
Getting Input from the User ..625

Working with forms..625
The InputServlet servlet..626

Using Classes in a Servlet ...627

Chapter 3: Using Java Server Pages .633
Understanding Java Server Pages..633
Using Page Directives ..635
Using Expressions ..636
Using Scriptlets ..638
Using Declarations ...640
Using Classes ..642

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xxi

Java All-in-One Desk Reference For Dummiesxxii

Chapter 4: Using JavaBeans .647
What Is a JavaBean?...647
Looking Over a Sample Bean ..648
Using Beans with JSP Pages..651

Creating bean instances ..651
Getting property values...652
Setting property values ...653
A JSP page that uses a bean..654

Scoping Your Beans ...656
A shopping cart application..657
The shopping cart page...658
The BookCart JavaBean...659

Book VIII: Files and Databases...................................663

Chapter 1: Working with Files .665
Using the File Class ..665

Creating a File object ...667
Creating a file ..668
Getting information about a file ...668
Getting the contents of a directory..669
Renaming files...670
Deleting a file ..670

Using Command-Line Parameters..671
Choosing Files in a Swing Application...672

Creating an Open dialog box...674
Getting the selected file...675
Using file filters ...676

Chapter 2: Using File Streams .679
Understanding Streams ...679
Reading Character Streams ..680

Creating a BufferedReader ..682
Reading from a character stream...682
Reading the movies.txt file..683

Writing Character Streams..686
Connecting a PrintWriter to a text file ...687
Writing to a character stream...688
Writing the movies.txt file ...689

Reading Binary Streams ..692
Creating a DataInputStream ..693
Reading from a data input stream..694
Reading the movies.dat file...695

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xxii

Table of Contents xxiii

Writing Binary Streams..698
Creating a DataOutputStream...699
Writing to a binary stream ..700
Writing the movies.dat file ..700

Chapter 3: Database for $100, Please .703
What Is a Relational Database? ..703
What Is SQL, and How Do You Pronounce It?...704
SQL Statements ..704
Creating a SQL Database ...705
Querying a Database..707

Using your basic select..707
Narrowing down the query ...709
Excluding rows..709
Singleton selects...709
Sounds like ..710
Column functions ...710
Selecting from more than one table ...711
Eliminating duplicates ...713

Updating and Deleting Rows...713
The delete statement ...713
The update statement..715

Chapter 4: Using JDBC to Connect to a Database 717
Setting Up a Driver...717

Setting up an ODBC data source ..717
Setting up the MySQL JDBC connector ...719

Connecting to a Database ...720
Querying a Database..721

Executing a select statement ..723
Navigating through the result set...723
Getting data from a result set ...723
Putting it all together: A program that reads from a database.....725

Updating SQL Data ...728
Using an Updatable RowSet Object ...729

Deleting a row ...730
Updating the value of a row column ..731
Inserting a row..732

Chapter 5: Working with XML .733
What Exactly Is XML, Anyway?...733

Tags ..734
Attributes ..735
The movies.xml file ..735

Using a DTD ..736

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xxiii

Java All-in-One Desk Reference For Dummiesxxiv

Processing XML in Two Ways ...739
Reading a DOM Document ..741

Creating a document builder factory...741
Configuring the document builder factory742
Creating a document builder and the document742
Using the getDocument method...743

Reading DOM Nodes ..743
Processing elements ..745
Getting attribute values...746
Getting child element values ..747

Putting It All Together: A Program That Lists Movies.............................748

Book IX: Fun and Games..751

Chapter 1: Fun with Fonts and Colors .753
Working with Fonts ..753

Using font names ..754
Using font styles ...754
Setting a component’s font ...755
Getting a list of all available fonts ..756
A program that plays with fonts...756

Working with Color ..760
Creating colors..760
Using system colors ...761
Setting the color of Swing components...763
Using a color chooser ..763

Chapter 2: Drawing Shapes .767
Getting a Graphics Context...767
Drawing Shapes ..768
Creating Shapes..771

Creating lines ..772
Creating rectangles ..773
Creating ellipses ...774
Creating arcs ...774
Looking at the ShapeMaker program...775

Filling Shapes..777
Drawing transparently ...777
Using a gradient fill ..778

Rotating and Translating ..780
Translate method ...780
Rotate method ..780

Drawing Text...782
Letting the User Draw on a Component..782

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xxiv

Table of Contents xxv

Chapter 3: Using Images and Sound .789
Using Images...790
Using the ImageIcon Class ..790

Using ImageIcon in a Swing application ..791
Using ImageIcon in an applet..793

Using the Image Class..793
Creating an Image object...794
Drawing an Image object ...795
An Image example ..796

Playing Sounds and Making Music...799

Chapter 4: Animation and Game Programming 803
Animating a Sprite..803
What about Double Buffering? ...807
Bouncing the Ball ...807
Bouncing a Bunch of Balls ..809

Creating a Ball class ...809
Animating random balls ..811

Creating Collidable Balls ...812
Playing Games ..814

Index..821

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xxv

Java All-in-One Desk Reference For Dummiesxxvi

02_58961X ftoc.qxd 3/29/05 3:24 PM Page xxvi

Introduction

Welcome to Java All-in-One Desk Reference For Dummies, the one Java
book that’s designed to replace an entire shelf full of the dull and

tedious Java books you’d otherwise have to buy. This book contains all the
basic and not-so-basic information you need to know to get going with Java
programming, starting with writing statements and using variables and ending
with techniques for writing programs that use animation and play games.
Along the way, you find information about programming user interfaces,
working with classes and objects, creating Web applications, and dealing
with files and databases.

You can, and probably should, eventually buy separate books on each of
these topics. It won’t take long before your bookshelf is bulging with 10,000
or more pages of detailed information about every imaginable nuance of
Java programming. But before you’re ready to tackle each of those topics in
depth, you need to get a birds-eye picture. That’s what this book is about.

And if you already own 10,000 pages or more of Java information, you may
be overwhelmed by the amount of detail and wonder, do I really need to
read 1,200 pages about JSP just to create a simple Web page? And do I really
need a six-pound book on Swing? Truth is, most 1,200 page programming
books have about 200 pages of really useful information — the kind you use
every day — and about 1,000 pages of excruciating details that apply mostly
if you’re writing guidance control programs for nuclear missiles or trading
systems for the New York Stock Exchange.

The basic idea here is that I’ve tried to wring out the 100 or so most useful
pages of information on nine different Java programming topics: setup and
configuration, basic programming, object-oriented programming, program-
ming techniques, Swing, file and database programming, Web programming,
and animation and game programming. Thus, a nice, trim 900 page book that’s
really nine 100 page books. (Well, they didn’t all come out to 100 pages each.
But close!)

So whether you’re just getting started with Java programming or you’re a
seasoned pro, you’ve found the right book.

03_58961x intro.qxd 3/29/05 3:25 PM Page 1

About This Book2

About This Book
Java All-in-One Desk Reference For Dummies is intended to be a reference for
all the great things (and maybe a few not-so-great things) that you may need
to know when you’re writing Java programs. You can, of course, buy a huge
1,200-page book on each of the programming topics covered in this book.
But then, who would carry them home from the bookstore for you? And
where would you find the shelf space to store them? In this book, you get the
information you need all conveniently packaged for you in between one set
of covers.

This book doesn’t pretend to be a comprehensive reference for every detail
on these topics. Instead, it shows you how to get up and running fast so that
you have more time to do the things you really want to do. Designed using
the easy-to-follow For Dummies format, this book helps you get the informa-
tion you need without laboring to find it.

Java All-in-One Desk Reference For Dummies is a big book made up of several
smaller books — minibooks, if you will. Each of these minibooks covers the
basics of one key element of programming, such as installing Java and com-
piling and running programs, or using basic Java statements, or using Swing
to write GUI applications.

Whenever one big thing is made up of several smaller things, confusion is
always a possibility. That’s why this book is designed to have multiple
access points to help you find what you want. At the beginning of the book
is a detailed table of contents that covers the entire book. Then, each mini-
book begins with a minitable of contents that shows you at a miniglance
what chapters are included in that minibook. Useful running heads appear
at the top of each page to point out the topic discussed on that page. And
handy thumbtabs run down the side of the pages to help you quickly find
each minibook. Finally, a comprehensive index lets you find information any-
where in the entire book.

This isn’t the kind of book you pick up and read from start to finish, as if it
were a cheap novel. If I ever see you reading it at the beach, I’ll kick sand in
your face. This book is more like a reference, the kind of book you can pick
up, turn to just about any page, and start reading. You don’t have to memo-
rize anything in this book. It’s a “need-to-know” book: You pick it up when
you need to know something. Need a reminder on the constructors for the
ArrayList class? Pick up the book. Can’t remember the goofy syntax for
anonymous inner classes? Pick up the book. After you find what you need,
put the book down and get on with your life.

03_58961x intro.qxd 3/29/05 3:25 PM Page 2

How This Book Is Organized 3

How to Use This Book
This book works like a reference. Start with the topic you want to find out
about. Look for it in the table of contents or in the index to get going. The
table of contents is detailed enough that you can find most of the topics you’re
looking for. If not, turn to the index, where you can find even more detail.

Of course, the book is loaded with information, so if you want to take a brief
excursion into your topic, you’re more than welcome. If you want to know
the big picture on inheritance, read the whole chapter on inheritance. But if
you just want to know the rules for calling the superclass constructor, just
read the section on inheritance and constructors.

Whenever I describe console output from a program or information that you
see on-screen, I present it as follows:

A message from not-another-Hello-World program

If the program involves an interaction with the user, you see the text entered
by the user in bold type.

How This Book Is Organized
Each of the nine minibooks contained in Java All-in-One Desk Reference
For Dummies can stand alone. Here is a brief description of what you find
in each minibook.

Book I: Java Basics
This minibook contains the information you need to get started with Java.
After a brief introduction to what Java is and why it’s so popular, you down-
load Java and install it on your computer and use its command-line tools.
Then, you use two popular development tools — TextPad and Eclipse — to
create Java programs.

Book II: Programming Basics
This minibook covers all the basic details of programming with the Java lan-
guage. I start with such basics as data types, variables, and statements, and
then move on to expressions, conditional statements, looping statements, and
methods. I end with a discussion of how to handle exceptions. You really need
to know everything that’s in this minibook to do any serious programming, so
you’ll probably spend a lot of time here if you’re new to programming.

03_58961x intro.qxd 3/29/05 3:25 PM Page 3

How This Book Is Organized4

Book III: Object-Oriented Programming
This minibook goes deep into the details of object-oriented programming
with Java. You create your own classes, as well as work with inheritance and
polymorphism. You also get the scoop on abstract classes, interfaces, pack-
ages, inner classes, and even anonymous inner classes.

Book IV: Strings, Arrays, and Collections
This minibook focuses on working with strings, arrays, and collections.
You find out all about Java’s strange immutable strings as well as the
StringBuilder and StringBuffer classes. You also create and work
with arrays, and their collection counterparts including array lists and
linked lists. Along the way, you find out about a cool new object-oriented
programming feature called generics, which is designed to simplify the han-
dling of arrays and collections.

Book V: Programming Techniques
In this minibook, you discover a variety of interesting and often useful pro-
gramming techniques. For example, I include a chapter on working with
threads so you can create programs that do more than one thing at a time.
There’s a chapter on using regular expressions that shows you how to do
some amazing string handling. And there’s a chapter on a programming tech-
nique called recursion that every programmer needs to feel comfortable with.

Book VI: Swing
Swing is the part of Java that lets you create graphical user interfaces. In this
minibook, you find out all about Swing: how to create windows with controls
like buttons, text fields, check boxes, drop-down lists, and so on; how to write
programs that respond when the user clicks a button or types text; and how
to control the layout of complicated forms.

Book VII: Web Programming
In this minibook, you use various Java features for creating Web applications.
First, you turn Swing applications into applets that run in a user’s browser.
Then, you create full-blown Web applications using servlets and JSP.

Book VIII: File and Database Programming
The chapters in this minibook show you how to work with data stored on
disk, whether it’s in files, in a database, or in an XML file. You find chapters
on working with files and directories, reading and writing data from streams,
using Java’s database interface (JDBC) to access databases, and using Java’s
XML features to read and write XML data.

03_58961x intro.qxd 3/29/05 3:25 PM Page 4

Icons Used in This Book 5

Book IX: Fun and Games
This last minibook gets into some of the more interesting and fun aspects of
Java programming. Specifically, you play with fonts and colors, draw pic-
tures, work with images and media, and even create animations and write
simple game programs.

This book’s Web site
This book has an accompanying Web site (www.dummies.com/go/
javaaiofd) that includes even more goodies. If you’re the kind of person
who’s always looking for a way to save time typing, the Web page includes
all the code listings that are used in this book. And for those of you who are
yearning for even more Java information, be sure to check out the three
bonus chapters on the Web site: “Using the BigDecimal Class,” “Twiddling
Your Bits,” and “Using Menus.”

Icons Used in This Book
Like any For Dummies book, this book is chock-full of helpful icons that draw
your attention to items of particular importance. You find the following icons
throughout this book:

Pay special attention to this icon; it lets you know that some particularly
useful tidbit is at hand.

Hold it — overly technical stuff is just around the corner. Obviously, because
this is a programming book, almost every paragraph of the next 900 or so
pages could get this icon. So I reserve it for those paragraphs that go in
depth into explaining how something works under the covers — probably
deeper than you really need to know to use a feature, but often enlightening.

You also sometimes find this icon when I want to illustrate a point with an
example that uses some Java feature that hasn’t been covered so far in the
book, but that is covered later. In those cases, the icon is just a reminder
that you shouldn’t get bogged down in the details of the illustration, and
instead focus on the larger point.

Danger, Will Robinson! This icon highlights information that may help you
avert disaster.

Did I tell you about the memory course I took?

03_58961x intro.qxd 3/29/05 3:25 PM Page 5

Where to Go from Here6

One of the recent hot topics among programming gurus is the notion of
design patterns, which provide predictable ways to do common things.
This icon appears alongside sidebars that describe such patterns.

Where to Go from Here
Yes, you can get there from here. With this book in hand, you’re ready
to plow right through the rugged Java terrain. Browse through the table
of contents and decide where you want to start. Be bold! Be courageous!
Be adventurous! And above all, have fun!

03_58961x intro.qxd 3/29/05 3:25 PM Page 6

Book I

Java Basics

04_58961X pt01.qxd 3/29/05 3:26 PM Page 7

Contents at a Glance
Chapter 1: Welcome to Java ..9

Chapter 2: Installing and Using Java Tools ..21

Chapter 3: Working with TextPad..35

Chapter 4: Using Eclipse ..43

04_58961X pt01.qxd 3/29/05 3:26 PM Page 8

Chapter 1: Welcome to Java

In This Chapter
� Finding out about programming

� Scoping out Java

� Comparing Java with other programming languages

� Understanding Java’s incomprehensible version numbers

This chapter is a gentle introduction to the world of Java. In the next few
pages, you find out what Java is, where it came from, and where it’s

going. You also discover some of the unique strengths of Java, as well as
some of its weaknesses. And I also compare Java to the other popular pro-
gramming languages, including C, C++, C#, and Visual Basic.

By the way, I assume in this chapter that you have at least enough back-
ground to know what computer programming is all about. That doesn’t mean
that I assume you’re an expert or professional programmer. It just means that
I don’t take the time to explain such basics as what a computer program is,
what a programming language is, and so on. If you have absolutely no pro-
gramming experience, I suggest you pick up a copy of Java 2 For Dummies.

Throughout this chapter, you find little snippets of Java program code, plus
a few snippets of code written in other languages like C, C++, or Basic. If you
don’t have a clue what this code means or does, don’t panic. I just want to
give you a feel for what Java programming looks like and how it compares to
programming in other languages.

All the code listings that are used in this book are available for download at
www.dummies.com/go/javaaiofd.

What Is Java, and Why Is It So Great?
Java is a programming language in the tradition of C and C++. As a result, if
you have any experience with C or C++, you’ll find yourself in familiar terri-
tory often as you learn the various features of Java. (For more information
about the similarities and differences between Java and C or C++, see the
section “Comparing Java to Other Languages” later in this chapter.)

However, Java differs from other programming languages in a couple of signifi-
cant ways. The following sections describe the most important differences.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 9

What Is Java, and Why Is It So Great?10

Platform independence
One of the main reasons Java is so popular is its platform independence,
which means simply that Java programs can be run on many different types
of computers. A Java program runs on any computer with a Java Runtime
Environment, also known as a JRE, installed. A JRE is available for almost
every type of computer you can think of, from PCs running any version of
Windows, Macintosh computers, Unix or Linux computers, huge mainframe
computers, and even cell phones.

Before Java, other programming languages promised platform independence
by providing compatible compilers for different platforms. (A compiler is the
program that translates programs written in a programming language into a
form that can actually run on a computer.) The idea was that you could com-
pile different versions of the programs for each platform. Unfortunately, this
idea never really worked. The compilers were never completely identical on
each platform — each had its own little nuances. As a result, you had to
maintain a different version of your program for each platform you wanted
to support.

Java’s platform independence isn’t based on providing compatible compilers
for different platforms. Instead, Java is based on the concept of a virtual
machine. You can think of the Java Virtual Machine (sometimes called the
JVM) as a hypothetical computer platform — a design for a computer that
doesn’t really exist on any actual computer. Instead, the Java Runtime
Environment is an emulator that creates a Java Virtual Machine environment
that can execute Java programs.

The Java compiler doesn’t translate Java into the machine language of the
computer the program is run on. Instead, the compiler translates Java into
the machine language of the Java Virtual Machine, which is called bytecode.
Then the Java Runtime Environment runs the bytecode in the JVM. Because
of the JVM, you can execute a Java program on any computer that has a Java
Runtime Environment installed, without recompiling the program.

That’s how Java provides platform independence, and believe it or not, it
works pretty well. The programs you write run just as well on a PC running
any version of Windows, a Macintosh, Unix or Linux, or any other computer
with a JRE installed.

While you lay awake tonight pondering the significance of Java’s platform
independence, here are a few additional thoughts to ponder:

✦ The JRE is separate from the Java compiler. As a result, you don’t have
to install a Java compiler to run compiled Java programs. All you need is
the JRE.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 10

Book I
Chapter 1

W
elcom

e to Java

What Is Java, and Why Is It So Great? 11

✦ When someone asks if your computer “has Java,” they usually mean
“have you installed the Java Runtime Environment” so that you can run
Java programs.

✦ Platform independence only goes so far. If you have some obscure type
of computer system, such as an antique Olivetti Programma 101, and a
Java JRE isn’t available for it, you can’t run Java programs on it.

✦ If you’re interested, the Java Virtual Machine is completely stack
oriented — it has no registers for storing local data. I’m not going to
explain what that means, so if it didn’t make sense, skip it. It’s not impor-
tant. It’s just interesting to nerds who know about stacks, registers, and
things of that ilk.

✦ Java’s platform independence isn’t perfect. Although the bytecode runs
identically on every computer that has a JRE, some parts of Java use
services provided by the underlying operating system. As a result, some-
times minor variations crop up, especially with applications that use
graphical interfaces.

✦ Because a runtime system that emulates a Java Virtual Machine executes
Java bytecode, some people mistakenly compare Java to interpreted lan-
guages, such as Basic or Perl. However, those languages aren’t compiled
at all. Instead, the interpreter reads and interprets each statement as it is
executed. Java is a true compiled language — it’s just compiled to the
machine language of JVM rather than the machine language of an actual
computer platform.

✦ I didn’t make up the Olivetti Programma 101. It was a desktop computer
made in the early 1960s, and happened to be my introduction to com-
puter programming. (My junior high school math teacher had one in the
back of his classroom and let me play with it during lunch.) Do a Google
search for “Olivetti Programma 101,” and you can find several interesting
Web sites about it.

Object orientation
Java is inherently object-oriented, which means that Java programs are made
up from programming elements called objects. Simply put (don’t you love it
when you read that in a computer book?), an object is a programming entity
that represents either some real-world object or an abstract concept.

All objects have two basic characteristics:

✦ Objects have data, also known as state. For example, an object that rep-
resents a book has data such as the book’s title, author, and publisher.

✦ Objects also have behavior, which means that they can perform certain
tasks. In Java, these tasks are called methods. For example, an object
that represents a car might have methods such as start, stop, drive, or

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 11

What Is Java, and Why Is It So Great?12

crash. Some methods simply allow you to access the object’s data. For
example, a book object might have a getTitle method that tells you
the book’s title.

Classes are closely related to objects. A class is the program code you write
to create objects. The class describes the data and methods that define the
object’s state and behavior. Then, when the program executes, classes are
used to create objects.

For example, suppose you’re writing a payroll program. This program proba-
bly needs objects to represent the company’s employees. So, the program
includes a class (probably named Employee) that defines the data and
methods for each employee object. Then, when your program runs, it uses
this class to create an object for each of your company’s employees.

The Java API
The Java language itself is very simple. However, Java comes with a library
of classes that provide commonly used utility functions that most Java pro-
grams can’t do without. This class library, called the Java API, is as much a
part of Java as the language itself. In fact, the real challenge of learning how
to use Java isn’t learning the language; it’s learning the API. The Java lan-
guage has only 48 keywords, but the Java API has several thousand classes,
with tens of thousands of methods you can use in your programs.

For example, the Java API has classes that let you do trigonometry, write
data to files, create windows on-screen, or retrieve information from a data-
base. Many of the classes in the API are general purpose and commonly
used. For example, a whole series of classes stores collections of data. But
many are obscure, used only in special situations.

Fortunately, you don’t have to learn anywhere near all of the Java API. Most
programmers are fluent with only a small portion of it — the portion that
applies most directly to the types of programs they write. If you find a need to
use some class from the API that you aren’t yet familiar with, you can look up
what the class does in the Java API documentation at java.sun.com/docs.

The Internet
Java is often associated with the Internet, and rightfully so. That’s because
Al Gore invented Java just a few days after he invented the Internet. Okay,
Java wasn’t really invented by Al Gore. But Java was developed during the
time that the Internet’s World Wide Web was becoming a phenomenon, and
Java was specifically designed to take advantage of the Web. In particular,
the whole concept behind the Java Virtual Machine is to allow any computer
that’s connected to the Internet to be able to run Java programs, regardless
of the type of computer or the operating system it runs.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 12

Book I
Chapter 1

W
elcom

e to Java

Comparing Java to Other Languages 13

You can find two distinct types of Java programs on the Internet:

✦ Applets, which are Java programs that run directly within a Web browser.
To run an applet, the browser starts a Java Virtual Machine, and that vir-
tual machine is given a portion of the Web page to work with. Then the
virtual machine runs the applet’s bytecode.

Applets are a grand idea. However, marketing and legal battles between
Microsoft and Sun have left applets in a precarious situation. The prob-
lem is that not all Web browsers provide a JVM, and those that do often
provide an old version that isn’t able to take advantage of the latest and
greatest Java features.

✦ Servlets, which are Web-based Java programs that run on an Internet
server computer rather than in an Internet user’s Web browser. Servlets
are how many, if not most, commercial Web sites work. Basically, a
servlet is a program that generates a page of HTML that is then sent to a
user’s computer to be displayed in a Web browser. For example, if you
request information about a product from an online store, the store’s
Web server runs a servlet to generate the HTML page that contains the
product information you requested.

You find out how to create both types of applications in Book VII.

Comparing Java to Other Languages
Superficially, Java looks a lot like many of the programming languages that
preceded it. For example, here’s the classic Hello, World! program written in
the C programming language:

main()
{

Printf(“Hello, world!”);
}

This program simply displays the text “Hello, World!” on the com-
puter’s console. Here’s the same program (almost) written in Java:

public class HelloApp
{

public static void main(String[] args)
{

System.out.println(“Hello, World!”);
}

}

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 13

Comparing Java to Other Languages14

Although the Java version is a bit more verbose, the two have several
similarities:

✦ Both require that each executable statement end with a semicolon.

✦ Both use braces ({}) to mark blocks of code.

✦ Both use a routine called main as the main entry point for the program.

There are many other similarities besides these that aren’t evident in this
simple example.

However, these two trivial examples bring the major difference between
C and Java front and center: Java is inherently object-oriented. Object-oriented
programming rears its ugly head even in this simple example:

✦ In Java, even the simplest program is a class, so you have to provide a
line that declares the name of the class. In this example, the class is
named HelloApp. HelloApp has a method named main, which the
Java Virtual Machine automatically calls when a program is run.

✦ In the C example, printf is a library function you call to print informa-
tion to the console. In Java, you use the PrintStream class to write
information to the console. PrintStream? There’s no PrintStream
in this program! Yes, there is. Every Java program has available to it a
PrintStream object that writes information to the console. You can get
this PrintStream object by calling the out method of another class,
named System. Thus, System.out gets the PrintStream object that
writes to the console. The PrintStream class, in turn, has a method
named println that writes a line to the console. So System.out.
println really does two things:

• It uses the out field of the System class to get a PrintStream
object.

• Then it calls the println method of that object to write a line to the
console.

Confusing? You bet. It will all make sense when you read about object-
oriented programming in Book III, Chapter 1.

✦ void looks familiar. Although it isn’t shown in the C example, you could
have coded void on the main function declaration to indicate that the
main function doesn’t return a value. void has the same meaning in
Java. But static? What does that mean? That, too, is evidence of Java’s
object orientation. It’s a bit early to explain what it means in this chap-
ter, though, but you can find out in Book II, Chapter 7.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 14

Book I
Chapter 1

W
elcom

e to Java

Important Features of the Java Language 15

Important Features of the Java Language
If you believe the marketing hype put out by Sun and others, you’d think
that Java is the best thing to happen to computers since the invention of
memory. Java may not be that revolutionary, but Java does have many built-in
features that set it apart from other languages (with the possible exception
of Microsoft’s C#, which is basically a rip-off of Java). The following sections
describe just three of the many features that make Java so popular.

Type checking
All programming languages must deal in one way or the other with type
checking. Type checking refers to how a language handles variables that
store different types of data. For example, numbers, strings, and dates are
commonly used data types available in most programming languages. Most
programming languages also have several different types of numbers, such
as integers and real numbers.

All languages must do type checking, so make sure that you don’t try to do
things that don’t make sense, such as multiplying the gross national product by
your last name. The question is, does the language require you to declare every
variable’s type so you can do type checking when it compiles your programs,
or does the language do type checking only after it runs your program?

Some languages, such as Basic, do almost no type checking at compile time.
For example, in Microsoft’s Visual Basic for Applications (VBA), you can
assign any type of data to a variable. Thus, the following statements are all
allowed:

Let A = 5
Let A = “Strategery”
Let A = 3.14159

Here, three different types of data — integer, string, and decimal — have
been assigned to the same variable. This flexibility is convenient, but comes
with a price. For example, the following sequence is perfectly legal in VBA:

Let A = 5
Let B = “Strategery”
Let C = A * B

Here, an integer is assigned to variable A, and a string is assigned to variable
B. Then the third statement attempts to multiply the string by the integer.
You can’t multiply strings, so the third statement fails.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 15

Important Features of the Java Language16

Java, on the other hand, does complete type checking at run time. As a
result, you must declare all variables as a particular type so the compiler
can make sure you use the variables correctly. For example, the following bit
of Java code won’t compile:

int a = 5;
String b = “Strategery”;
String c = a * b;

If you try to compile these lines, you get an error message saying that Java
can’t multiply an integer and a string.

In Java, every class you define creates a new type of data for the language to
work with. Thus, the data types you have available to you in Java aren’t just
simple predefined types, such as numbers and strings. You can create your
own types. For example, if you’re writing a payroll system, you might create
an Employee type. Then you can declare variables of type Employee that
can only hold Employee objects. This prevents a lot of programming errors.
For example, consider this code snippet:

Employee newHire;
newHire = 21;

This code creates a variable (newHire) that can hold only Employee
objects. Then it tries to assign the number 21 to it. The Java compiler won’t
let you run this program because 21 is a number, not an employee.

An important object-oriented programming feature of Java called inheritance
adds an interesting and incredibly useful twist to type checking. Inheritance
is way too complicated to completely get into just yet, so I’ll be brief here. In
Java, you can create your own data types that are derived from other data
types. For example, Employees are people. Customers are people too. So you
might create a Person class and then create Employee and Customer
classes that both inherit the Person class. Then you can write code like this:

Person p;
Employee e;
Customer c;
p = e; // this is allowed because an Employee is also a Person.
c = e; // this isn’t allowed because an Employee is not a Customer.

Confused yet? If so, that’s my fault. Inheritance is a pretty heady topic for
Chapter 1 of a Java book. Don’t panic if it makes no sense. It will all be clear
by the time you finish reading Book III, Chapter 4, which covers all the subtle
nuances of using inheritance.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 16

Book I
Chapter 1

W
elcom

e to Java

Important Features of the Java Language 17

Automatic memory management
Memory management is another detail that all programming languages have
to deal with. All programming languages let you create variables. When you
create a variable, the language assigns a portion of the computer’s memory
to store the data referred to by the variable. Exactly how this memory is allo-
cated is a detail that you can usually safely ignore, no matter what language
you’re working with. But a detail that many languages do not let you safely
ignore is what happens to that memory when you no longer need the data
that was stored in it.

In C++ and similar languages, you had to write code that explicitly released
that memory so that other programs could access it. If you didn’t do this, or
if you did it wrong, your program might develop a memory leak, which means
that your program slowly but surely sucks memory away from other pro-
grams, until the operating system runs out of memory and your computer
grinds to a halt.

In Java, you don’t have to explicitly release memory when you’re done with
it. Instead, memory is freed up automatically when it is no longer needed.
The Java Virtual Machine includes a special process called the garbage col-
lector that snoops around the Virtual Machine’s memory, determines when
data is no longer being used, and automatically deletes that data and frees
up the memory it occupied.

A feature related to garbage collection is bounds checking, which guarantees
that programs can’t access memory that doesn’t belong to them. Languages
such as C or C++ don’t have this type of safety. As a result, programming
errors in C or C++ can cause one program to trample over memory that’s
being used by another program. That, in turn, can cause your whole com-
puter to crash.

Exception handling
As Robert Burns said, “The best laid schemes of mice and men gang oft
agley, and leave us nought be grief and pain for promised joy.” (Well, that’s
not exactly what he said, but pretty close.) When you tinker with computer
programming, you’ll quickly discover what he meant. No matter how care-
fully you plan and test your programs, errors happen. And when they do,
they threaten to grind your whole program to a crashing halt.

Java has a unique approach to error handling that’s superior to that found in
any other language (except, as I’ve mention a few times, C# that just copies
Java’s approach). In Java, the Java Runtime Environment intercepts and folds
errors of all types into a special type of object called an exception object. After
all, Java is object-oriented through and through, so why shouldn’t its excep-
tion handling features be object-oriented?

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 17

On the Downside: Java’s Weaknesses18

Java requires that any statements that can potentially cause an exception
must be bracketed by code that can catch and handle the exception. In other
words, you as the programmer must anticipate errors that can happen while
your program is running, and make sure that those errors are properly dealt
with. Although this feature can sometimes be annoying, the result is pro-
grams that are more reliable.

On the Downside: Java’s Weaknesses
So far, I’ve been tooting Java’s horn pretty loudly. Lest you think that learn-
ing Java is a walk in the park, the following paragraphs point out some of
Java’s shortcomings. Note that many of these drawbacks have to do with the
API rather than the language itself:

✦ The API is way too big. It includes so many classes and methods, you’ll
never learn even half of them. And the sheer size of the Java API doesn’t
allow you to wander through it on your own, hoping to discover that one
class that’s perfect for the problem you’re working on.

✦ The API is overdesigned. In some cases, it seems as if the Java designers
go out of their way to make things that should be simple hard to use. For
example, the API class that defines a multi-line text input area doesn’t
have a scroll bar. Instead, a separate class defines a panel that has a
scroll bar. To create a multi-line text area with a scroll bar, you have to
use both classes. That’s fine if you ever want to create a text area that
doesn’t have a scroll bar, but you never will. Java’s designers compli-
cated the design of the text area and scroll panel classes to provide for a
case that no one ever uses or would want to use.

✦ Some corners of the API are haphazardly designed. Most of the problems
can be traced back to the initial version of Java, which was rushed to
market so it could ride the crest of the World Wide Web explosion in the
late 1990s. Since then, many parts of the API have been retooled more
thoughtfully. But the API is still riddled with remnants of Java’s early
days.

✦ As long as Microsoft and Sun don’t get along, Windows computers with
Internet Explorer will have problems running Java applications. These
problems are easily solved by going to the Sun Web site and download-
ing the latest version of the Java Runtime Environment, but that requires
extra effort that, in an ideal world, you shouldn’t have to deal with. Sigh.
Maybe one of these days there will be peace.

✦ In my opinion, the biggest weakness of Java is that it doesn’t directly
support true decimal data. This issue is a little too complicated to get
into right now, but the implication is this: Without special coding (which
few Java books explain), Java doesn’t know how to add. For example,
consider this bit of code:

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 18

Book I
Chapter 1

W
elcom

e to Java

Java Version Insanity 19

double x = 5.02;
double y = 0.01;
double z = x + y;
System.out.println(z);

This little program should print 5.03, right? It doesn’t. Instead, it prints
5.029999999999999. This little error may not seem like much, but it
can add up. If you ever make a purchase from an online store and notice
that the sales tax is a penny off, this is why. The explanation for why
these errors happen and how to prevent them is pretty technical, but it’s
something every Java programmer needs to understand. You can find all
the gory details in Bonus Chapter 1 on this book’s Web site.

Java Version Insanity
Like most products, Java gets periodic upgrades and enhancements. Since
its initial release in 1996, Java has undergone the following version updates:

✦ Java 1.0: The original release of Java in 1996. Most of the language itself
is still pretty much the same as it was in version 1.0, but the API has
changed a lot since this release.

✦ Java 1.1: This version was the first upgrade to Java, released in 1997.
This release is important because most Internet browsers include built-
in support for applets based on Java 1.1. To run applets based on later
versions of Java, you must, in most cases, download and install a cur-
rent JRE.

✦ Java 1.2: This version, released in late 1998, was a huge improvement
over the previous version. So much so, in fact, that Sun called it “Java 2.”
It included an entirely new API called Swing for creating graphical user
interfaces, as well as other major features.

✦ Java 1.3: This version, released in 2000, was mostly about improving
performance by changing the way the runtime system works.
Interestingly, Java 1.3 is actually called Java 2 version 1.3. Go figure.

✦ Java 1.4: Released in 2001, this version offered a slew of improvements.
As you might guess, it is called Java 2 version 1.4. Keep figuring. . . .

✦ Java 1.5: Released in 2004, this version of Java is the latest and greatest.
To add to Sun’s apparent unpredictability with its version numbering,
this version officially has two version numbers. Sun’s official Java Web
site explains it like this:

“Both version numbers “1.5.0” and “5.0” are used to identify this
release of the Java 2 Platform Standard Edition. Version “5.0” is the
product version, while “1.5.0” is the developer version.”

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 19

What’s in a Name?20

That clears it right up, doesn’t it? Personally, I think someone at Sun has
been talking to George Lucas. I fully expect the next version of Java to be
a prequel, called Java 2 Episode 1.

Anyway, throughout this book I use the version numbers 1.5 and 5.0
interchangeably to mean the current version. (Of course, Sun isn’t fin-
ished with Java, so there will probably one day be a version 1.6 or 6.0 or
whatever.)

You may need to be aware of version differences if you’re writing applications
that you want to be able to run on earlier versions of Java. Bear in mind, how-
ever, that one of the chief benefits of Java is that the runtime system is free
and can be easily downloaded and installed by end users. As a result, you
shouldn’t hesitate to use the features of Java 1.5 when you need them.

What’s in a Name?
The final topic I want to cover in this chapter is the names of the various
pieces that make up Java’s technology — specifically, the acronyms you con-
stantly come across whenever you read or talk about Java, such as JVM, JRE,
JDK, J2EE, and so on. Here they are, in no particular order of importance:

✦ JDK: The Java Development Kit — that is, the toolkit for developers that
includes the Java compiler and the runtime environment. To write Java
programs, you need the JDK. This term was used with the original ver-
sions of Java (1.0 and 1.1) and abandoned with version 1.2 in favor of
SDK. But with version 5.0, the term JDK is officially back in vogue.

✦ SDK: The Software Development Kit — what Sun called the JDK for ver-
sions 1.2, 1.3, and 1.4.

✦ JRE: The Java Runtime Environment — the program that emulates the
JVM, so that users can run Java programs. To run Java programs, you
need only download and install the JRE.

✦ JVM: The Java Virtual Machine — the platform-independent machine
that is emulated by the JRE. All Java programs run in a JVM.

✦ J2SE: Java 2 Standard Edition — a term that describes the Java language
and the basic set of API libraries that are used to create Windows and
applet applications. Most of this book focuses on J2SE.

✦ J2EE: Java 2 Enterprise Edition — an expanded set of API libraries that
provide special functions, such as servlets.

05_58961x bk01ch01.qxd 3/29/05 3:27 PM Page 20

Chapter 2: Installing and Using
Java Tools

In This Chapter
� Downloading Java from the Sun Web site

� Installing Java

� Using Java’s command-line tools

� Getting help

Java development environments have two basic approaches. On the one
hand, you can use a sophisticated Integrated Development Environment

(IDE) such as Sun’s Forte for Java or Inprise’s JBuilder. These tools combine
a full-featured source editor that lets you edit your Java program files with
integrated development tools, including visual development tools that let
you create applications by dragging and dropping visual components onto a
design surface.

At the other extreme, you can use just the basic command-line tools that are
available free from Sun’s Java Web site (java.sun.com). Then you can use
any text editor you wish to create the text files that contain your Java pro-
grams (called source files), and compile and run your programs by typing
commands at a command prompt.

As a compromise, you may want to use a simple development environment,
such as TextPad or Eclipse. TextPad is an inexpensive Java tool that pro-
vides some nice features for editing Java programs (such as automatic
indentation) and shortcuts for compiling and running programs. However, it
doesn’t generate any code for you or provide any type of visual design aids.
TextPad is the tool I used to develop all the examples shown in this book.
For information about downloading and using TextPad, refer to Book I,
Chapter 3. Eclipse is an open-source free development environment that’s
gaining popularity. I describe it in Book I, Chapter 4.

Downloading and Installing the Java Development Kit
Before you can start writing Java programs, you have to download and install
the correct version of the Java Development Kit (JDK) for the computer
system you’re using. Sun’s Java Web site provides versions for Windows,
Solaris, and Unix. The following sections show you how to download and
install the JDK.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 21

Downloading and Installing the Java Development Kit22

Downloading the JDK
To get to the download page, point your browser to: java.sun.com/j2se/
1.5.0/download.jsp. Then follow the appropriate links to download
the J2SE 5.0 JDK for your operating system.

At the time I wrote this, a menu of popular downloads is on the right side of
Java’s home page at java.sun.com. At the top of that menu is a link to the
download site for the current version of Java. So, if you don’t want to type
the entire link, you can just go to java.sun.com and then use the popular
downloads links to get to the download page.

When you get to the Java download page, you find links to download the JDK
or the JRE. Follow the JDK link; the JRE link gets you only the Java Runtime
Environment, not the complete Java Development Kit.

The JDK download comes in two versions: an online version that requires an
active Internet connection to install the JDK, and an offline version that lets
you download the JDK installation file to your disk, then install it later. I rec-
ommend you use the offload version. That way, you can reinstall the JDK if
you need to without downloading it again.

The exact size of the offline version depends on the platform, but they’re all
between 40MB and 50MB. As a result, the download takes a few hours if you
don’t have a high-speed Internet connection. With a cable, DSL, or T1 con-
nection, the download takes less than five minutes.

Legal mumbo jumbo
Before you can download the JDK, you have to
approve of the Java license agreement, all
2,393 words of it including the thereupons,
whereases, and hithertos all finely crafted by
Sun’s legal department. I’m not a lawyer (and I
don’t play one on TV), but I’ll try to summarize
the license agreement for you:

� Sun grants you the right to use Java as-is
and doesn’t promise that it will do anything
at all.

� The party of the second part (you) in turn
promise to use Java only to write pro-
grams. You’re not allowed to try to figure
out how Java works and sell your secrets
to Microsoft.

� You can’t use Java to run a nuclear power
plant. (I’m not making that up. It’s actually
in the license agreement.)

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 22

Book I
Chapter 2

Installing and Using
Java Tools

Downloading and Installing the Java Development Kit 23

Installing the JDK
After you download the JDK file, you can install it by running the executable
file you downloaded. The procedure varies slightly depending on your oper-
ating system, but basically you just run the JDK installation program file
after you download it:

✦ On a Windows system, open the folder you saved the installation pro-
gram to and double-click the installation program’s icon.

✦ For a Linux or Solaris system, use console commands to change to the
directory you downloaded the file to, and then run the program.

After you start the installation program, it asks any questions it needs to
know to properly install the JDK. You’re prompted for information such as
which features you want to install and what folder you want to install the
JDK to. You can safely choose the default answers for each of the options.

Perusing the JDK folders
When the JDK installs, it creates several folders on your hard drive. The loca-
tion of these folders vary depending on your system, but in most cases the
JDK root folder is found under Program Files\Java on your boot drive.
The name of the JDK root folder also varies, depending on the exact Java
version you’ve installed. For version 1.5, the root folder is named jdk1.5.0.

Table 2-1 lists the subfolders created in the JDK root folder. As you work with
Java, you’ll frequently refer to these folders.

Table 2-1 Folders in the JDK Root Folder
Folder Description

bin The compiler and other Java development tools.

demo Demo programs you can study to learn how to use various Java
features.

docs The Java API documentation. (For instructions on how to create
this folder, see the section “Using Java Documentation” later
in this chapter.)

include This library contains files needed to integrate Java with pro-
grams written in other languages.

jre The runtime environment files.

lib Library files, including the Java API class library.

src The source code for the Java API classes. This folder is only
created if you unpack the src.zip file (this file may be named
src.jar). After you get your feet wet with Java, looking at
these source files can be a great way to learn more about how
the API classes work.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 23

Downloading and Installing the Java Development Kit24

In addition to these folders, the JDK installs several files into the JDK root
folder. I list these files in Table 2-2.

Table 2-2 Files in the JDK Root Folder
File Description

README.html The Java readme file in HTML format.

README.txt The readme file again, this time in text format.

LICENSE The Java license that you agreed to when you downloaded the JDK, on
the outside chance you enjoyed it so much the first time you want to
read it again. (If you work for Microsoft, you probably should read it
again, at least twice.)

LICENSE.rtf The license file once again, this time in RTF format. (RTF is a document
format that can be understood by most word processing programs.)

COPYRIGHT Most companies are happy to just say © 2004 Sun Microsystems, Inc.
at the bottom of the readme file or in the license file. But not Sun.
It puts the copyright notice in a separate text file, along with information
about all the copyright and export laws that apply.

I guess the Java license you have to agree to at least twice — once when you
download the JDK, and again when you install it — isn’t clear enough about
what you’re not allowed to use Java for. The license says you can’t use it for
nuclear power applications. But the copyright notice (in the COPYRIGHT
file) also prohibits you from using it in missile systems or chemical or bio-
logical weapons systems. If you work for the Defense Department, you’d
better read the copyright notice!

Setting the path
After you install the JDK, you need to configure your operating system so
that it can find the JDK command-line tools. To do that, you must set the
Path environment variable. This variable is a list of folders that the operating
system uses to locate executable programs. To do this on Windows XP,
follow these steps:

1. Open the Control Panel and double-click the System icon.

The System Properties dialog box comes up.

2. Click the Advanced tab, and then click the Environment Variables
button.

The Environment Variables dialog box, as shown in Figure 2-1, appears.

3. In the System Variables list, select Path, and then click the Edit button.

A little dialog box comes up to let you edit the value of the Path variable.

4. Add the JDK bin folder to the beginning of the path value.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 24

Book I
Chapter 2

Installing and Using
Java Tools

Using Java’s Command-Line Tools 25

Use a semicolon to separate the bin folder from the rest of the informa-
tion that may already be in the path. Note: The exact name of the bin
folder may vary on your system. For example:

c:\Program Files\Java\jdk1.5.0\bin;other
directories...

5. Click OK three times to exit.

The first OK gets you back to the Environment Variables dialog box. The
second OK gets you back to the System Properties dialog box. And the
third OK closes the System Properties dialog box.

For earlier versions of Windows (such as ancient Windows 98 or Me), you set
the path by adding a Path statement to the AutoExec.bat file in the root
directory of your C drive. For example:

path c:\Program Files\Java\jdk1.5.0\bin;other
directories...

For Linux or Solaris, the procedure depends on which shell you’re using.
Consult the documentation for the shell you’re using for more information.

Using Java’s Command-Line Tools
Java comes with several command-line tools you can run directly from a com-
mand prompt. The two most important are javac, the Java compiler used to
compile a program, and java, the runtime used to run a Java program. These
tools work essentially the same no matter what operating system you’re
using. The examples in this section are all for Windows XP.

Figure 2-1:
The
Environment
Variables
dialog box.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 25

Using Java’s Command-Line Tools26

Compiling a program
You can compile a program from a command prompt by using the javac
command. Before you can do that, however, you need a program to compile.
Using any text editor, type the following text into a file and save it as
HelloApp.java:

public class HelloApp
{

public static void main(String[] args)
{

System.out.println(“Hello, World!”);
}

}

Save the file in any directory you wish. Pay special attention to capitaliza-
tion. For example, if you type Public instead of public, the program won’t
work. (If you don’t want to bother with the typing, you can download the
sample programs from this book’s Web site.)

Open a command prompt and use a cd command to change to the directory
you saved the program file in. Then enter the command javac HelloApp.
java. This command compiles the program (javac) and creates a class file
named HelloApp.class.

Assuming you typed the program exactly right, the javac command doesn’t
display any messages at all. If the program contains any errors, one or more
error messages display. For example, if you type Public instead of public,
the compiler displays the following error message:

C:\java\samples>javac HelloApp.java
HelloApp.java:1: ‘class’ or ‘interface’ expected
Public class HelloApp
^
1 error

C:\java\samples>

The compiler error message indicates that an error is in line 1 of the
HelloApp.java file. If the compiler reports an error message like this one,
your program contains a coding mistake. You need to find the mistake, cor-
rect it, and then compile the program again.

Compiling more than one file
Normally, the javac command compiles just the file that you specify on the
command line. However, you can coax javac into compiling more than one file
at once by using any of the techniques I describe in the following paragraphs:

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 26

Book I
Chapter 2

Installing and Using
Java Tools

Using Java’s Command-Line Tools 27

✦ If the Java file you specify on the command line contains a reference to
another Java class that’s defined by a java file in the same folder, the
Java compiler automatically compiles that class too.

For example, suppose you have a java program named TestProgram,
and that program refers to a class called TestClass, and the Test
Class.java file is located in the same folder as the TestProgram.
java file. Then, when you use the javac command to compile the
TestProgram.java file, the compiler automatically compiles the
TestClass.java file, too.

✦ You can list more than one filename on the javac command. For exam-
ple, the following command compiles three files:

javac TestProgram1.java TestProgram2.java
TestProgram3.java

✦ You can use a wildcard to compile all the files in a folder, like this:

javac *.java

✦ If you need to compile a lot of files at once, but don’t want to use a wild-
card (perhaps you want to compile a large number of files, but not all the
files in a folder), you can create an argument file that lists the files to com-
pile. In the argument file, you can type as many filenames as you want.
You can use spaces or line breaks to separate the files. For example, here’s
an argument file named TestPrograms that lists three files to compile:

TestProgram1.java
TestProgram2.java
TestProgram3.java

Then, you can compile all the programs in this file by using an @ charac-
ter followed by the name of the argument file on the javac command
line, like this:

javac @TestPrograms

Using Java compiler options
The javac command has a gaggle of options you can use to influence the
way it compiles your programs. For your reference, I list these options in
Table 2-3. To use one or more of these options, type the option either before
or after the source filename. For example, either of the following commands
compile the HelloApp.java file with the -verbose and -deprecation
options enabled:

javac HelloWorld.java –verbose –deprecation
javac –verbose –deprecation HelloWorld.java

Don’t get all discombobulated if you don’t understand what all these options
do. Most of them are useful only in unusual situations. The options you’ll use
the most are

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 27

Using Java’s Command-Line Tools28

✦ -classpath or -cp: Use this option if your program makes use of
class files that you’ve stored in a separate folder.

✦ -deprecation: Use this option if you want the compiler to warn you
whenever you use API methods that have been deprecated. (Deprecated
methods are older methods that were once a part of the Java standard
API but are now on the road to obsolescence. They still work, but may
not in future versions of Java.)

✦ -source: Use this option to limit the compiler to previous versions of
Java. Note, however, that this option only applies to features of the Java
language itself, not to the API class libraries. For example, if you specify
-source 1.4, the compiler won’t allow you to use new Java language
features that were introduced with Java 1.5, such as generics or enhanced
for loops. However, you can still use the new API features that were
added with version 1.5, such as the Scanner class.

✦ -help: Use this option to list the options that are available for the
javac command.

Table 2-3 Java Compiler Options
Option Description

-g Generate all debugging info

-g:none Generate no debugging info

-g:{lines,vars,source} Generate only some debugging info

-nowarn Generate no warnings

-verbose Output messages about what the compiler is doing

-deprecation Output source locations where deprecated APIs
are used

-classpath <path> Specify where to find user class files

-cp <path> Specify where to find user class files

-sourcepath <path> Specify where to find input source files

-bootclasspath <path> Override location of bootstrap class files

-extdirs <dirs> Override location of installed extensions

-endorseddirs <dirs> Override location of endorsed standards path

-d <directory> Specify where to place generated class files

-encoding <encoding> Specify character encoding used by source files

-source <release> Provide source compatibility with specified release

-target <release> Generate class files for specific VM version

-version Version information

-help Print a synopsis of standard options

-X Print a synopsis of nonstandard options

-J<flag> Pass <flag> directly to the runtime system

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 28

Book I
Chapter 2

Installing and Using
Java Tools

Using Java’s Command-Line Tools 29

Running a Java program
When you successfully compile a Java program, you can then run the pro-
gram by typing the java command followed by the name of the class that
contains the program’s main method. The Java Runtime Environment loads,
along with the class you specify, and then runs the main method in that
class. For example, to run the HelloApp program, type this command:

C:\java\samples>java HelloApp

The program responds by displaying the message “Hello, World!”.

The class must be contained in a file with the same name as the class and
the extension .class. You don’t usually have to worry about the name
of the class file because it’s created automatically when you compile the
program with the javac command. Thus, if you compile a program in a file
named HelloApp.java, the compiler creates a class named HelloApp
and saves it in a file named HelloApp.class.

If Java can’t find a filename that corresponds to the class, you get a simple
error message indicating that the class can’t be found. For example, here’s
what you get if you type JelloApp instead of HelloApp:

C:\java\samples>java JelloApp
Exception in thread “main”

java.lang.NoClassDefFoundError: JelloApp

This error message simply means that Java couldn’t find a class named
JelloApp.

However, if you get the class name right but capitalize it incorrectly, you get
a slew of error messages. Ponder this example:

C:\java\samples>java helloapp
Exception in thread “main” java.lang.

NoClassDefFoundError: helloapp (wrong name:
HelloApp)
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.
java:620)
at java.security.SecureClassLoader.defineClass

(SecureClassLoader.java:124)
at java.net.URLClassLoader.defineClass

(URLClassLoader.java:260)
at java.net.URLClassLoader.access$100

(URLClassLoader.java:56)
at java.net.URLClassLoader$1.run

(URLClassLoader.java:195)

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 29

Using Java’s Command-Line Tools30

at java.security.AccessController.doPrivileged
(Native Method)

at java.net.URLClassLoader.findClass
(URLClassLoader.java:188)

at java.lang.ClassLoader.loadClass
(ClassLoader.java:306)

at sun.misc.Launcher$AppClassLoader.loadClass
(Launcher.java:268)

at java.lang.ClassLoader.loadClass
(ClassLoader.java:251)

at java.lang.ClassLoader.loadClassInternal
(ClassLoader.java:319)

Wow, that’s a pretty serious looking set of error messages considering that
the only problem is that I forgot to capitalize HelloApp. Java isn’t just case
sensitive, it’s very case sensitive.

Like the Java compiler, the Java runtime lets you specify options that can
influence its behavior. Table 2-4 lists the most commonly used options.

Table 2-4 Commonly Used Java Command Options
Option Description

-client Runs the client VM.

-server Runs the server VM, which is optimized
for server systems.

-classpath directories A list of directories or JAR or Zip archive
and archives files used to search for class files.

-cp <search path> Same as -classpath.

-D name=value Sets a system property.

-verbose Enables verbose output.

-version Displays the JRE version number, then
stops.

-showversion Displays the JRE version number, then
continues.

-? or -help Lists the standard options.

-X Lists nonstandard options.

-ea or –enableassertions Enables the assert command.

-ea classes or packages Enables assertions for the specified
classes or packages.

-esa or –enablesystemassertions Enables system assertions.

-dsa or -disablesystemassertions Disables system assertions.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 30

Book I
Chapter 2

Installing and Using
Java Tools

Using Java’s Command-Line Tools 31

Using the javap command
The javap command is called the Java disassembler because it takes apart
class files and tells you what’s inside them. It’s not a command you’ll use
often, but using it to find out how a particular Java statement works is some-
times fun. You can also use it to find out what methods are available for a
class if you don’t have the source code that was used to create the class.

For example, here’s the information you get when you run the javap
HelloApp command:

C:\java\samples>javap HelloApp
Compiled from “HelloApp.java”
public class HelloApp extends java.lang.Object{

public HelloApp();
public static void main(java.lang.String[]);

}

As you can see, the javap command indicates that the HelloApp class
was compiled from the HelloApp.java file and that it consists of a
HelloApp public class and a main public method.

You may want to use two options with the javap command. If you use the
-c option, the javap command displays the actual Java bytecodes created
by the compiler for the class. And if you use the -verbose option, the byte-
codes plus a ton of other fascinating information about the innards of the class
are displayed. For example, here’s the -c output for the HelloApp class:

C:\java\samples>javap HelloApp -c
Compiled from “HelloApp.java”
public class HelloApp extends java.lang.Object{
public HelloApp();
Code:
0: aload_0
1: invokespecial #1; //Method
java/lang/Object.”<init>”:()V
4: return

public static void main(java.lang.String[]);
Code:
0: getstatic #2; //Field
java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3; //String Hello, World!
5: invokevirtual #4; //Method
java/io/PrintStream.println:(Ljava/lang/String;)V
8: return

}

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 31

Using Java Documentation32

If you become a big-time Java guru, you can use this type of information to
find out exactly how certain Java features work. Until then, you should proba-
bly leave the javap command alone, except for those rare occasions when
you want to impress your friends with your in-depth knowledge of Java. (Just
hope that when you do, they don’t ask you what the aload or invokevirtual
instruction does.)

Other Java command-line tools
Java has many other command-line tools that might come in handy from time
to time. You can find a complete list of command-line tools at the following
Web site:

java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#basic

I describe three of these additional tools elsewhere in this book:

✦ applet viewer: Runs a Web applet application. For more information, see
Book VII, Chapter 1.

✦ javadoc: Automatically creates HTML documentation for your Java
classes. For more information, see Book III, Chapter 8.

✦ jar: Creates Java archive files, which store classes in a compressed file
similar to a Zip file. I cover this command in Book III, Chapter 8.

Using Java Documentation
You won’t get very far learning Java before you find yourself wondering
if some class has some other method that I don’t describe in this book, or if
some other class may be more appropriate for an application you’re working
on. When that time comes, you’ll need to consult the Java help pages.

Complete documentation for Java is available from the Sun Java Web site at
java.sun.com/docs. Although this page contains many links to documen-
tation pages, the two you’ll use the most are the JS2E API documentation
pages and the Java Language Specification pages. The following sections
describe these two links.

If you don’t have a reliable high-speed Internet connection, you can down-
load Java’s documentation by using the download links on the main java.
sun.com/docs page. Then, you can access the documentation pages
directly from your computer.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 32

Book I
Chapter 2

Installing and Using
Java Tools

Using Java Documentation 33

JS2E API Docs
The links under the Java 2 SDK, Standard Edition, Documentation heading
take you to the complete documentation for all currently supported versions
of the Java API, in English as well as Japanese. Figure 2-2 shows the English
JS2E API documentation page.

You can use this page to find complete information for any class in the API.
By default, all the Java classes are listed in the frame that appears at the
bottom left of the page. You can limit this display to just the classes in a par-
ticular package by selecting the package from the menu at the upper-left side
of the page. (If you don’t know what a package is, don’t worry. You find out
about packages in Book I, Chapter 4.)

Click the class you’re looking for in the class list to call up its documentation
page. For example, Figure 2-3 shows the documentation page for the String
class. If you scroll down this page, you find complete information about
everything you can do with this class, including an in-depth discussion of
what the class does, a list of the various methods it provides, and a detailed
description of what each method does. In addition, you also find links to
other classes that are similar.

Figure 2-2:
The docu-
mentation
page for
JS2E API 5.0
(English
version).

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 33

Using Java Documentation34

Java Language Specification
If you’re interested in learning details about some element of the Java lan-
guage itself rather than the information about a class in the API class library,
click the Java Language Specification link near the bottom of the page. That
takes you to a set of pages that describe in sometimes excruciating and
obscure detail exactly how each element of the Java language works.

Frankly, this documentation isn’t that much help for beginning program-
mers. It was written by computer scientists for computer scientists. You can
tell just by looking at the table of contents that it isn’t for novices. The first
chapter is called Introduction (that’s not so bad), but then Chapters 2 and 3
are titled “Grammars” and “Lexical Structure.”

That’s why you’re reading this book, after all. You won’t even find a single
sentence about Lexical Structure in this book (other than this one, of
course). Even so, at some time in your Java journeys you may want to get to
the bottom of the rules that govern strange Java features, such as anony-
mous inner classes. When that day arrives, grab a six pack of Jolt Cola, roll
up your sleeves, and open the Java Language Specification pages.

Figure 2-3:
The docu-
mentation
page for the
String class.

06_58961X bk01ch02.qxd 3/29/05 3:27 PM Page 34

Chapter 3: Working with TextPad

In This Chapter
� Downloading and installing TextPad

� Using TextPad to edit source files

� Compiling Java programs

� Running Java programs

TextPad is an inexpensive ($29) text editor that you can integrate with
the Java SDK to simplify the task of coding, compiling, and running Java

programs. It isn’t a true Integrated Development Environment (IDE), as it
lacks features such as integrated debugging, code generators, or drag-and-
drop tools for creating graphical user interfaces. If you want to work with an
IDE, I suggest you skip this chapter and instead look to Book I, Chapter 4,
which covers a free IDE called Eclipse.

TextPad is a popular tool for developing Java programs because of its sim-
plicity and speed. It’s ideal for learning Java because it doesn’t generate any
code for you. Writing every line of code yourself may seem like a bother, but
the exercise pays off in the long run because you have a better understand-
ing of how Java works.

Downloading and Installing TextPad
You can download a free evaluation version of TextPad from Helios Software
Systems at www.textpad.com. You can use the evaluation version free of
charge, but if you decide to keep the program, you must pay for it. Helios
accepts credit card payment online.

If the Java SDK is already installed on your computer when you install
TextPad, TextPad automatically configures itself to compile and run Java
programs. If you install the SDK after you install TextPad, you need to con-
figure TextPad for Java. Follow these steps:

1. Choose Configure➪Preferences.

2. Click Tools in the tree that appears at the left of the Preferences
dialog box.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 35

Editing Source Files36

3. Click the Add button to reveal a drop-down list of options, and then
click Java SDK Commands.

Figure 3-1 shows how the Preferences dialog box appears when the
Java tools are installed. As you can see, the Tools item in the tree at the
left of the dialog box includes three Java tools: Compile Java, Run Java
Application, and Run Java Applet.

4. Click OK.

The commands to compile and run Java programs are added to TextPad’s
Tools menu.

Editing Source Files
Figure 3-2 shows TextPad editing a Java source file. If you’ve worked with a
Windows text editor before, you’ll have no trouble learning the basics of
using TextPad. I won’t go over such basic procedures as opening and saving
files because they’re standard. Instead, the following paragraphs describe
some of TextPad’s features that are useful for editing Java program files.

When you first create a file (by clicking the New button on the toolbar or by
choosing File➪New), TextPad treats the file as a normal text file, not as a
Java program file. After you save the file (click the Save button or choose
File➪Save) and assign java as the file extension, TextPad’s Java editing fea-
tures kick in.

Figure 3-1:
Configuring
tools in
TextPad.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 36

Book I
Chapter 3

W
orking w

ith
TextPad

Editing Source Files 37

The following paragraphs describe some of TextPad’s more noteworthy fea-
tures for working with Java files:

✦ You can’t really tell from Figure 3-2, but TextPad uses different colors to
indicate the function of each word or symbol in the program. Brackets
are red so you spot them quickly and make sure they’re paired correctly.
Keywords are blue. Comments and string literals are green. Other text,
such as variable or method names, are black.

✦ TextPad automatically indents whenever you type an opening bracket,
and then reverts to the previous indent when you type a closing bracket.
Keeping your code lined up is easy.

✦ Line numbers display down the left edge of the editing window. You can
turn these line numbers on or off by choosing View➪Line Numbers.

✦ To go to a particular line, press Ctrl+G to bring up the Go To dialog box.
Make sure Line is selected in the Go to What box, enter the line number
in the text box, and click OK.

✦ If you have more than one file open, you can switch between the files by
using the Document Selector, the pane on the left side of the TextPad
window. If the Document Selector isn’t visible, choose View➪Document
Selector to summon it.

Figure 3-2:
Editing a
Java file in
TextPad.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 37

Compiling a Program38

✦ Another way to switch between multiple files is to choose View➪Document
Tabs. The tabs at the bottom of the document window display. You can
click these tabs to switch documents.

✦ A handy Match Bracket feature lets you pair up brackets, braces, and
parentheses. To use this feature, move the insertion point to a bracket.
Then press Ctrl+M. TextPad finds the matching bracket.

✦ To search for text, press F5. In the Find dialog box, enter the text you’re
looking for and click OK. To repeat the search, press Ctrl+F.

✦ To replace text, press F8.

Compiling a Program
To compile a Java program in TextPad, choose Tools➪Compile Java or use the
keyboard shortcut Ctrl+1. The javac command launches in a separate com-
mand prompt window and displays the compiler output to a separate Command
Results window. If the program compiles successfully, TextPad returns imme-
diately to the source program. But if the compiler finds something wrong with
your program, the Command Results window stays open, as shown in Figure 3-3.

In this example, the following three compiler error messages are displayed:

J:\Book1\Ch04\HelloApp.java:10: ‘)’ expected
System.out.println(“Hello, + greetee + “!”);

^

Using workspaces
In TextPad, a workspace is a collection of files
that you work on together. Workspaces are
useful for projects that involve more than just
one file. When you open a workspace, TextPad
opens all the files in the workspace. And you
can configure TextPad to automatically open
the last workspace you were working on when-
ever TextPad starts.

To create a workspace, first open all the files
that you want to be a part of the workspace.
Then, choose File➪Workspace➪Save As and
give a name to the workspace. (The list of files
that make up the workspace is saved in a file
with the tws extension.)

To open a workspace, choose File➪Workspace➪
Open. Then, select the workspace file you
previously saved and click Open. Or, choose the
workspace from the list of recently used work-
spaces that appears at the bottom of the File➪
Workspace menu.

To configure TextPad to automatically open the
most recently used workspace whenever you
start TextPad, choose Configure➪Preferences.
Click General in the preferences tree at the left
of the dialog box, and then check the Reload
Last Workspace at Startup option and click OK
to close the Preferences dialog box.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 38

Book I
Chapter 3

W
orking w

ith
TextPad

Compiling a Program 39

J:\Book1\Ch04\HelloApp.java:10: unclosed string literal
System.out.println(“Hello, + greetee + “!”);

^
J:\Book1\Ch04\HelloApp.java:11: ‘;’ expected

}
^

3 errors

Tool completed with exit code 1

If you double-click the first line of each error message, TextPad takes you to
the spot where the error occurred. For example, if you double-click the line
with the unclosed string literal message, you’re taken to line 10,
and the insertion point is positioned on the last quotation mark on the line,
right where the compiler found the error. Then, you can correct the error
and recompile the program.

Often, a single error can cause more than one error message to display.
That’s the case here. The error is that I left off a closing quotation mark after
the word Hello in line 10. That one error caused all three error messages.

Figure 3-3:
Error
messages
displayed by
the Java
compiler.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 39

Running a Java Program40

Running a Java Program
After you compile a Java program with no errors, you can run it by choosing
Tools➪Run Java Application or pressing Ctrl+2. A command window opens,
in which the program runs. For example, Figure 3-4 shows the HelloApp
program running in a separate window atop the TextPad window.

When the program finishes, the message Press any key to continue
displays in the command window. When you press a key, the window closes
and TextPad comes back to life.

In case you’re wondering, TextPad actually runs your program by creating
and running a batch file — a short text file that contains the commands nec-
essary to run your program. This batch file is given a cryptic name, such as
tp02a11c.BAT. Here’s the batch file generated for the HelloApp program:

@ECHO OFF
C:
CD \Book1\Ch04
“G:\Program Files\Java\jdk1.5.0\bin\java.exe” HelloApp
PAUSE

Figure 3-4:
Running a
program.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 40

Book I
Chapter 3

W
orking w

ith
TextPad

Running an Applet 41

Here’s a closer look at these commands:

✦ The first command tells MS-DOS not to display the commands in the
command window as the batch file executes.

✦ The next two commands switch to the drive and directory that contains
the java program.

✦ Next, the java.exe program is called to run the HelloApp class.

✦ And finally, a PAUSE command executes. That’s what displays the Press
any key to continue message when the program finishes.

Running an Applet
You can also run an applet directly from TextPad. First, compile the program.
Then, if the program contains no errors, choose Tools➪Run Java Applet or
press Ctrl+3. A command window appears. Then, the Java applet viewer is
started. It runs the applet in a separate window, without the need for a Web
browser. Figure 3-5 shows an applet in action.

When you quit the applet, the applet viewer window and the DOS command
window closes and you return to TextPad.

Figure 3-5:
Running an
applet.

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 41

Book I: Java Basics42

07_58961X bk01ch03.qxd 3/29/05 3:28 PM Page 42

Chapter 4: Using Eclipse

In This Chapter
� Understanding Eclipse projects and workbenches

� Creating a Java project

� Compiling, running, and debugging with Eclipse

� Refactoring with Eclipse

Eclipse is a development environment that includes many powerful
features for creating Java programs. Because Eclipse is free and very

powerful, it has become popular among Java developers. In this chapter,
you discover the basics of using Eclipse for simple Java development.

Because Eclipse is such a powerful tool, it has a steep learning curve. If
you’re brand new to Java, I suggest you start out using a simpler environ-
ment, such as TextPad (described in Book I, Chapter 3) and turn to Eclipse
only after you have your mind around some of Java’s programming funda-
mentals. That way, you start out by concentrating on Java programming
rather than learning Eclipse.

When you’re ready to get started with Eclipse, go to the Eclipse Web site
(www.eclipse.org), click the downloads link, and download the current
version of Eclipse. Unlike most programs, Eclipse doesn’t have a compli-
cated setup program. You just download the Eclipse Zip file, extract all of
the files, and then run the Eclipse executable file (eclipse.exe) directly
from the folder you extracted it to.

If you’re using Windows, you may want to add a desktop shortcut for Eclipse
to make it more convenient to start. To do that, open the folder that contains
the eclipse.exe file. Then, right-click the file and drag it to the desktop.
Release the mouse button and choose Create Shortcut from the menu that
appears. You can then start Eclipse by double-clicking this desktop shortcut.

Note that many of the techniques I describe in this chapter won’t make much
sense to you until you learn how to use the Java programming features they
apply to. For example, the information about how to create a new Java class
file won’t make much sense until you learn about creating Java classes in
Book III. As you learn about Java programming features in later chapters, you
may want to refer back to this chapter to learn about related Eclipse features.

If you plan on using Eclipse, I suggest you pick up a copy of Eclipse For
Dummies by Barry Burd (Wiley Publishing).

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 43

Getting Some Perspective on Eclipse44

Getting Some Perspective on Eclipse
Eclipse is designed to be a general-purpose development environment, which
means that it isn’t specifically designed for Java. It’s like the Seinfeld of IDEs:
As its own designers put it, Eclipse is “an IDE for anything and nothing in
particular.” You can easily customize Eclipse with plug-in components called
features that make it useful for specific types of development tasks. And
because Eclipse is most commonly used for Java program development, it
comes pre-configured with features designed for developing Java programs.

Eclipse uses some unusual terminology to describe its basic operation. In
particular:

✦ Workbench: The workbench is the basic Eclipse desktop environment.
When you run Eclipse, the workbench opens in a window, as shown in
Figure 4-1.

Workbench window

Package Explorer view Problems view Java editor

Java perspective

Figure 4-1:
The Eclipse
Workbench
window.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 44

Book I
Chapter 4

Using Eclipse

Getting Some Perspective on Eclipse 45

If you can juggle and chew gum at the same time, you may want to open
two workbench windows to work on two different projects at once.
However, those of us with less than super-hero abilities of concentration
can work with just one workbench window at a time.

✦ Editor: An editor is a workbench window pane that’s designed for editing
a certain type of file. Eclipse comes with a standard text editor that can
edit any kind of text file and a special Java editor that’s specifically
designed for editing Java programs. In Figure 4-1, the Java editor is in
the middle portion of the workbench window.

The Java editor in this figure looks small because I captured this screen
image with the computer’s monitor set to 800 x 600 pixels. Because
Eclipse puts so much information on the screen at once, however, run-
ning it on a large monitor (preferably 19" or larger) at a resolution of at
least 1,024 x 768 is best. That way, the editor window is large enough
to let you comfortably work with your program’s text, while leaving
ample room for the other elements displayed in the Eclipse workbench
window.

✦ Views: A view is a pane of the workbench window that displays other infor-
mation that’s useful while you’re working with Eclipse. Figure 4-1 displays
several additional views in addition to the editor. For example, the Package
Explorer view lets you navigate through the various files that make up an
Eclipse project, and the Problems view displays error messages.

You can display a view in its own pane, or combine it with other views in
a single pane. Then, the views in the pane are indicated with tabbed
dividers you can click to call up each view in the pane. For example, the
Problems view in Figure 4-1 shares its pane with two other views, called
JavaDoc and Declaration.

Strictly speaking, an editor is a type of view.

✦ Perspective: A perspective is a collection of views that’s designed to help
you with a specific type of programming task. For example, the work-
bench window pictured in Figure 4-1 shows the Java perspective, designed
for working with Java program files. Figure 4-2 shows a different perspec-
tive, called the Debug perspective. In this perspective, the Java editor is
still present, but a different set of views that are useful while testing and
debugging Java programs are shown. For example, a Console view
appears at the bottom of the window so you can see the output created
by the program, and a Variables view lets you monitor the contents of
variables as the program executes. (For more information about the
Debug perspective, see the section “Debugging a Java Program” later in
this chapter.)

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 45

Understanding Projects46

Understanding Projects
An Eclipse project is a set of Java files that together build a single Java pro-
gram. Although some simple Java programs consist of just one file, most
real-world Java programs are made up of more than one Java program file.
In fact, a complicated Java program may require hundreds of Java program
files. When you work on programs that require more than one file, Eclipse
lets you treat those files together as a project.

A project consists not just of Java source files, but also the class files that
are created when you compile the project and any other files that the pro-
gram requires. That might include data files or configuration files, as well as
other files such as readme files, program documentation, image files, sound
files, and so on.

All the files for a project are stored together in a project folder, which may
include subfolders if necessary. In addition to the files required by the

Debug view

Console view

Variables view

Breakpoints view (hidden)

Java editor

Figure 4-2:
Debugging
a program in
Eclipse.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 46

Book I
Chapter 4

Using Eclipse

Creating a Simple Project 47

program, the project folder also includes files that are created by Eclipse
to store information about the project itself. For example, a file named
.project stores descriptive information about the project, and a file named
.classpath stores the locations of the classes used by the project.

All your project folders are stored in a folder called the workspace. Each time
you start Eclipse, a dialog box appears asking for the location of the work-
space folder. If you want to change to a different workspace, use File➪Switch
Workspace.

Eclipse lets you create two types of projects:

✦ For simple projects that have just a few Java source files, you can create
a project that stores all the project’s Java files in a single folder. Then,
when those files are compiled, the resulting class files are stored in this
same folder. This type of project is the easiest to work with, and it’s ideal
for small and medium-sized projects.

✦ For large projects — those that involve dozens or even hundreds of Java
source files — you can create a project that uses one or more subfolders
to store source files. You are then free to create whatever subfolders you
want to help you organize your files. For example, you might create one
subfolder for user interface classes, another for database access classes,
and a third for image files displayed by the application.

Eclipse doesn’t have a File➪Open command that lets you open projects or
individual files. Instead, the Package Explorer view (on the left side of the
Java perspective; refer to Figure 4-1) displays a list of all the Java projects in
your workspace. When you start Eclipse, the project you were last working
on is automatically displayed. You can switch to a different project by right-
clicking the project in the Package Explorer, and then choosing Open Project.
And you can open an individual file in a project by double-clicking the file in
the Package Explorer.

Creating a Simple Project
The following procedure takes you step by step through the process of creat-
ing a simple project based on a slightly more complicated version of the
Hello, World! program from Book I, Chapter 1. Follow these steps to create
this application:

1. Start Eclipse and click OK when the Workspace Launcher dialog box
appears.

The Workspace Launcher dialog box asks for the location of your work-
space folder; in most cases, the default location is acceptable. When you
click OK, Eclipse opens with the Java perspective, with no projects or
files displayed as shown in Figure 4-3.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 47

Creating a Simple Project48

2. Choose File➪New➪Project.

The New Project dialog box comes up, shown in Figure 4-4. This dialog
box lists several wizards you can use to create various types of Eclipse
projects.

3. Select Java Project from the list of wizards, and then click Next.

The New Java Project dialog box displays, shown in Figure 4-5.

4. Type HelloApp in the text box, and then click Finish.

HelloApp is the project name. The other options in this dialog box let
you specify whether the project should be stored in the workspace
folder or some other folder and whether the project should use the proj-
ect folder for source files or create separate subfolders for source files.
The default settings for both of these options is fine for the HelloApp
application.

When you click Finish, you return to the Java perspective. But now,
HelloApp appears in the Package Explorer view to indicate that you’ve
added a project by that name to your workspace.

Figure 4-3:
Eclipse
waits for
you to
create a
project.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 48

Book I
Chapter 4

Using Eclipse

Creating a Simple Project 49

Figure 4-5:
The New
Java Project
dialog box.

Figure 4-4:
The New
Project
dialog box.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 49

Creating a Simple Project50

5. Right-click HelloApp in the Package Explorer view, and then choose
New➪Class from the shortcut menu that appears.

The New Java Class dialog box opens, as shown in Figure 4-6.

6. Set the options for the new class.

In particular:

• Set the Package text field to JavaAIO.

• Set the Name text field to HelloApp.

• Select the Public Static Void main(String[] args) check box.

7. Click Finish.

The HelloApp.java file is created and Eclipse displays it in the Java
editor, as shown in Figure 4-7.

Figure 4-6:
The New
Java Class
dialog box.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 50

Book I
Chapter 4

Using Eclipse

Creating a Simple Project 51

8. Edit the main method.

Move the insertion point to the empty block for the main method, and
then edit it to look exactly like this:

public static void main(String[] args) {
String[] w = new String[3];
w[0] = “Hello”;
w[1] = “, “;
w[2] = “world!”;
for (int i = 0; i<3; i++)

System.out.print(w[i]);
}

9. Choose Run➪Run As➪Java Application.

The program is compiled and run. A console window with the program’s
output appears at the bottom of the Eclipse window, as shown in
Figure 4-8.

Note: If a Save Resources dialog box appears before the program runs,
click OK. The program then runs.

Figure 4-7:
The newly
created
HelloApp
class.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 51

Adding a Class File52

Adding a Class File
In this section, I walk you through the process of adding a second class file
to the HelloApp application to demonstrate some of Eclipse’s most useful
features for speeding up Java program development by generating code for
commonly used class features.

Unless you’ve already read Book III, you probably won’t understand much
(if any) of the code that’s presented in this procedure. Don’t worry; this code
will make complete sense once you read about creating your own classes.

So follow these steps to add a second class to the HelloApp application:

1. Right-click HelloApp in the Package Explorer and choose Add➪Class.

The New Java Class dialog box opens (refer to Figure 4-6).

2. Set the options for the new class.

For this class, set the options as follows:

• Leave the Package text field to JavaAIO.

• Set the Name text field to HelloSayer.

• Uncheck the Public Static Void main(String[] args) check box.

Figure 4-8:
The
HelloApp
program in
Eclipse.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 52

Book I
Chapter 4

Using Eclipse

Adding a Class File 53

3. Click Finish.

A new class file named HelloSayer is created and Ecilpse opens it in a
Java editor.

4. Add declarations for two public fields named greeting and
addressee.

Add these lines immediately after the line that declares the HelloSayer
class. Then, other than the comments and the package statement that
appears at the beginning of the class, the class looks like this:

public class HelloSayer {

private String greeting;
private String addressee;

}

5. Use a wizard to add a constructor to the class.

To do that, choose Source➪Generate Constructor Using Fields. The
Generate Contructors Using Fields dialog box appears, shown in
Figure 4-9.

Figure 4-9:
Eclipse
can auto-
matically
create
constructors
for you.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 53

Adding a Class File54

Check both greeting and addressee in the list of fields to initialize, select
First Method in the Insertion Point drop-down list, and check the Omit
Call to Default Constructor Super() option. Then click OK. The following
code is inserted into the class:

/**
* @param greeting
* @param addressee
*/
public HelloSayer(String greeting, String

addressee) {
this.greeting = greeting;
this.addressee = addressee;

}

6. Add the code for a method named sayHello.

Add the following code after the constructor created in Step 5, immedi-
ately before the closing brace (}) in the last line of the program:

public void sayHello()
{

System.out.println(greeting + “, “ + addressee
+ “!”);

}

The entire HelloSayer class file is shown in Listing 4-1.

LISTING 4-1:THE HELLOSAYER CLASS

/*
* Created on Nov 22, 2004
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
package JavaAIO;

/**
* @author Doug Lowe
*
* TODO To change the template for this generated type comment
* go to Window - Preferences - Java - Code Style - Code Templates
*/
public class HelloSayer {

private String greeting;
private String addressee;

/**
* @param greeting
* @param addressee
*/

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 54

Book I
Chapter 4

Using Eclipse

Adding a Class File 55

public HelloSayer(String greeting, String addressee) {
this.greeting = greeting;
this.addressee = addressee;

}

public void sayHello() {
System.out.println(greeting + “, “ + addressee + “!”);

}
}

7. Click the HelloApp.java tab at the top of the Java editor pane.

The HelloApp.java file comes to the front so you can edit it.

8. Edit the main method so that it uses the new HelloSayer class.

Delete the code that was in the main method and replace it with this
code:

public static void main(String[] args) {
HelloSayer h = new HelloSayer(“Hello”,
“World!”);
h.sayHello();

}

The entire HelloApp.java class now looks like Listing 4-2. Eclipse
generated all the code except the two lines within the main method.

LISTING 4-2:THE HELLOAPP CLASS

/*
* Created on Nov 22, 2004
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/
package JavaAIO;

/**
* @author Doug Lowe
*
* TODO To change the template for this generated type comment
* go to Window - Preferences - Java - Code Style - Code Templates
*/
public class HelloApp {

public static void main(String[] args) {
HelloSayer h = new HelloSayer(“Hello”, “World!”);
h.sayHello();

}
}

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 55

Running a Program56

Running a Program
After you enter the source code for your Eclipse project, you can run it to
see if it works as expected. Eclipse has several ways to run a Java program:

✦ In the Package Explorer, select the source file for the class you want to
run. Then, choose Run➪Run As➪Java Application.

✦ Right-click the source file for the class you want to run, then choose
Run➪Java Application from the shortcut menu that appears.

✦ Select the source file in the Package Explorer, and then click the Run
button (shown in the margin) and choose Run As➪Java Application from
the menu that appears. (If you recently ran the program, you can also
choose the program from the list of recently run programs that appears
in this menu.)

When the program runs, its console output is displayed in a Console view
that appears beneath the Java Editor pane, as shown in Figure 4-10.

Note: If the program uses Swing to create a window, that window is dis-
played separately, not within the Eclipse workbench window. (See Book VI
for more on Swing.)

Console view

Figure 4-10:
The Console
View
displays the
program’s
console
output.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 56

Book I
Chapter 4

Using Eclipse

Debugging a Java Program 57

Eclipse is designed so that it automatically compiles Java programs as you
work on them. Every time you save a Java source file in Eclipse, the file is
automatically compiled to create a class file. As a result, you don’t usually
have to perform a separate compile step before you can run a program. If the
project contains large source files, this feature can become annoying. To dis-
able automatic compilation, choose Project➪Build Automatically. Then, you
must manually build the project by choosing Project➪Build All before you
can run it. (To switch back to automatic builds, choose Project➪Build
Automatically again.)

Debugging a Java Program
No matter how carefully you plan your programs, sooner or later you
encounter bugs. You need to watch out for basically two kinds of bugs:

✦ Incorrect results, such as a program that’s supposed to calculate test
scores but gives you a C when you score 99 out of 100 or a program
that’s supposed to calculate sales tax of 5% but that says the sales tax
on a $29.95 purchase is $149.75 instead of $1.50.

✦ Program crashes, such as when a program that’s supposed to divide
one number into another and print the answer instead prints out this
message:

Exception in thread “main” java.lang.ArithmeticException: / by
zero
at BugApp.main(BugApp.java:19)

Then, the program abruptly stops.

Fortunately, Eclipse has a powerful debugger that can help you find the
cause of either type of bug and fix it. To start the debugger, run your pro-
gram by choosing Project➪Debug As➪Java Application instead of Project➪
Run As➪Java Application. Or, click the Debug button on the Workbench tool-
bar as shown in the margin. Eclipse switches to the Debug perspective, as
shown in Figure 4-11, and runs the program in debug mode.

The following sections describe some of the key features of the Debug per-
spective that are useful for tracking down and correcting bugs in your Java
programs.

Stepping through your programs
One of the most basic skills for debugging is executing program statements
one at a time. This is called stepping, and it can be a very useful debugging
technique. By stepping through your program one statement at a time, you
can view the effects of each statement and identify the source of errors.
Sometimes, just knowing which statements are being executed is all you
need to know to determine why your program isn’t working.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 57

Debugging a Java Program58

In Eclipse, the Debug View section of the Debug perspective is where you con-
trol the execution of the program you’re debugging. This view displays a tree
that indicates each of the threads in your program. (If you don’t know what
threads are, don’t worry about it. Most console-based programs, such as the
BugApp program, shown in Figure 4-11 uses only one thread anyway. You find
out how to code programs that use more than one thread in Book V.)

Before you can control the execution of a thread, you must first suspend the
thread so that its statements stop executing. In general, you can suspend a
thread for debugging three ways:

✦ When an unhandled exception occurs, the thread is automatically sus-
pended. In Figure 4-11, the BugApp program’s main method is suspended
because a divide-by-zero exception has occurred and the program didn’t
catch it. If your program is throwing an exception that you don’t expect,
you can simply debug the program and allow the exception to suspend
the thread. Then, you can try to track down the cause of the problem.

Debug view

Console view

Variables view

Breakpoints view (hidden)

Java editor

Figure 4-11:
The Debug
Perspective
lets you
debug
errant Java
programs.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 58

Book I
Chapter 4

Using Eclipse

Debugging a Java Program 59

✦ Before you debug the program, you can set a breakpoint at any state-
ment in the program. Then, when execution reaches that statement, the
thread is suspended. To set a breakpoint, simply double-click the left
margin of the Java editor next to the statement where you want the
thread to be suspended.

✦ If a long-running thread is in a loop, you can suspend it by clicking the
thread in the Debug View window and clicking the Suspend button
(shown in the margin).

When you suspend a thread, the statement that will be executed next is high-
lighted in the Java editor. Then, you can continue the thread’s execution one
or more statements at a time by clicking the buttons at the top of the Debug
view. Table 4-1 describes the most commonly used buttons.

Table 4-1 Commonly Used Buttons
Button Name Description

Resume Resumes execution with the next
statement. The thread continues
executing until it is suspended by an
uncaught exception or a breakpoint.

Terminate Terminates the thread.

Step Into Executes the highlighted statement,
and then suspends the thread.

Step Over Skips the highlighted statement and
executes the next statement, and
then suspends the thread.

Run to Return Executes the highlighted statement
and continues executing statements
until the end of the current method
is reached. Then, the thread is
suspended.

Examining variables
When a thread is suspended, you can examine its variables to see if they’re
set to the values you expect. In many cases, you can discover programming
errors. For example, if you think a variable named customerFirstName
should contain a customer’s first name and instead it contains the name of
the state in which the customer lives, you can conclude that you didn’t
assign the variable’s value properly. (Of course, this might be ambiguous if
the customer happens to be named Indiana Jones.)

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 59

Debugging a Java Program60

The easiest way to examine the value of a variable is to simply point the
mouse at the variable in the Java editor. For example, Figure 4-12 shows how
the value of the variable i appears when you hover the mouse pointer over
it. Here, the pop-up message indicates that the variable i is an int type and
has a value of 0. (This message might be a clue as to why the program has
thrown a divide by zero exception.)

You can also inspect variables by using the Variables view, as shown in Figure
4-13. Each variable is listed on a separate line in the top part of the Variables
view. In addition, the bottom part (called the Detail pane) displays the value
of the currently selected variable. Note that as you step through the various
statements in your program, variables appear in the Variables view as they are
declared and they disappear from view when they go out of scope.

Setting breakpoints
A breakpoint is a line in your program where you want the program to be sus-
pended. Setting a breakpoint allows you to efficiently execute the portions of
your program that are working properly, while stopping the program when it
reaches the lines you believe to be in error.

All the breakpoints in your program are listed in Breakpoints view, as shown
in Figure 4-14. The following paragraphs describe some of the ways you can
work with breakpoints in this view:

Figure 4-13:
The
Variables
view shows
the value
of each
variable.

Figure 4-12:
Displaying
a variable
value.

08_58961X bk01ch04.qxd 3/29/05 3:29 PM Page 60

Book I
Chapter 4

Using Eclipse

Refactoring Your Code 61

✦ The check box next to each breakpoint indicates whether or not the
breakpoint is enabled. Execution is suspended at a breakpoint only if
the breakpoint is enabled.

✦ You can delete a checkpoint by clicking the breakpoint to select it, and
then pressing the Delete key or clicking the Remove Selected button
(shown in the margin).

✦ You can remove all the breakpoints you’ve set by clicking the Remove
All Breakpoints button (shown in the margin).

✦ If you double-click a breakpoint in Breakpoint view, the Java Editor
window scrolls to the line at which the breakpoint is set.

✦ If you only want the program to be suspended after it has hit the break-
point a certain number of times, right-click the breakpoint and choose
Hit Count from the shortcut menu that appears. Then, enter the number
of times you want the statement to execute before suspending the pro-
gram and click OK.

Refactoring Your Code
Refactoring refers to the task of making mass changes to a project. For exam-
ple, suppose you decide that a class name you created when you started the
project doesn’t really accurately describe the purpose of the class, so you
want to change it. Simple text editors, such as TextPad, include a Replace
command that lets you change occurrences of text strings within a file, but
changing the name of a class requires that you change the name in all the
files in a project.

Eclipse includes a whole menu of refactoring options — called, as you might
guess, the Refactor menu. This menu contains 18 different types of refactoring
commands. If you’re just starting to learn Java, most of these 18 commands
won’t make any sense to you. For example, the Refactor menu contains com-
mands that let you change an anonymous inner class to a nested class, push
members down to a subclass, or introduce a factory.

Figure 4-14:
The
Breakpoints
view is
where you
control
breakpoints.

08_58961X bk01ch04.qxd 3/29/05 3:30 PM Page 61

Refactoring Your Code62

A few of the Refactor menu commands are useful to you as you work your
way through the basics of learning Java. In particular:

✦ Rename: Lets you rename a variable, method, or other symbol. First,
select the symbol you want to rename. Then, choose Refactor➪Rename,
type the new name, and then click OK.

✦ Extract Method: This command lets you create a separate method from
one or more statements. Select the statements you want to place in the
method, and then choose Refactor➪Extract Method. In the dialog box
that appears, type the name you want to use for the method. Eclipse cre-
ates a method with the statements you selected, and then replaces the
original selection with a call to the new method.

✦ Inline: This command is pretty much the opposite of the Extract Method
command. It replaces a call to a method with the statements that are
defined in the body of that method. This command is most useful in
situations where you thought a method was going to be either more
complicated than it turned out to be, or you thought you’d call it from
more locations than you ended up calling it from.

✦ Extract Local Variable: This one is weird. Sometimes, you discover that
you have a whole string of statements in a row that use an expression,
such as x + 1. Wouldn’t it be better if you just created a separate vari-
able to hold the value of x + 1, and then used that variable instead of
repeatedly recalculating the expression? The Extract Local Variable com-
mand can do this for you. Highlight the first occurrence of the expression
and choose Refactor➪Extract Local Variable. Eclipse creates a local vari-
able, adds an assignment statement that assigns the expression to the
new local variable, and then replaces all occurrences of the expression
with the local variable.

08_58961X bk01ch04.qxd 3/29/05 3:30 PM Page 62

Book II

Programming Basics

09_58961X pt02.qxd 3/29/05 3:30 PM Page 63

Contents at a Glance
Chapter 1: Java Programming Basics..65

Chapter 2: Working with Variables and Data Types ..83

Chapter 3: Working with Numbers and Expressions ..113

Chapter 4: Making Choices ..141

Chapter 5: Going Around in Circles (Or, Using Loops) ..161

Chapter 6: Pulling a Switcheroo ..187

Chapter 7: Adding Some Methods to Your Madness..199

Chapter 8: Handling Exceptions ..217

09_58961X pt02.qxd 3/29/05 3:30 PM Page 64

Chapter 1: Java Programming
Basics

In This Chapter
� The famous Hello, World! program

� Basic elements of Java programs such as keywords, statements, and
blocks

� Different ways to add comments to your programs

� Basic information about object-oriented programming

� Importing classes

In this chapter, you find the basics of writing simple Java programs. The
programs you see in this chapter don’t do anything very interesting;

they just display simple information on a console (in Windows, that’s a
command prompt window). You need to cover a few more chapters before
you start writing programs that do anything worthwhile. But the simple
programs you see in this chapter are sufficient to illustrate the basic struc-
ture of Java programs.

Be warned that in this chapter, I introduce you to several Java programming
features that are explained in greater detail in later chapters. For example,
you see some variable declarations, a method, and even an if statement
and a for loop. The goal of this chapter isn’t for you to become proficient
with these programming elements, but just to get an introduction to them.

You can find all the code listings used in this book at www.dummies.com/
go/javaaiofd.

Looking At the Infamous Hello, World! Program
Many programming books begin with a simple example program that dis-
plays the text, “Hello, World!” on the console. In Book I, Chapter 1,
I show you a Java program that does that to compare it with a similar pro-
gram written in C. Now, take a closer look at each element of this program,
shown in Listing 1-1.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 65

Looking At the Infamous Hello, World! Program66

LISTING 1-1:THE HELLOAPP PROGRAM

public class HelloApp ➞ 1
{ ➞ 2

public static void main(String[] args) ➞ 3
{ ➞ 4

System.out.println(“Hello, World!”); ➞ 5
} ➞ 6

} ➞ 7

Later in this chapter, you discover in detail all the elements that make up
this program. But first, I want to walk you through it word by word.

Lines 1 and 2 mark the declaration of a public class named HelloApp:

➞ 1 public: A keyword of the Java language that indicates that the ele-
ment that follows should be made available to other Java elements. In
this case, what follows is a class named HelloApp. As a result, this
keyword indicates that the HelloApp class is a public class, which
means other classes can use it. (In Book III, Chapter 2, I cover the
most common alternative to public: private. There are also other
alternatives, but they’re covered in later chapters.)

class: Another Java keyword that indicates that the element being
defined here is a class. All Java programs are made up of one or more
classes. A class definition contains code that defines the behavior of
the objects created and used by the program. Although most real-
world programs consist of more than one class, the simple programs
you see in this minibook have just one class.

HelloApp: An identifier that provides the name for the class being
defined here. While keywords, such as public and class, are
words that are defined by the Java programming language, identifiers
are words that you create to provide names for various elements you
use in your program. In this case, the identifier HelloApp provides a
name for the public class being defined here. (Although identifier is
the technically correct term, sometimes identifiers are called symbols
or names.)

➞ 2 {: The opening brace on line 2 marks the beginning of the body of the
class. The end of the body is marked by the closing brace on line 7.
Everything that appears within these braces belongs to the class. As
you work with Java, you’ll find that it uses these braces a lot. Pretty
soon the third and fourth fingers on your right hand will know exactly
where they are on the keyboard.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 66

Book II
Chapter 1

Java Program
m

ing
Basics

Looking At the Infamous Hello, World! Program 67

Lines 3 through 6 define a method of the HelloApp class named main:

➞ 3 public: The public keyword is used again, this time to indicate
that a method being declared here should have public access. That
means classes other than the HelloApp class can use it. All Java
programs must have at least one class that declares a public method
named main. The main method contains the statements that are exe-
cuted when you run the program.

static: You find all about the static keyword in Book III, Chapter 3.
For now, just take my word that the Java language requires that you
specify static when you declare the main method.

void: In Java, a method is a unit of code that can calculate and
return a value. For example, you could create a method that calcu-
lates a sales total. Then, the sales total would be the return value of
the method. If a method doesn’t need to return a value, you must use
the void keyword to indicate that no value is returned. Because Java
requires that the main method not return a value, you must specify
void when you declare the main method.

main: Finally, the identifier that provides the name for this method.
As I’ve already mentioned, Java requires that this method be named
main. Besides the main method, you can also create additional
methods with whatever names you want to use. You discover how to
create additional methods in Book II, Chapter 7. Until then, the pro-
grams consist of just one method named main.

(String[] args): Oh boy. This Java element is too advanced to
thoroughly explain just yet. It’s called a parameter list, and it’s used
to pass data to a method. Java requires that the main method must
receive a single parameter that’s an array of String objects. By con-
vention, this parameter is named args. If you don’t know what a
parameter, a String, or an array is, don’t worry about it. You can
find out what a String is in the next chapter, and parameters are in
Book II, Chapter 7; arrays in Book IV. In the meantime, realize that you
have to code (String[] args) on the declaration for the main
methods in all your programs.

➞ 4 Another {: Another set of braces begins at line 4 and ends at line 6.
These mark the body of the main method. Notice that the closing brace
in line 6 is paired with the opening brace in line 4, while the closing
brace in line 7 is paired with the one in line 2. This type of pairing is
commonplace in Java. In short, whenever you come to a closing brace,
it is paired with the most recent opening brace that hasn’t already been
closed — that is, that hasn’t already been paired with a closing brace.

➞ 5 System.out.println(“Hello, World!”);: This is the only
statement in the entire program. It calls a method named println
that belongs to the System.out object. The println method dis-
plays a line of text on the console. The text to be displayed is passed

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 67

Dealing with Keywords68

to the println method as a parameter in parentheses following the
word println. In this case, the text is the string literal Hello,
World! enclosed in a set of quotation marks. As a result, this state-
ment displays the text Hello, World! on the console.

Note that in Java, statements end with a semicolon. Because this is
the only statement in the program, this line is the only one that
requires a semicolon.

➞ 6 }: Line 6 contains the closing brace that marks the end of the main
method body that was begun by the brace on line 4.

➞ 7 Another }: Line 7 contains the closing brace that marks the end
of the HelloApp class body that was begun by the brace on line 2.
Because this program consists of just one class, this line also marks
the end of the program.

To run this program, you must first use a text editor to enter it exactly as it
appears in Listing 1-1 into a text file named HelloApp.java. Then, you can
compile it by running this command at a command prompt:

javac HelloApp.java

This command creates a class file named HelloApp.class that contains
the Java bytecodes compiled for the HelloApp class.

You can run the program by entering this command:

java HelloApp

Now that you’ve seen what a Java program actually looks like, you’re in a
better position to understand exactly what this command does. First, it
loads the Java Virtual Machine into memory. Then, it locates the HelloApp
class, which must be contained in a file named HelloApp.class. Finally,
it runs the HelloApp class’ main method. The main method, in turn, dis-
plays the message “Hello, World!” on the console.

The rest of this chapter describes some of the basic elements of the Java
programming language in greater detail.

Dealing with Keywords
A keyword is a word that has special meaning defined by the Java program-
ming language. The program shown earlier in Listing 1-1 uses four keywords:
public, class, static, and void. In all, Java has 51 keywords. They’re
listed in alphabetical order in Table 1-1.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 68

Book II
Chapter 1

Java Program
m

ing
Basics

Dealing with Keywords 69

Table 1-1 Java’s Keywords
abstract do if package synchronized

boolean double implements private this

break else import protected throw

byte extends instanceof public throws

case false int return transient

catch final interface short true

char finally long static try

class float native strictfp void

const for new super volatile

continue goto null switch while

default

Strangely enough, three keywords listed in Table 1-1 — true, false, and
null — aren’t technically considered to be keywords. Instead, they’re
called literals. Still, they’re reserved for use by the Java language in much
the same way that keywords are, so I lumped them in with the keywords.

Stranger still, two keywords — const and goto — are reserved by Java but
don’t do anything. Both are carryovers from the C++ programming language.
The const keyword defines a constant, which is handled in Java by the
final keyword. As for goto, it’s a C++ statement that is considered anath-
ema to object-oriented programming purists, so it isn’t used in Java. Java
reserves it as a keyword solely for the purpose of scolding you if you
attempt to use it.

Like everything else in Java, keywords are case sensitive. Thus, if you type
If instead of if or For instead of for, the compiler complains about your
error. Because Visual Basic keywords begin with capital letters, you’ll make
this mistake frequently if you have programmed in Visual Basic.

Considering the Java community’s disdain for Visual Basic, it’s surprising
that the error messages generated when you capitalize keywords aren’t
more insulting. Accidentally capitalizing a keyword in Visual Basic style can
really throw the Java compiler for a loop. For example, consider this pro-
gram, which contains the single error of capitalizing the word For:

public class CaseApp
{

public static void main(String[] args)
{

For (int i = 0; i<5; i++)
System.out.println(“Hi”);

}
}

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 69

Working with Statements70

When you try to compile this program, the compiler generates a total of six
error messages for this one mistake:

C:\Java AIO\CaseApp.java:5: ‘.class’ expected
For (int i = 0; i<5; i++)

^
C:\Java AIO\CaseApp.java:5: ‘)’ expected

For (int i = 0; i<5; i++)
^

C:\Java AIO\CaseApp.java:5: illegal start of type
For (int i = 0; i<5; i++)

^
C:\Java AIO\CaseApp.java:5: > expected

For (int i = 0; i<5; i++)
^

C:\Java AIO\CaseApp.java:5: not a statement
For (int i = 0; i<5; i++)

^
C:\Java AIO\CaseApp.java:5: ‘;’ expected

For (int i = 0; i<5; i++)
^

6 errors

Even though this single mistake generates six error messages, none of the
messages actually point to the problem. The little arrow beneath the source
line indicates what part of the line is in error, and none of these error mes-
sages have the arrow pointing anywhere near the word For! The compiler
isn’t smart enough to realize that you meant for instead of For. So it treats
For as a legitimate identifier, and then complains about everything else on
the line that follows it. It would be much more helpful if it generated an error
message like this:

C:\Java AIO\CaseApp.java:5: ‘For’ is not a keyword
For (int i = 0; i<5; i++)
^

The moral of the story is that keywords are case sensitive, and if your pro-
gram won’t compile and the error messages don’t make any sense, check for
keywords that you’ve mistakenly capitalized.

Working with Statements
Like most programming languages, Java uses statements to build programs.
Unlike most programming languages, statements are not the fundamental
unit of code in Java. Instead, that honor goes to the class. However, every
class must have a body, and the body of a class is made up of one or more
statements. In other words, you can’t have a meaningful Java program with-
out at least one statement. The following sections describe the ins and outs
of working with Java statements.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 70

Book II
Chapter 1

Java Program
m

ing
Basics

Working with Statements 71

Types of statements
Java has many different types of statements. Some statements simply create
variables that you can use to store data. These types of statements are often
called declaration statements, and tend to look like this:

int i;
String s = “This is a string”;
Customer c = new Customer();

Another common type of statement is an expression statement, which per-
forms calculations. Here are some examples of expression statements:

i = a + b;
salesTax = invoiceTotal * taxRate;
System.out.println(“Hello, World!”);

Notice that the last statement in this group is the same as line 5 in Listing
1-1. Thus, the single statement in the HelloApp program is an expression
statement.

There are many other kinds of statements besides these two. For example,
if-then statements execute other statements only if a particular condition
has been met. And statements such as for, while, or do execute a group of
statements one or more times.

It is often said that all Java statements must end with a semicolon. Actually,
this isn’t quite true. Some types of Java statements must end with a semi-
colon, but others don’t. The basic rule is that declaration and expression
statements must end with a semicolon, but most other statement types do
not. Where this rule gets tricky, however, is that most other types of state-
ments include one or more declaration or expression statements that do use
semicolons. For example, here’s a typical if statement:

if (total > 100)
discountPercent = 10;

Here, the variable named discountPercent is given a value of 10 if the
value of the total variable is greater than 100. The expression statement
ends with semicolons, but the if statement itself doesn’t. (The Java com-
piler lets you know if you use a semicolon when you shouldn’t.)

White space
In Java, the term white space refers to one or more consecutive space char-
acters, tab characters, or line breaks. All white space is considered the
same. In other words, a single space is treated the same as a tab or line
break or any combination of spaces, tabs, or line breaks.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 71

Working with Blocks72

If you’ve programmed in Visual Basic, white space is different from what
you’re used to. In Visual Basic, line breaks mark the end of statements unless
special continuation characters are used. In Java, you don’t have to do any-
thing special to continue a statement onto a second line. Thus, the statement

x = (y + 5) / z;

is identical to this statement:

x =
(y + 5) / z;

In fact, you could write the above statement like this if you wanted:

x
=
(
y
+
5
)
/
z
;

I wouldn’t advise it, but the statement does compile and execute properly.

Using white space liberally in your programs is a good idea. In particular, you
should usually use line breaks to place each statement on a separate line and
use tabs to line up elements that belong together. The compiler ignores the
extra white space, so it doesn’t affect the bytecode that’s created for your
program. As a result, using extra white space in your program doesn’t affect
your program’s performance in any way, but it does make the program’s
source code easier to read.

Working with Blocks
A block is a group of one or more statements that’s enclosed in braces. A
block begins with an opening brace ({) and ends with a closing brace (}).
Between the opening and closing brace, you can code one or more state-
ments. For example, here’s a block that consists of three statements:

{
int i, j;
i = 100;
j = 200;

}

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 72

Book II
Chapter 1

Java Program
m

ing
Basics

Creating Identifiers 73

A block is itself a type of statement. As a result, any time the Java language
requires a statement, you can substitute a block to execute more than one
statement. For example, in Book II, Chapter 4, you discover that the basic
syntax of an if statement is this:

if (expression) statement

Here, the statement can be a single statement or a block. If you find this idea
confusing, don’t worry. It will make more sense when you turn to Book II,
Chapter 4.

You can code the braces that mark a block in two popular ways. One is to
place both braces on separate lines, and then indent the statements that
make up the block. For example:

if (i > 0)
{

String s = “The value of i is “ + i;
System.out.print(s);

}

The other style is to place the opening brace for the block on the same line
as the statement the block is associated with, like this:

if (i > 0) {
String s = “The value of i is “ + i;
System.out.print(s);

}

Which style you use is a matter of personal preference. I prefer the first
style, and that’s the style I use throughout this book. But either style works,
and many programmers prefer the second style because it’s more concise.

Creating Identifiers
An identifier is a word that you make up to refer to a Java programming ele-
ment by name. Although you can assign identifiers to many different types of
Java elements, they’re most commonly used for the following elements:

✦ Classes, such as the HelloApp class in Listing 1-1

✦ Methods, such as the main method in Listing 1-1

✦ Variables and fields, which hold data used by your program

✦ Parameters, which pass data values to methods

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 73

Crafting Comments74

Identifiers are also sometimes called names. Strictly speaking, a name isn’t
quite the same thing as an identifier. A name is often made up of two or more
identifiers connected with periods (called dots). For example, in line 5 of
Listing 1-1, System and out are both identifiers. But System.out is a
name. In practice, the terms name and identifier are used interchangeably.

You must follow a few simple rules when you create identifiers:

✦ Identifiers are case sensitive. As a result, SalesTax and salesTax are
distinct identifiers.

✦ Identifiers can be made up of upper- or lowercase letters, numerals,
underscore characters (_), and dollar signs ($).

✦ All identifiers must begin with a letter. Thus, a15 is a valid identifier, but
13Unlucky isn’t because it begins with a numeral.

✦ An identifier can’t be the same as any of the Java keywords listed in
Table 1-1. Thus, you can’t create a variable named for or a class named
public.

✦ The Java language specification recommends that you avoid using dollar
signs in names you create. Instead, dollar signs are used by code genera-
tors to create identifiers. Thus, avoiding dollar signs helps you avoid
creating names that conflict with generated names.

Crafting Comments
A comment is a bit of text that provides explanations of your code. Comments
are completely ignored by the compiler, so you can place any text you wish in
a comment. Using plenty of comments in your programs is a good idea to
explain what your program does and how it works.

Java has three basic types of comments: end-of-line comments, traditional
comments, and JavaDoc comments.

End-of-line comments
An end-of-line comment begins with the sequence // and ends at the end
of the line. You can place an end-of-line comment at the end of any line.
Everything you type after the // is ignored by the compiler. For example:

total = total * discountPercent; // calculate the discounted total

If you want, you can also place end-of-line comments on separate lines,
like this:

// calculate the discounted total
total = total * discountPercent;

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 74

Book II
Chapter 1

Java Program
m

ing
Basics

Crafting Comments 75

You can place end-of-line comments in the middle of statements that span
two or more lines. For example:

total = (total * discountPercent) // apply the discount first
+ salesTax; // then add the sales tax

Traditional comments
A traditional comment begins with the sequence /* and ends with the
sequence */ and can span multiple lines. For example:

/* HelloApp sample program.
This program demonstrates the basic structure
that all Java programs must follow. */

A traditional comment can begin and end anywhere on a line. If you want,
you can even sandwich a comment between other Java programming ele-
ments, like this:

x = (y + /* a strange place for a comment */ 5) / z;

Usually, traditional comments appear on separate lines. One common use for
traditional comments is to place a block of comment lines at the beginning
of a class to indicate information about the class such as what the class
does, who wrote it, and so on. However, that type of comment is usually
better coded as a JavaDoc comment, as described in the next section.

You may be tempted to temporarily comment out a range of lines by placing
/* in front of the first line in the range and */ after the last line in the range.
However, that can get you in trouble if the range of lines you try to comment
out includes a traditional comment. That’s because traditional comments
can’t be nested. For example, the following code won’t compile:

/*
int x, y, z;
y = 10;
z = 5;
x = (y + /* a strange place for a comment */ 5) / z;
*/

Here, I tried to comment out a range of lines that already included a tradi-
tional comment. Unfortunately, the */ sequence near the end of the fifth line
is interpreted as the end of the traditional comment that begins in the first
line. Then, when the compiler encounters the */ sequence in line 6, it gener-
ates an error message.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 75

Introducing Object-Oriented Programming76

JavaDoc comments
JavaDoc comments are actually a special type of traditional comment that
you can use to automatically create Web-based documentation for your pro-
grams. Because you’ll have a better appreciation of JavaDoc comments
when you know more about object-oriented programming, I devoted a
section in Book III, Chapter 8 to creating and using JavaDoc comments.

Introducing Object-Oriented Programming
Having presented some of the most basic elements of the Java programming
language, most Java books would next turn to the important topics of vari-
ables and data types. However, because Java is an inherently object-oriented
programming language, and classes are the heart of object-oriented program-
ming, I look next at classes to explore the important role they play in creating
objects. I get to variables and data types first thing in the next chapter.

Understanding classes and objects
As I’ve already mentioned, a class is code that defines the behavior of a Java
programming element called an object. An object is an entity that has both
state and behavior. The state of an object consists of any data that the object
might be keeping track of, and the behavior consists of actions that the
object can perform. The behaviors are represented in the class by one or
more methods that can be called upon to perform actions.

The difference between a class and an object is similar to the difference
between a blueprint and a house. A blueprint is a plan for a house. A house is
an implementation of a blueprint. One set of blueprints can be used to build
many houses. Likewise, a class is a plan for an object, and an object is — in
Java terms — an instance of a class. You can use a single class to create more
than one object.

When an object is created, Java sets aside an area of computer memory
that’s sufficient to hold all the data that’s stored by the object. As a result,
each instance of a class has its own data, independent of the data used by
other instances of the same class.

Understanding static methods
You don’t necessarily have to create an instance of a class to use the meth-
ods of the class. If a method is declared with the static keyword, the
method can be called without first creating an instance of the class. That’s
because static methods are called from classes, not from objects.

The main method of a Java application must be declared with the static
keyword. That’s because when you start a Java program by using the java

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 76

Book II
Chapter 1

Java Program
m

ing
Basics

Introducing Object-Oriented Programming 77

command from a command prompt, Java doesn’t create an instance of the
application class. Instead, it simply calls the program’s static main method.

The difference between static and non-static methods will become more
apparent when you look at object-oriented programming in more depth in
Book III. But for now, consider this analogy. The blueprints for a house
include the details about systems that actually perform work in a finished
house, such as electrical and plumbing systems. In order to use those sys-
tems, you have to actually build a house. In other words, you can’t turn on
the hot water by using the blueprint alone; you have to have an actual house
to heat the water.

However, the blueprints do include detailed measurements of the dimen-
sions of the house. As a result, you can use the blueprints to determine the
square footage of the living room. Now imagine that the blueprints actually
had a built-in calculator that would display the size of the living room if you
pushed the “Living Room” button. That button would be like a static method
in a class: You don’t actually have to build a house to use it; you can use it
from the blueprints alone.

Many Java programs — in fact, many of the programs in the rest of Book II —
are entirely made up of static methods. However, most realistic programs
require that you create one or more objects that the program uses as it exe-
cutes. As a result, learning how to create simple classes and how to create
objects from those classes is a basic skill in Java programming.

Creating an object from a class
In Java, you can create an object from a class in several ways. But the most
straightforward is to create a variable that provides a name you can use to
refer to the object, then use the new keyword to create an instance of the
class, and assign the resulting object to the variable. The general form of a
statement that does that is this:

ClassName variableName = new ClassName();

For example, to create an object instance of a class named Class1 and
assign it to a variable named myClass1Object, you would write a state-
ment like this:

Class1 myClass1Object = new Class1();

Why do you have to list the class name twice? The first time, you’re providing
a type for the variable. In other words, you’re saying that the variable you’re
creating here can be used to hold objects created from the Class1 class.
The second time you list the class name, you’re creating an object from the
class. The new keyword tells Java to create an object, and the class name
provides the name of the class to use to create the object.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 77

Introducing Object-Oriented Programming78

The equals sign (=) is an assignment operator. It simply says to take the
object created by the new keyword and assign it to the variable. Thus, this
statement actually does three things:

✦ It creates a variable named myClass1Object that can be used to hold
objects created from the Class1 class. At this point, no object has been
created — just a variable that can be used to store objects.

✦ It creates a new object in memory from the Class1 class.

✦ It assigns this newly created object to the myClass1Object variable.
That way, you can use the myClassObject variable to refer to the
object that was created.

A program that uses an object
To give you an early look at what object-oriented programming really looks
like, Listings 1-2 and 1-3 show another version of the HelloApp application,
this time using two classes, one of which is actually made into an object
when the program is run. The first class, named HelloApp2, is shown in
Listing 1-2. This class is similar to the HelloApp class shown in Listing 1-1.
However, it uses an object created from the second class, named Greeter,
to actually display the “Hello, World!” message on the console. The
Greeter class is shown in Listing 1-3. It defines a method named sayHello
that displays the message.

Both the HelloApp and the Greeter class are public classes. Java requires
that each public class be stored in a separate file, with the same name as the
class and the extension .java. As a result, the HelloApp2 class is stored
in a file named HelloApp2.java, and the Greeeter class is stored in a
file named Greeter.java.

The HelloApp2 class
The HelloApp2 class is shown in Listing 1-2.

LISTING 1-2:THE HELLOAPP2 CLASS

// This application displays a hello message on ➞ 1
// the console by creating an instance of the
// Greeter class, then calling the Greeter
// object’s sayHello method.

public class HelloApp2 ➞ 6
{

public static void main(String[] args) ➞ 8
{

Greeter myGreeterObject = new Greeter(); ➞ 10

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 78

Book II
Chapter 1

Java Program
m

ing
Basics

Introducing Object-Oriented Programming 79

myGreeterObject.sayHello(); ➞ 11
}

}

The following paragraphs describe the key points:

➞ 1 This class begins with a series of comment lines that identify the func-
tion of the program. For these comments, I used simple end-of-line
comments rather than traditional comments. (For more on comment-
ing, see the “Crafting Comments” section, earlier in this chapter.)

➞ 6 The HelloApp2 class begins on line 6 with the public class declara-
tion. Because the public keyword is used, a file named HelloApp2.
java must contain this class.

➞ 8 The main method is declared using the same form as the main
method in the first version of this program (Listing 1-1). Get used to
this form because all Java applications must include a main method
that’s declared in this way.

➞10 The first line in the body of the main method creates a variable
named myGreeterObject that can hold objects created from the
Greeter class. Then, it creates a new object using the Greeter
class and assigns this object to the myGreeterObject variable.

➞11 The second line in the body of the main method calls the
myGreeterObject object’s sayHello method. As you’ll see
in a moment, this method simply displays the message “Hello,
World!” on the console.

The Greeter class
The Greeter class is shown in Listing 1-3.

LISTING 1-3:THE GREETER CLASS

// This class creates a Greeter object ➞ 1
// that displays a hello message on
// the console.

public class Greeter ➞ 5
{

public void sayHello() ➞ 7
{

System.out.println(“Hello, World!”); ➞ 9
}

}

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 79

Introducing Object-Oriented Programming80

The following paragraphs describe the key points:

➞ 1 This class also begins with a series of comment lines that identify the
function of the program.

➞ 5 The class declaration begins on this line. The class is declared as
public so other classes can use it. This declaration is required so that
the HelloApp2 class can access the Greeter class.

➞ 7 The sayHello method is declared using the public keyword so
that it’s available to other classes that use the Greeter class. The
void keyword indicates that this method doesn’t provide any data
back to the class that calls it, and sayHello simply provides the
name of the method.

➞ 9 The body of this method consists of just one line of code that displays
the “Hello, World!” message on the console.

So what’s the difference?
You might notice that the only line that actually does any real work in the
HelloApp2 program is line 9 in the Greeter class (Listing 1-3), and this line
happens to be identical to line 5 in the original HelloApp class (Listing 1-1).
Other than the fact that the second version requires roughly twice as much
code as the first version, what really is the difference between these two
applications?

Simply put, the first version is procedural, and the second is object-oriented.
In the first version of the program, the main method of the application class
does all the work of the application by itself: It just says hello. The second
version defines a class that knows how to say hello to the world, and then
creates an object from that class and asks that object to say hello. The appli-
cation itself doesn’t know or even care exactly how the Greeter object
says hello. It doesn’t know exactly what the greeting will be, what language
the greeting will be in, or even how the greeting will be displayed.

To illustrate this point, consider what would happen if you used the Greeter
class shown in Listing 1-4 rather than the one shown in Listing 1-3. This
version of the Greeter class uses a Java library class called JOptionPane
to display a message in a dialog box rather than in a console window. (I won’t
bother explaining how this code works, but you can find out more about it in
the next chapter.) If you were to run the HelloApp2 application using this
version of the Greeter class, you’d get the dialog box shown in Figure 1-1.

LISTING 1-4: ANOTHER VERSION OF THE GREETER CLASS

// This class creates a Greeter object
// that displays a hello message
// in a dialog box.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 80

Book II
Chapter 1

Java Program
m

ing
Basics

Importing Java API Classes 81

import javax.swing.JOptionPane; ➞ 5

public class Greeter
{

public void sayHello()
{

JOptionPane.showMessageDialog(null, “Hello, ➞ 11
World!”,”Greeter”, JOptionPane.
INFORMATION_MESSAGE);

}
}

The important point to realize here is that the HelloApp2 class doesn’t
have to be changed to use this new version of the Greeter class. Instead,
all you have to do is replace the old Greeter class with the new one, and
the HelloApp2 class won’t know the difference. That’s one of the main ben-
efits of object-oriented programming.

Importing Java API Classes
You may have noticed that the Greeter class in Listing 1-4 includes this
statement:

import javax.swing.JOptionPane;

The purpose of the import statement is to let the compiler know that the
program is using a class that’s defined by the Java API called JOptionPane.

Because the Java API contains literally thousands of classes, some form of
organization is needed to make the classes easier to access. Java does this
by grouping classes into manageable groups called packages. In the previous
example, the package that contains the JOptionPane class is named
javax.swing.

Figure 1-1:
The class in
Listing 1-4
displays this
dialog box.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 81

Importing Java API Classes82

Strictly speaking, import statements are never required. But if you don’t
use import statements to import the API classes your program uses, you
must fully qualify the names of the classes when you use them by listing the
package name in front of the class name. So, if the class in Listing 1-4 didn’t
include the import statement in line 5, you’d have to code line 11 like this:

javax.swing.JOptionPane.showMessageDialog(null, “Hello,
World!”,”Greeter”, JOptionPane.
INFORMATION_MESSAGE);

In other words, you’d have to specify javax.swing.JOptionPane
instead of just JOptionPane whenever you referred to this class.

Here are some additional rules for working with import statements:

✦ import statements must appear at the beginning of the class file, before
any class declarations.

✦ You can include as many import statements as are necessary to import
all the classes used by your program.

✦ You can import all the classes in a particular package by listing the pack-
age name followed by an asterisk wildcard, like this:

import javax.swing.*;

✦ Because many programs use the classes that are contained in the
java.lang package, you don’t have to import that package. Instead,
those classes are automatically available to all programs. The System
class is defined in the java.lang package. As a result, you don’t have
to provide an import statement to use this class.

10_58961X bk02ch01.qxd 3/29/05 3:31 PM Page 82

Chapter 2: Working with Variables
and Data Types

In This Chapter
� Creating proper variable declarations

� Discovering the difference between primitive and reference types

� Looking at Java’s built-in data types

� Introducing strings

� Getting input from the console

� Getting input if you’re using an older version of Java

In this chapter, you find out the basics of working with variables in Java.
Variables are the key to making Java programs general purpose. For

example, the Hello, World! programs in the previous chapter are pretty spe-
cific: The only thing they say are “Hello, World!” But with a variable, you can
make this type of program more general. For example, you could vary the
greeting, so that sometimes it would say “Hello, World!” and other times it
would say “Greetings, Foolish Mortals.” Or you could personalize the greet-
ing, so that instead of saying “Hello, World!,” it said “Hello, Bob!” or “Hello,
Amanda!”

Variables are also the key to creating programs that can perform calculations.
For example, suppose you want to create a program that calculates the area
of a circle given the circle’s radius. Such a program uses two variables: one to
represent the radius of the circle, the other to represent the circle’s area. The
program asks the user to enter a value for the first variable. Then, it calculates
the value of the second variable.

Declaring Variables
In Java, you must explicitly declare all variables before using them. This rule
is in contrast to some languages — most notably Basic and Visual Basic —
which let you use variables that haven’t been automatically declared.
Allowing you to use variables that you haven’t explicitly declared might seem
like a good idea at first glance. But it’s a common source of bugs that result
from misspelled variable names. Java requires that you explicitly declare
variables so that if you misspell a variable name, the compiler can detect
your mistake and display a compiler error.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 83

Declaring Variables84

The basic form of a variable declaration is this:

type name;

Here are some examples:

int x;
String lastName;
double radius;

In these examples, variables named x, lastName, and radius, are declared.
The x variable holds integer values, the lastName variable holds String
values, and the radius variable holds double values. For more information
about what these types mean, see the section “Working with Primitive Data
Types” later in this chapter. Until then, just realize that int variables can hold
whole numbers (like 5, 1,340, and -34), double variables can hold numbers
with fractional parts (like 0.5, 99.97, or 3.1415), and String variables can
hold text values (like “Hello, World!” or “Jason P. Finch”).

Notice that variable declarations end with a semicolon. That’s because the
variable declaration is itself a type of statement.

Variable names follow the same rules as other Java identifiers, as I describe
in Book II, Chapter 1. In short, a variable name can be any combination of
letters and numerals, but must start with a letter. Most programmers prefer
to start variable names with lowercase letters, and capitalize the first letter
of individual words within the name. For example, firstName and
salesTaxRate are typical variable names.

Declaring two or more variables in one statement
You can declare two or more variables of the same type in a single state-
ment, by separating the variable names with commas. For example:

int x, y, z;

Here, three variables of type int are declared, using the names x, y, and z.

As a rule, I suggest you avoid declaring multiple variables in a single state-
ment. Your code is easier to read and maintain if you give each variable a
separate declaration.

Declaring class variables
A class variable is a variable that any method in a class can access, including
static methods such as main. When declaring a class variable, you have two
basic rules to follow:

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 84

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Declaring Variables 85

✦ You must place the declaration within the body of the class, but not
within any of the class methods.

✦ You must include the word static in the declaration. The word
static comes before the variable type.

The following program shows the proper way to declare a class variable
named helloMessage:

public class HelloApp
{

static String helloMessage;

public static void main(String[] args)
{

helloMessage = “Hello, World!”;
System.out.println(helloMessage);

}
}

As you can see, the declaration includes the word static and is placed
within the HelloApp class body, but not within the body of the main
method.

You don’t have to place class variable declarations at the beginning of a
class. Some programmers prefer to place them at the end of the class, as in
this example:

public class HelloApp
{

public static void main(String[] args)
{

helloMessage = “Hello, World!”;
System.out.println(helloMessage);

}

static String helloMessage;
}

Here, the helloMessage variable is declared after the main method.

I think classes are easier to read if the variables are declared first, so that’s
where you seem them in this book.

Declaring instance variables
An instance variable is similar to a class variable, but doesn’t specify the
word static in its declaration. As its name suggests, instance variables are
associated with instances of classes. As a result, you can only use them

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 85

Declaring Variables86

when you create an instance of a class. Because static methods aren’t associ-
ated with an instance of the class, you can’t use an instance variable in a
static method — including the main method.

For example, the following program won’t compile:

public class HelloApp
{

String helloMessage; // error -- should use static keyword

public static void main(String[] args)
{

helloMessage = “Hello, World!”;
System.out.println(helloMessage); // will not compile

}
}

If you attempt to compile this program, you get the following error messages:

C:\Java\HelloApp.java:7: non-static variable helloMessage
cannot be referenced from a static context

helloMessage = “Hello, World!”;
^

C:\Java\HelloApp.java:8: non-static variable helloMessage
cannot be referenced from a static context

System.out.println(helloMessage);
^

Both of these errors occur because the main method is static, so it can’t
access instance variables.

Instance variables are useful whenever you create your own classes. But
because I don’t cover that until Book III, you won’t see many examples of
instance methods in the remainder of the chapters in Book II.

Declaring local variables
A local variable is a variable that’s declared within the body of a method.
Then, you can use the variable only within that method. Other methods in
the class aren’t even aware that the variable exists.

Here’s a version of the HelloApp class in which the helloMessage vari-
able is declared as a local variable:

public class HelloApp
{

public static void main(String[] args)
{

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 86

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Declaring Variables 87

String helloMessage;
helloMessage = “Hello, World!”;
System.out.println(helloMessage);

}
}

Note that you don’t specify static on a declaration for a local variable. If
you do, the compiler generates an error message and refuses to compile
your program. Local variables always exist in the context of a method, and
they exist only while that method is executing. As a result, whether or not an
instance of the class has been created is irrelevant.

Unlike class and instance variables, where you position the declaration for
a local variable is important. In particular, you must place the declaration
prior to the first statement that actually uses the variable. Thus, the follow-
ing program won’t compile:

public class HelloApp
{

public static void main(String[] args)
{

helloMessage = “Hello, World!”; // error -- helloMessage
System.out.println(helloMessage); // is not yet declared
String helloMessage;

}
}

When it gets to the first line of the main method, the compiler generates an
error message complaining that it can’t find the symbol “helloMessage”.
That’s because it hasn’t yet been declared.

Although most local variables are declared near the beginning of a method’s
body, you can also declare local variables within smaller blocks of code
marked by braces. This will make more sense to you when you read about
statements that use blocks, such as if and for statements. But here’s an
example:

if (taxRate > 0)
{

double taxAmount;
taxAmount = subTotal * taxRate;
total = subTotal + total;

}

Here, the variable taxAmount exists only within the set of braces that
belongs to the if statement.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 87

Initializing Variables88

Initializing Variables
In Java, local variables are not given initial default values. The compiler
checks to make sure that you have assigned a value before you use a local
variable. For example, the following program won’t compile:

public class testApp
{

public static void main(String[] args)
{

int i;
System.out.println(“The value of i is “ + i);

}
}

If you try to compile this program, you get the following error message:

C:\Java\testApp.java:6: variable i might not have been
initialized

System.out.println(“The value of i is “ + i);
^

To avoid this error message, you must initialize local variables before you
can use them. You can do that by using an assignment statement or an ini-
tializer, as I describe in the following sections.

Unlike local variables, class variables and instance variables are given
default values. Numeric types are automatically initialized to zero, and String
variables are initialized to empty strings. As a result, you don’t have to ini-
tialize a class variable or an instance variable, although you can if you want
them to have an initial value other than the default.

Initializing variables with assignment statements
One way to initialize a variable is to code an assignment statement following
the variable declaration. Assignment statements have this general form:

variable = expression;

Here, the expression can be any Java expression that yields a value of the same
type as the variable. For example, here’s a version of the main method from
the previous example that correctly initializes the i variable before using it:

public static void main(String[] args)
{

int i;
i = 0;
System.out.println(“i is “ + i);

}

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 88

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Using Final Variables (Or Constants) 89

In this example, the variable is initialized to a value of zero before the
println method is called to print the variable’s value.

You find out a lot more about expressions in Book II, Chapter 3. For now, you
can just use simple literal values, such as 0 in this example.

Initializing variables with initializers
Java also allows you to initialize a variable on the same statement that
declares the variable. To do that, you use an initializer, which has the follow-
ing general form:

type name = expression;

In effect, the initializer lets you combine a declaration and an assignment
statement into one concise statement. Here are some examples:

int x = 0;
String lastName = “Lowe”;
double radius = 15.4;

In each case, the variable is both declared and initialized in a single statement.

When you declare more than one variable in a single statement, each can
have its own initializer. For example, the following code declares variables
named x and y, and initializes x to 5 and y to 10:

int x = 5, y = 10;

When you declare two class or instance variables in a single statement but
use only one initializer, you can mistakenly think the initializer applies to
both variables. For example, consider this statement:

static int x, y = 5;

Here, you might think that both x and y would initialize to 5. But the initializer
only applies to y, so x is initialized to its default value, 0. (If you make this mis-
take with a local variable, the compiler displays an error message for the first
statement that uses the x variable because it isn’t properly initialized.)

Using Final Variables (Or Constants)
A final variable, also called a constant, is a variable whose value you can’t
change once it’s been initialized. To declare a final variable, you add the
final keyword to the variable declaration, like this:

final int WEEKDAYS = 5;

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 89

Working with Primitive Data Types90

Although you can create final local variables, most final variables are class or
instance variables. To create a final class variable (sometimes called a class
constant), add static final (not final static) to the declaration:

static final WEEKDAYS = 5;

Although it isn’t required, using all capital letters for final variable names is
common. You can easily spot the use of final variables in your programs.

Constants are useful for values that are used in several places throughout a
program and that don’t change during the course of the program. For exam-
ple, suppose you’re writing a game that features bouncing balls and you
want the balls to always have a radius of 6 pixels. This program probably
needs to use the ball diameter in several different places — for example,
to draw the ball on-screen, to determine whether the ball has hit a wall, to
determine whether the ball has hit another ball, and so on. Rather than just
specify 6 whenever you need the ball’s radius, you can set up a class con-
stant named BALL_RADIUS, like this:

static final BALL_RADIUS = 6;

Using a class constant has two advantages:

✦ If you later decide that the radius of the balls should be 7, you make the
change in just one place — the initializer for the BALL_RADIUS constant.

✦ The constant helps document the inner workings of your program. For
example, the operation of a complicated calculation that uses the ball
radius is easier to understand if it specifies BALL_RADIUS rather than 6.

Working with Primitive Data Types
The term data type refers to the type of data that can be stored in a variable.
Java is sometimes called a strongly typed language because when you declare
a variable, you must specify the variable’s type. Then, the compiler ensures
that you don’t try to assign data of the wrong type to the variable. For exam-
ple, the following code generates a compiler error:

int x;
x = 3.1415;

Because x is declared as a variable of type int (which holds whole num-
bers), you can’t assign the value 3.1415 to it.

Java has an important distinction between primitive types and reference
types. Primitive types are the data types that are defined by the language
itself. In contrast, reference types are types that are defined by classes in the
Java API rather than by the language itself.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 90

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Working with Primitive Data Types 91

A key difference between a primitive type and a reference type is that the
memory location associated with a primitive type variable contains the
actual value of the variable. As a result, primitive types are sometimes called
value types. In contrast, the memory location associated with a reference
type variable contains an address (called a pointer) that indicates the
memory location of the actual object. I explain reference types more fully in
the section “Using Reference Types” later in this chapter, so don’t worry if
this explanation doesn’t make sense just yet.

It isn’t quite true that reference types are defined by the Java API and not by
the Java language specification. A few reference types, such as Object and
String, are defined by classes in the API, but those classes are specified in
the Java Language API. And a special type of variable called an array, which
can hold multiple occurrences of primitive or reference type variables, is
considered to be a reference type.

Java defines a total of eight primitive types. For your reference, Table 2-1
lists them. Of the eight primitive types, six are for numbers, one is for char-
acters, and one is for true/false values. Of the six number types, four are
types of integers and two are types of floating-point numbers. I describe
each of the primitive types in the following sections.

Table 2-1 Java’s Primitive Types
Type Explanation

int A 32-bit (4-byte) integer value

short A 16-bit (2-byte) integer value

long A 64-bit (8-byte) integer value

byte An 8-bit (1-byte) integer value

float A 32-bit (4-byte) floating-point value

double A 64-bit (8-byte) floating-point value

char A 16-bit character using the Unicode encoding scheme

boolean A true or false value

Integer types
An integer is a whole number — that is, a number with no fractional or deci-
mal portion. Java has four different integer types, which you can use to store
numbers of varying sizes. The most commonly used integer type is int.
This type uses four bytes to store an integer value that can range from about
negative two billion to positive two billion.

If you’re writing the application that counts how many hamburgers
McDonald’s has sold, an int variable might not be big enough. In that case,
you can use a long integer instead. long is a 64-bit integer that can hold

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 91

Working with Primitive Data Types92

numbers ranging from about negative 9,000 trillion to positive 9,000 trillion.
That’s a big number, even by Federal Deficit standards.

In some cases, you may not need integers as large as the standard int type
provides. For those cases, Java provides two smaller integer types. The
short type represents a two-digit integer, which can hold numbers from
–32,768 to +32,767. And the byte type defines an 8-bit integer that can range
from –128 to +127.

Although the short and byte types require less memory than the int or
long types, there’s usually little reason to use them. A few bytes here or
there isn’t going to make any difference in the performance of most pro-
grams, so you should stick to int and long most of the time. And use long
only when you know that you’re dealing with numbers too large for int.

In Java, the size of integer data types is specified by the language and is the
same regardless of what computer a program runs on. This is a huge improve-
ment over the C and C++ languages, which let compilers for different platforms
determine the optimum size for integer data types. As a result, a C or C++
program written and tested on one type of computer might not execute identi-
cally on another computer.

Java allows you to promote an integer type to a larger integer type. For exam-
ple, Java allows the following:

int xInt;
long yLong;
xInt = 32;
yLong = xInt;

Here, you can assign the value of the xInt variable to the yLong variable
because yLong is a larger size than xInt. However, Java does not allow the
converse:

int xInt;
long yLong;
yLong = 32;
xInt = yLong;

The value of the yLong variable cannot be assigned to the xInt because
xInt is smaller than yLong. Because this assigment might result in a loss of
data, Java doesn’t allow it.

(If you need to assign a long to an int variable, you must use explicit cast-
ing as described in the section “Type casting” later in this chapter.)

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 92

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Working with Primitive Data Types 93

Floating-point types
Floating-point numbers are numbers that have fractional parts. You should
use a floating-point type whenever you need a number with a decimal, such
as 19.95 or 3.1415.

Java has two primitive types for floating-point numbers: float, which uses
four bytes, and double, which uses eight bytes. In almost all cases, you
should use the double type whenever you need numbers with fractional
values.

The precision of a floating-point value indicates how many significant digits
the value can have. The precision of a float type is only about 6 or 7 deci-
mal digits, which isn’t sufficient for most types of calculations. For example,
if you use Java to write a payroll system, you might get away with using
float variables to store salaries for employees such as teachers or fire-
fighters, but not for professional baseball players or corporate executives.

In contrast, double variables have a precision of about 15 digits, which is
enough for most purposes.

Floating-point numbers actually use exponential notation (also called scien-
tific notation) to store their values. That means that a floating-point number
actually records two numbers: a base value (also called the mantissa) and an
exponent. The actual value of the floating-point number is calculated by mul-
tiplying the mantissa by two raised to the power indicated by the exponent.
For float types, the exponent can be from –127 to +128. For double types,
the exponent can be from –1023 to +1024. Thus, both float and double
variables are capable of representing very large and very small numbers.

You can find more information about some of the nuances of working with
floating-point values in Book II, Chapter 3.

When you use a floating-point literal, you should always include a decimal
point, like this:

double period = 99.0;

If you omit the decimal point, the Java compiler treats the literal as an inte-
ger. Then, when it sees that you’re trying to assign the literal to a double
variable, it generates a compiler error message.

You can add an F or D suffix to a floating-point literal to indicate whether the
literal itself is of type float or double. For example:

float value1 = 199.33F;
double value2 = 200495.995D;

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 93

Working with Primitive Data Types94

If you omit the suffix, D is assumed. As a result, you can usually omit the D
suffix for double literals.

Interestingly, floating-point numbers have two distinct zero values: a nega-
tive zero and a positive zero. You don’t have to worry about these much,
because Java treats them as equal. Still, it would make for a good question
on Jeopardy!. (“I’ll take weird numbers for $200, Alex.”)

The char type
The char type represents a single character from the Unicode character set.
Keeping in mind that a character is not the same as a string is important.
You find out about strings later in this chapter, in the section “Working with
Strings.” For now, just realize that a char variable can store just one charac-
ter, not a sequence of characters as a string can.

To assign a value to a char variable, you use a character literal, which is
always enclosed in apostrophes rather than quotes. For example:

char code = ‘X’;

Here, the character X is assigned to the variable named code.

The following statement won’t compile:

char code = “X”; // error -- should use apostrophes, not quotes

That’s because quotation marks are used to mark strings, not character
constants.

Getting scientific with floats and doubles
If you have a scientific mind, you may want to
use scientific notation when you write floating-
point literals. For example

double e = 5.10e+6;

This equation is equivalent to

double e = 5100000D;

The sign is optional if the exponent is positive,
so you can also write:

double e = 5.10e6;

Note that the exponent can be negative to indi-
cate values smaller than 1. For example

double impulse = 23e-7;

This equation is equivalent to

double impulse = 0.0000023;

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 94

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Working with Primitive Data Types 95

Unicode is a two-byte character code that can represent the characters used
in most languages throughout the world. Currently, about 35,000 codes in
the Unicode character set are defined. That leaves another 29,000 codes
unused. The first 256 characters in the Unicode character set are the same
as the characters of the ASCII character set, which is the most commonly
used character set for computers with Western languages.

For more information about the Unicode character set, see the official
Unicode Web site at www.unicode.org.

Character literals can also use special escape sequences to represent spe-
cial characters. Table 2-2 lists the allowable escape sequences. These
escape sequences let you create literals for characters that can’t otherwise
be typed within a character constant.

Table 2-2 Escape Sequences for Character Constants
Escape Sequence Explanation

\b Backspace

\t Horizontal tab

\n Linefeed

\f Form feed

\r Carriage return

\” Double quote

\’ Single quote

\\ Backslash

The boolean type
A boolean type can have one of two values: true or false. Booleans are
used to perform logical operations, most commonly to determine whether
some condition is true. For example:

boolean enrolled = true;
boolean credited = false;

Here, a variable named enrolled of type boolean is declared and initial-
ized to a value of true, and another boolean named credited is declared
and initialized to false.

In some languages, such as C or C++, integer values can be treated as booleans,
with 0 equal to false and any other value equal to true. Not so in Java. In
Java, you can’t convert between an integer type and boolean.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 95

Using Reference Types96

Wrapper classes
Every primitive type has a corresponding class defined in the Java API class
library. This class is sometimes called a wrapper class, because it wraps a
primitive value with the object-oriented equivalent of pretty wrapping paper
and a bow to make the primitive type look and behave like an object. Table
2-3 lists the wrapper classes for each of the eight primitive types.

As you find out later in this chapter, you can use these wrapper classes to
convert primitive values to strings and vice-versa.

Table 2-3 Wrapper Classes for the Primitive Types
Primitive Type Wrapper Class

int Integer

short Short

long Long

byte Byte

float Float

double Double

char Character

Boolean Boolean

Using Reference Types
In Book III, Chapter 1, you’re introduced to some of the basic concepts of
object-oriented programming. In particular, you see how all Java programs
are made up of one or more classes, and how to use classes to create objects.
In this section, I show how you can create variables that work with objects
created from classes.

To start, a reference type is a type that’s based on a class rather than on one
of the primitive types that are built-in to the Java language. The class can
either be a class that’s provided as part of the Java API class library or a
class that you write yourself. Either way, when you create an object from a
class, Java allocates however much memory the object requires to store the
object. Then, if you assign the object to a variable, the variable is actually
assigned a reference to the object, not the object itself. This reference is the
address of the memory location where the object is stored.

For example, suppose you’re writing a game program that involves balls, and
you create a class named Ball that defines the behavior of a ball. To declare
a variable that can refer to a Ball object, you use a statement like this:

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 96

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Using Reference Types 97

Ball b;

Here, the variable b is a variable of type Ball.

To create a new instance of an object from a class, you use the new keyword
along with the class name. This second reference to the class name is actually
a call to a special routine of the class called a constructor. The constructor is
responsible for initializing the new object. For example, here’s a statement
that declares a variable of type Ball, calls the Ball class constructor to
create a new Ball object, and assigns a reference to the Ball object to the
variable:

Ball b = new Ball();

One of the key concepts for working with reference types is to remember
that a variable of a particular type doesn’t actually contain an object of that
type. Instead, it contains a reference to an object of the correct type. An
important side effect is that two variables can refer to the same object. For
example, consider these statements:

Ball b1 = new Ball();
Ball b2 = b1;

Here, I’ve declared two Ball variables, named b1 and b2. But I’ve only cre-
ated one Ball object. In the first statement, the Ball object is created, and
b1 is assigned a reference to it. Then, in the second statement, the variable
b2 is assigned a reference to the same object that’s referenced by b1. As a
result, both b1 and b2 refer to the same Ball object.

If you use one of these variables to change some aspect of the ball, the
change is visible to the ball no matter which variable you use. For example,
suppose the Ball class has a method called setSpeed that lets you set
the speed of the ball to any int value, and a getSpeed method that
returns an integer value that reflects the ball’s current speed. Now consider
these statements:

b1.setSpeed(50);
b2.setSpeed(100);
int speed = b1.getSpeed();

When these statements complete, is the value of the speed variable 50 or
100? The correct answer is 100. Because both b1 and b2 refer to the same
Ball object, changing the speed using b2 affects b1 as well.

This is one of the most confusing aspects of programming with an object-
oriented language such as Java, so don’t feel bad if you get tripped up from
time to time.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 97

Working with Strings98

Working with Strings
A string is a sequence of text characters, such as the message “Hello,
World!” displayed by the HelloApp program illustrated in this chapter
and the previous chapter. In Java, strings are an interesting breed. Java
doesn’t define strings as a primitive type. Instead, strings are a reference type
that are defined by the Java API String class. The Java language does have
some built-in features for working with strings. In some cases, these features
make strings appear to be primitive types rather than reference types.

Java’s string-handling features are advanced enough to merit an entire chap-
ter to explain them. So, for the full scoop on strings, I refer you to Book IV,
Chapter 1. The following sections present just the bare essentials of working
with strings so you can incorporate simple strings in your programs.

Declaring and initializing strings
Strings are declared and initialized much like primitive types. In fact, the
only difference you may notice at first is that the word String is capital-
ized, unlike the keywords for the primitive types such as int and double.
That’s because String isn’t a keyword. Instead, it’s the name of the Java
API class that provides for string objects.

The following statements define and initialize a string variable:

String s;
s = “Hello, World!”;

Here, a variable named s of type String is declared and initialized with the
string literal “Hello, World!” Notice that string literals are enclosed in
quotation marks, not apostrophes. Apostrophes are used for character liter-
als, which are different than string literals.

Like any variable declaration, a string declaration can include an initializer.
Thus, you can declare and initialize a string variable in one statement, like
this:

String s = “Hello, World!”;

Class variables and instance variables are automatically initialized to empty
strings, but local variables aren’t. To initialize a local string variable to an
empty string, use a statement like this:

String s = “”;

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 98

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Working with Strings 99

Combining strings
Combine two strings by using the plus sign (+) as a concatenation operator.
(In Java-speak, combining strings is called concatenation.) For example, the
following statement combines the value of two string variables to create a
third string:

String hello = “Hello, “;
String world = “World!”;
String greeting = hello + world;

The final value of the greeting variable is “Hello, World!”

When Java concatenates strings, it doesn’t insert any blank spaces between
the strings. As a result, if you want to combine two strings and have a space
appear between them, you need to make sure that the first string ends with a
space or the second string begins with a space. In the previous example, the
first string ends with a space.

Alternatively, you can concatenate a string literal along with the string vari-
ables. For example:

String hello = “Hello”;
String world = “World!”;
String greeting = hello + “, “ + world;

Here, the comma and the space that appear between the words Hello and
World are inserted as a string literal.

Concatenation is one of the most commonly used string handling tech-
niques, so you see plenty of examples in this book. In fact, I’ve already used
concatenation once in this chapter. Earlier, I showed you a program that
included the following line:

System.out.println(“The value of i is “ + i);

Here, the println method of the System.out object prints the string
that’s created when the literal “The value of i is “ is concatenated
with the value of the i variable.

Converting primitives to strings
Because string concatenation lets you combine two or more string values,
and primitive types such as int and double are not string types, you might
be wondering how the last example in the previous section can work. In other
words, how can Java concatenate the string literal “The value of i is “
with the integer value of i in this statement:

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 99

Working with Strings100

System.out.println(“The value of i is “ + i);

The answer is that Java automatically converts primitive values to string
values whenever you use a primitive value in a concatenation.

You can explicitly convert a primitive value to a string by using the toString
method of the primitive type’s wrapper class. For example, to convert the int
variable x to a string, you use this statement:

String s = Integer.toString(x);

In the next chapter, you discover how to use a special class called the
NumberFormat class to convert primitive types to strings while applying
various types of formatting to the value, such as adding commas, dollar
signs, or percentage marks.

Converting strings to primitives
Converting a primitive value to a string value is pretty easy. Going the other
way — converting a string value to a primitive — is a little more complex,
because it doesn’t always work. For example, if a string contains the value
10, you can easily convert it to an integer. But if the string contains
thirty-two, you can’t.

To convert a string to a primitive type, you use a parse method of the
appropriate wrapper class, as listed in Table 2-4. For example, to convert a
string value to an integer, you use statements like this:

String s = “10”;
int x = Integer.parseInt(s);

Of course, you have no real reason to do this. However, as you see later in
this chapter, you can use the parse methods to convert string values entered
by the user to primitive types. That way, you can write programs that let the
user enter numeric data via the console window.

Table 2-4 Methods That Convert Strings to Numeric Primitive Types
Wrapper Parse Method Example
Class

Integer parseInt(String) int x = Integer.parseInt(“100”);

Short parseShort(String) short x = Short.parseShort(“100”);

Long parseLong(String) long x = Long.parseLong(“100”);

Byte parseByte(String) byte x = Byte.parseByte(“100”);

Float parseByte(String) float x = Float.parseFloat
(“19.95”);

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 100

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Converting and Casting Numeric Data 101

Wrapper Parse Method Example
Class

Double parseByte(String) double x = Double.parseDouble
(“19.95”);

Character (none)

Boolean parseBoolean boolean x = Boolean.parseBoolean
(String) (“true”);

Note that you don’t need a parse method to convert a String to a
Character. If you need to do that, you can find out how in Book IV,
Chapter 1.

Converting and Casting Numeric Data
From time to time, you need to convert numeric data of one type to another.
For example, you might need to convert a double value to an integer, or vice
versa. Some conversions can be done automatically. Others are done using a
technique called casting. I describe automatic type conversions and casting
in the following sections.

Automatic conversions
Java can automatically convert some primitive types to others and do so
whenever necessary. Figure 2-1 shows which conversions Java allows. Note
that the conversions shown with dotted arrows in the figure may cause some
of the value’s precision to be lost. For example, an int can be converted to a
float, but large int values won’t be converted exactly because int values
can have more digits than can be represented by the float type.

byte

short

intchar

long

float boolean

double

Figure 2-1:
Numeric
type
conversions
that are
done
automati-
cally.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 101

Understanding Scope102

Whenever you perform a mathematical operation on two values that aren’t
of the same type, Java automatically converts one of them to the type of the
other. Here are the rules Java follows when doing this conversion:

✦ If one of the values is a double, the other value is converted to a
double.

✦ If neither is a double but one is a float, the other is converted to a
float.

✦ If neither is a double nor a float but one is a long, the other is con-
verted to a long.

✦ If all else fails, both values are converted to int.

Type casting
Casting is similar to conversion, but isn’t done automatically. You use casting
to perform a conversion that is not shown in Figure 2-1. For example, if you
want to convert a double to an int, you must use casting.

When you use casting, you run the risk of losing information. For example,
a double can hold larger numbers than an int. In addition, an int can’t
hold the fractional part of a double. As a result, if you cast a double to
an int, you run the risk of losing data or accuracy. For example, 3.1415
becomes 3.

To cast a primitive value from one type to another, you use a cast operator,
which is simply the name of a primitive type in parentheses placed before
the value you want to cast. For example:

double pi = 3.1314;
int iPi;
iPi = (int) pi;

Note that the fractional part of a double is simply discarded when cast to an
integer; it isn’t rounded. For example:

double price = 9.99;
int iPrice = (int) price;

Here, iPrice is assigned the value 9. If you want to round the double value
when you convert it, use the Round method of the Math class as I show you
in the next chapter.

Understanding Scope
The scope of a variable refers to which parts of a class the variable exists in.
In the simplest terms, every variable exists only within the block in which

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 102

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Understanding Scope 103

the variable is declared as well as any blocks that are contained within that
block. That’s why class and instance variables, which are declared in the
class body, can be accessed by any methods defined by the class, but local
variables defined within a method can be accessed only by the method in
which they are defined.

In Java, a block is marked by a matching pair of braces. Java has many differ-
ent kinds of blocks: class bodies, method bodies, and block statements that
belong to statements such as if or for statements. But in each case, a
block marks the scope boundaries for the variables declared within it.

The program in Listing 2-1 can help clarify the scope of class and local
variables.

LISTING 2-1: A PROGRAM THAT DEMONSTRATES SCOPE FOR CLASS AND

LOCAL VARIABLES

public class ScopeApp
{ ➞ 2

static int x;

public static void main(String[] args)
{

x = 5;
System.out.println(“main: x = “ + x);
myMethod();

}

public static void myMethod()
{

int y;
y = 10; ➞ 16
if (y == x + 5) ➞ 17
{

int z;
z = 15; ➞ 20
System.out.println(“myMethod: z = “ + z);

} ➞ 22
System.out.println(“myMethod: x = “ + x);
System.out.println(“myMethod: y = “ + y);

} ➞ 25

} ➞ 27

The following paragraphs explain the scope of each of the variables used in
this class:

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 103

Shadowing Variables104

✦ The variable x is a class variable. Its scope begins in line 2 and ends in
line 27. As a result, both the main method and the myMethod method
can access it.

✦ The variable y is a local variable that’s initialized in line 16. As a result,
its scope begins in line 16 and ends in line 25, which marks the end of
the body of the myMethod method.

✦ The variable z is a local variable that’s declared and initialized in the
statement block that belongs to the if statement in line 17. Its scope
begins when the variable is initialized in line 20 and ends when the state-
ment block ends in line 22.

Strictly speaking, the scope of a local variable begins when the variable is
initialized and ends when the block that contains the variable’s declaration
ends. In contrast, the scope for a class or instance variable is the entire class
in which the variable is declared. That means that you can use a class or
instance variable in a method that physically appears before the variable is
declared. But you can’t use a local variable before it’s declared.

Shadowing Variables
A shadowed variable is a variable that would otherwise be accessible, but is
temporarily made unavailable because a variable with the same name has
been declared in a more immediate scope. That’s a mouthful, but the exam-
ple in Listing 2-2 makes the concept clear. Here, a class variable named x is
declared. Then, in the main method, a local variable with the same name is
declared.

LISTING 2-2: A CLASS THAT DEMONSTRATES SHADOWING

public class ShadowApp
{ ➞ 2

static int x; ➞ 4

public static void main(String[] args)
{

x = 5; ➞ 8
System.out.println(“x = “ + x); ➞ 9
int x; ➞ 10
x = 10; ➞ 11
System.out.println(“x = “ + x); ➞ 12
System.out.println(“ShadowApp.x = “ +

ShadowApp.x); ➞ 13
} ➞ 14

} ➞ 16

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 104

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Printing Data with System.out 105

The following paragraphs explain the scoping issues in this program:

✦ The class variable x is declared in line 4. Its scope is the entire class
body, from line 2 to line 16.

✦ The class variable x is assigned a value of 5 in line 8. Then, this value is
printed to the console in line 9.

✦ In line 10, a local variable named x is declared. The local variable shadows
the class variable x, so any reference to x through the end of this method
in line 14 refers to the local variable rather than the class variable.

✦ The local variable x is initialized in line 11. At that point, the local vari-
able x comes into scope and remains in scope until the end of the
method in line 14.

✦ The System.out.println statement in line 12 prints the value of the
local variable x. Note that this statement is identical to the statement in
line 9, which printed the class variable x because the class variable had
not yet been shadowed.

✦ While a class variable is shadowed, you can access it by specifying the
class name as shown in line 13. Here, ShadowApp.x refers to the class
variable.

✦ When the main method ends in line 14, the class variable x is no longer
shadowed.

The scope of a local variable that shadows a class variable doesn’t necessarily
begin at the same point that the local variable’s scope begins. The shadow-
ing begins when the local variable is declared, but the local variable’s scope
doesn’t begin until the variable is initialized. If you attempt to access the
variable between the declaration and the initialization, the Java compiler
displays an error message.

Because shadowing is a common source of errors, I suggest you avoid it as
much as possible.

Printing Data with System.out
You’ve already seen several programs that use System.out.println to
display output on the console. In the following sections, I officially show you
how this method works, along with a related method called just print.

Standard input and output streams
Java applications are designed to work in a terminal I/O environment. Every
Java application has at its disposal three I/O streams that are designed for
terminal-based input and output, which simply sends or receives data one
character at a time. The three streams are

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 105

Printing Data with System.out106

✦ Standard input: A stream designed to receive input data. This stream is
usually connected to the keyboard at the computer where the program
is run. That way, the user can type characters directly into the standard
input stream. In the section “Getting Input with the Scanner Class” that
appears later in this chapter, you connect this input stream to a class
called Scanner that makes it easy to read primitive data types from the
standard input stream.

✦ Standard output: A stream designed to display text output on-screen.
When you run a Java program under Windows, a special console window
is opened, and the standard output stream is connected to it. Then, any
text you send to standard output is displayed in that window.

✦ Standard error: Another stream designed for output. This stream is also
connected to the console window. As a result, text written to the stan-
dard output stream is often intermixed with text written to the error
stream.

Windows and other operating systems allow you to redirect standard output
to some other destination — typically a file. When you do that, only the
standard output data is redirected. Text written to standard error is still
displayed in the console window.

To redirect standard output, you use a greater-than sign on the command
that runs the Java class, followed by the name of the file you want to save
the standard output text to. For example:

C:\Java>java TestApp >output.txt

Here, the standard output created by the class TestApp is saved in a file
named output.txt. However, any text sent to the standard error stream
still appears in the console window. As a result, the standard error stream is
useful for programs that use output redirection to display status messages,
error messages, or other information.

All three standard streams are available to every Java program via the fields
of the System class, as described in Table 2-5.

Table 2-5 Static Fields of the System Object
Field Description

System.in Standard input

System.out Standard output

System.err Standard error

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 106

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Getting Input with the Scanner Class 107

Using System.out and System.err
Both System.out and System.err represent instances of a class called
PrintWriter, which defines the print and println methods used to
write data to the console. You can use both methods with either a String
argument or an argument of any primitive data type.

The only difference between the print and the println methods is that the
println method adds a line-feed character to the end of the output, so the
output from the next call to print or println begins on a new line.

Because it doesn’t start a new line, the print method is useful when you
want to print two or more items on the same line. For example:

int i = 64;
int j = 23;
System.out.print(i);
System.out.print(“ and “);
System.out.println(j);

The console output produced by these lines is:

64 and 23

Note that you could do the same thing with a single call to println by
using string concatenation, like this:

int i = 64;
int j = 23;
System.out.println(i + “ and “ + j);

Getting Input with the Scanner Class
Until recently, getting text input from the user in a console-based Java pro-
gram wasn’t easy. But with Java 1.5, a new class — called Scanner — has
been introduced to simplify the task of getting input from the user. In the fol-
lowing sections, you use the Scanner class to get simple input values from
the user. The techniques that I present here are used in many of the programs
shown in the rest of this book.

If you’re using an older version of Java, you should still read this section,
because many of the programs in this book use the Scanner class.
However, you should also read the next section, “Getting Input with the
JOptionPane Class,” because that section describes a way of getting user
input that works with earlier versions of Java.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 107

Getting Input with the Scanner Class108

Throughout the following sections, I refer to the program shown in Listing 2-3.
This simple program uses the Scanner class to read an integer value from
the user, and then displays the value back to the console to verify that the pro-
gram received the value entered by the user. Here’s a sample of the console
window for this program:

Enter an integer: 5
You entered 5.

The program begins by displaying the message Enter an integer: on
the first line. Then, it waits for you to enter a number. When you press the
Enter key, it displays the confirmation message (You entered 5.) on the
second line.

LISTING 2-3: A PROGRAM THAT USES THE SCANNER CLASS

import java.util.Scanner; ➞ 1

public class ScannerApp
{

static Scanner sc = new Scanner(System.in); ➞ 6

public static void main(String[] args)
{

System.out.print(“Enter an integer: “); ➞ 10
int x = sc.nextInt(); ➞ 11
System.out.println(“You entered “ + x + “.”); ➞ 12

}

}

Importing the Scanner class
Before you can use the Scanner class in a program, you must import it. To
do that, you code an import statement at the beginning of the program,
before the class declaration as shown in line 1 of Listing 2-3:

import java.util.Scanner;

Note that java and util are not capitalized, but Scanner is.

If you’re using other classes in the java.util package, you can import the
entire package by coding the import statement like this:

import java.util.*;

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 108

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Getting Input with the Scanner Class 109

Declaring and creating a Scanner object
Before you can use the Scanner class to read input from the console, you
must declare a Scanner variable and create an instance of the Scanner
class. I recommend you create the Scanner variable as a class variable, and
create the Scanner object in the class variable initializer, as shown in line 6
of Listing 2-3:

static Scanner sc = new Scanner(System.in);

That way, you can use the sc variable in any method in the class.

To create a Scanner object, you use the new keyword followed by a call to
the Scanner class constructor. Note that the Scanner class requires a
parameter that indicates the input stream that the input comes from. You
can use System.in here to specify standard keyboard console input.

Getting input
To read an input value from the user, you can use one of the methods of the
Scanner class that are listed in Table 2-6. As you can see, the primitive data
type has a separate method.

Table 2-6 Scanner Class Methods that Get Input Values
Method Explanation

boolean nextBoolean() Reads a boolean value from the user.

byte nextByte() Reads a byte value from the user.

double nextDouble() Reads a double value from the user.

float nextFloat() Reads a float value from the user.

int nextInt() Reads an int value from the user.

String nextLine() Reads a String value from the user.

long nextLong() Reads a long value from the user.

short nextShort() Reads a short value from the user.

Notice in the first column of the table that each method listing begins
with the type of the value that’s returned by the method. For example, the
nextInt method returns an int value. Also, notice that each of the meth-
ods ends with an empty set of parentheses. That means that none of these
methods require parameters. If a method requires parameters, the param-
eters are listed within these parentheses.

Because these methods read a value from the user and return the value,
you most often use them in statements that assign the value to a variable.
For example, line 11 in Listing 2-3 reads an int and assigns it to a variable
named x.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 109

Getting Input with the Scanner Class110

When the nextInt method is executed, the program waits for the user to
enter a value in the console window. To let the user know what kind of input
the program expects, you should usually call the System.out.print
method before you call a Scanner method to get input. For example, line 10
in Listing 2-3 calls System.out.print to display the message Enter an
integer: on the console. That way, the user knows that the program is
waiting for input.

If the user enters a value that can’t be converted to the correct type, the pro-
gram crashes, which means that it abruptly terminates. As the program
crashes, it displays a cryptic error message that indicates what caused the
failure. For example, if you enter three instead of an actual number, the
console window looks something like this:

Enter an integer: three
Exception in thread “main” java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:819)
at java.util.Scanner.next(Scanner.java:1431)
at java.util.Scanner.nextInt(Scanner.java:2040)
at java.util.Scanner.nextInt(Scanner.java:2000)
at ScannerApp.main(ScannerApp.java:11)

This message indicates that an exception called InputMismatch
Exception has occurred, which means that the program was expecting to
see an integer, but got something else instead. In Book II, Chapter 8, you find
out how to provide for exceptions like these so that the program can display
a friendlier message and give the user another shot at entering a correct
value. Until then, you have to put up with the fact that if the user enters
incorrect data, your programs crash ungracefully.

You can prevent the nextInt and similar methods from crashing with
incorrect input data by using one of the methods listed in Table 2-7 to first
test the next input to make sure it’s valid. I haven’t covered the Java state-
ments you need to perform this test yet. Don’t worry; in Book II, Chapter 8,
I show you the solution.

Table 2-7 Scanner Class Methods That Check for Valid Input Values
Method Explanation

boolean hasNextBoolean() Returns true if the next value entered by the user
is a valid boolean value.

boolean hasNextByte() Returns true if the next value entered by the user
is a valid byte value.

boolean hasNextDouble() Returns true if the next value entered by the user
is a valid double value.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 110

Book II
Chapter 2

W
orking w

ith
Variables and Data

Types
Getting Input with the JOptionPane Class 111

Method Explanation

boolean hasNextFloat() Returns true if the next value entered by the user
is a valid float value.

boolean hasNextInt() Returns true if the next value entered by the user
is a valid int value.

boolean hasNextLong() Returns true if the next value entered by the user
is a valid long value.

boolean hasNextShort() Returns true if the next value entered by the user
is a valid short value.

Getting Input with the JOptionPane Class
If you’re using a version of Java prior to Java 1.5, you don’t have the luxury of
using the Scanner class to read input directly from the user via a console
window. However, you can use the JOptionPane class to display simple
dialog boxes such as the one shown in Figure 2-2 to get text input from the user.
Then, you can use the parse methods of the primitive type wrapper classes
to convert the text entered by the user to the appropriate primitive type.

Although the JOptionPane class has many methods, the only one you
need to get simple text input is the showInputDialog method. This
method uses a single parameter that specifies the prompting message that’s
displayed in the dialog box. It returns a string value that you can then parse
to the proper type.

The JOptionPane class is a part of the javax.swing package, so you
need to add an import javax.swing.JOptionPane statement to the
beginning of any program that uses this class.

Listing 2-4 shows a simple program that uses the JOPtionPane class to get
an integer value and display it on the console.

Figure 2-2:
A dialog box
displayed
by the
JOptionPane
class.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 111

Getting Input with the JOptionPane Class112

LISTING 2-4: A PROGRAM THAT USES THE JOPTIONPANE CLASS TO GET USER INPUT

import javax.swing.JOptionPane; ➞ 1

public class DialogApp
{

public static void main(String[] args)
{

String s;
s = JOptionPane.showInputDialog(“Enter an

integer:”); ➞ 8
int x = Integer.parseInt(s); ➞ 9
System.out.println(“You entered “ + x + “.”); ➞ 10

}
}

The following paragraphs describe the important lines in this program:

➞ 1 This line imports the JOptionPane class.

➞ 8 This statement displays an input dialog box with the prompt Enter
an integer: and assigns the string entered by the user to the vari-
able named s.

➞ 9 This statement uses the parseInt method of the Integer class to
convert the string entered by the user to an integer.

➞10 This statement displays the integer value to confirm that the data
entered by the user was converted properly to an integer.

This program terminates abruptly if the user enters anything other than an
integer in the input dialog box. For example, if the user enters ten, the pro-
gram terminates, and a cryptic message indicating that a NumberFormat
Exception has occurred is displayed. You can provide for this situation in
Book II, Chapter 8. Until then, just be careful to enter correct numbers when
you use the JOptionPane class.

11_58961X bk02ch02.qxd 3/29/05 3:32 PM Page 112

Chapter 3: Working with Numbers
and Expressions

In This Chapter
� Dealing with operators, such as +, -, *, and /

� Creating finely crafted expressions

� Incrementing and decrementing

� Accepting an assignment

� Using the Math class

� Formatting your numbers

� Strange things that can happen with numbers

In Book II, Chapter 2, you discover the various primitive numeric types
that are supported by Java. In this chapter, you build on that knowledge

by doing basic operations with numbers. Much of this chapter focuses on
the complex topic of expressions, which combine numbers with operators
to perform calculations. But this chapter also covers techniques for format-
ting numbers when you display them and performing advanced calculations
using the Math class. In addition, you find out why Java’s math operations
sometimes produce results you might not expect.

Working with Arithmetic Operators
An operator is a special symbol or keyword that’s used to designate a mathe-
matical operation or some other type of operation that can be performed
on one or more values, called operands. In all, Java has about 40 different
operators. This chapter focuses on the operators that do arithmetic. These
arithmetic operators perform basic arithmetic operations, such as addition,
subtraction, multiplication, and division. In all, there are 7 of them. Table 3-1
summarizes them.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 113

Working with Arithmetic Operators114

Table 3-1 Java’s Arithmetic Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

++ Increment

-- Decrement

The following section of code can help clarify how these operators work for
int types:

int a = 21, b = 6;
int c = a + b; // c is 27
int d = a – b; // d is 15
int e = a * b; // e is 126
int f = a / b; // f is 3 (21 / 6 is 3 remainder 3)
int g = a % b; // g is 3 (20 / 6 is 3 remainder 3)
a++; // a is now 22
b--; // b is now 5

Notice that for division, the result is truncated. Thus, 21 / 6 returns 3, not
3.5. For more information about integer division, see the section “Dividing
Integers” later in this chapter.

Here’s how the operators work for double values:

double x = 5.5, y = 2.0;
double m = x + y; // m is 7.5
double n = x - y; // n is 3.5
double o = x * y; // o is 11.0
double p = x / y; // p is 2.75
double q = x % y; // q is 1.5
x++; // x is now 6.5
y--; // y is now 1.0

When you divide two int values, the result is an integer value, even if you
assign it to a double variable. For example:

int a = 21, b = 6;
double answer = a / b; // answer = 3.0

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 114

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Working with Arithmetic Operators 115

If that’s not what you want, you can cast one of the operands to a double
before performing the division, like this:

int a = 21, b = 6;
double answer = (double)a / b; // answer = 3.5

The moral of the story is that if you want to divide int values and get an accu-
rate double result, you must cast at least one of the int values to a double.

Here are a few additional things to think about tonight as you lay awake pon-
dering the wonder of Java’s arithmetic operators:

✦ In algebra, you can write a number right next to a variable to imply
multiplication. For example, 4x means “four times x.” Not so in Java.
The following statement doesn’t compile:

int x;
y = 4x; // error, won’t compile

✦ The remainder operator (%) is also called a modulus operator. It
returns the remainder when the first operand is divided by the second
operand. The remainder operator is often used to determine if one
number is evenly divisible by another, in which case the result is 0. For
more information, see the next section, “Dividing Integers.”

Categorizing operators by the number of operands
A common way to categorize Java’s operators
is by the number of operands the operator
works on. Categorizing the operators in this
way, there are three types:

� Unary operators: Operators that work on
just one operand. Examples of unary oper-
ators are negation (–x, which returns the
negative of x) and increment (x++, which
adds 1 to x).

A unary operator can be a prefix operator
or a postfix operator. A prefix operator is
written before the operand, like this:

operator operand

A postfix operator is written after the
operand:

operand operator

� Binary operators: Operators that work on
two operands. Examples of binary opera-
tors are addition (x + y), multiplication
(invoiceTotal * taxRate), and
comparison operators (x < leftEdge).
In Java, all binary operators are infix oper-
ators, which means they appear between
the operands, like this:

operand1 operator operand2

� Ternary operators: Operators that work on
three operands. Java has only one ternary
operator, called the conditional operator
(?:). The conditional operator is also infix:

operand1 ? operand2 : operand3

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 115

Dividing Integers116

✦ All operators, including the arithmetic variety, are treated as separators
in Java. As a result, any use of white space in an expression is optional.
Thus, the following two statements are equivalent:

a = ((x + 4) * 7) / (y * x);
a=((x+4)*7)/(y*x);

Just remember that a little bit of white space never hurt anyone, and
sometimes it helps make Java a little more readable.

Dividing Integers
When you divide one integer into another, the result is always another inte-
ger. Any remainder is simply discarded, and the answer is not rounded up.
For example, 5 / 4 gives the result 1, and 3 / 4 gives the result 0. If you
want to know that 5 / 4 is actually 1.25 or that 3 / 4 is actually 0.75,
you need to use floats or doubles instead of integers.

If you need to know what the remainder is when you divide two integers,
use the remainder operator (%). For example, suppose you have a certain
number of marbles to give away and a certain number of children to give
them to. The program in Listing 3-1 lets you enter the number of marbles
and the number of children. Then, it calculates the number of marbles to
give to each child and the number of marbles you have left over.

Here’s a sample of the console output for this program, where the number of
marbles entered is 93 and the number of children is 5:

Welcome to the marble divvy upper.
Number of marbles: 93
Number of children: 5
Give each child 18 marbles.
You will have 3 marbles left over.

LISTING 3-1: A PROGRAM THAT DIVIES UP MARBLES

import java.util.Scanner; ➞ 1

public class MarblesApp
{

static Scanner sc = new Scanner(System.in); ➞ 5

public static void main(String[] args)
{

// declarations ➞ 9
int numberOfMarbles;
int numberOfChildren;
int marblesPerChild;
int marblesLeftOver;

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 116

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Dividing Integers 117

// get the input data ➞ 15
System.out.println(“Welcome to the marble divvy upper.”);
System.out.print(“Number of marbles: “);
numberOfMarbles = sc.nextInt();
System.out.print(“Number of children: “);
numberOfChildren = sc.nextInt();

// calculate the results
marblesPerChild = numberOfMarbles / numberOfChildren; ➞ 23
marblesLeftOver = numberOfMarbles % numberOfChildren; ➞ 24

// print the results ➞ 26
System.out.println(“Give each child “ +

marblesPerChild + “ marbles.”);
System.out.println(“You will have “ +

marblesLeftOver + “ marbles left over.”);
}

}

The following paragraphs describe the key lines in this program:

➞ 1 Imports the java.util.Scanner class so the program can use it
to get input from the user.

➞ 5 Creates the Scanner object and assigns it to a class variable so it
can be used in any method in the class.

➞ 9 The next four lines declare the local variables used by the program.

➞15 The next five lines get the input from the user.

➞23 Calculates the number of marbles to give to each child by using inte-
ger division, which discards the remainder.

➞24 Calculates the number of marbles left over.

➞26 The next two statements print the results.

It’s probably obvious if you think about it, but you should realize that if you
use integer division to divide a by b, then the result times b plus the remain-
der equals a. In other words:

int a = 29; // any value will do
int b = 3; // any value will do
int c = a / b;
int d = a % b;
int e = (c * b) + d; // e will always equal a

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 117

Combining Operators118

Combining Operators
You can combine operators to form complicated expressions. When you do,
the order in which the operations are carried out is determined by the prece-
dence of each operator in the expression. The order of precedence for the
arithmetic operators is:

✦ Increment (++) and decrement (--) operators are evaluated first.

✦ Next, sign operators (+ or -) are applied.

✦ Then, multiplication (*), division (/), and remainder (%) operators are
evaluated.

✦ Finally, addition (+) and subtraction (-) operators are applied.

For example, in the expression a + b * c, multiplication has a higher
precedence than addition. Thus, b is multiplied by c first. Then, the result of
that multiplication is added to a.

If an expression includes two or more operators at the same order of prece-
dence, the operators are evaluated left to right. Thus, in the expression a *
b / c, a is first multiplied by b, then the result is divided by c.

If you want, you can use parentheses to change the order in which opera-
tions are performed. Operations within parentheses are always performed
before operations that aren’t in parentheses. Thus, in the expression (a +
b) * c, a is added to b first. Then, the result is multiplied by c.

If an expression has two or more sets of parentheses, the operations in the
innermost set are performed first. For example, in the expression (a * (b
+ c)) / d, b is first added to c. Then, the result is multiplied by a. And
finally, that result is divided by d.

Apart from the increment and decrement operators, these precedence rules
and the use of parentheses are the same as they are for basic algebra. So if
you were paying attention in the eighth grade, precedence should make
sense.

With double or float values, changing the left to right order for operators
with the same precedence doesn’t affect the result. However, with integer
types, it can make a huge difference if division is involved. For example, con-
sider these statements:

int a = 5, b = 6, c = 7;
int d1 = a * b / c; // d1 is 4
int d2 = a * (b / c); // d2 is 0

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 118

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using the Unary Plus and Minus Operators 119

This difference occurs because integer division always returns an integer
result, which is a truncated version of the actual result. Thus, in the first
expression, a is first multiplied by b, giving a result of 30. Then, this result is
divided by c. Truncating the answer gives a result of 4. But in the second
expression, b is first divided by c, which gives a truncated result of 0. Then,
this result is multiplied by a, giving a final answer of 0.

Using the Unary Plus and Minus Operators
The plus and minus unary operators let you change the sign of an operand.
Note that the actual operator used for these operations is the same as the
binary addition and subtraction operators. The compiler figures out whether
you mean to use the binary or the unary version of these operators by exam-
ining the expression.

The unary minus operator doesn’t necessarily make an operand have a nega-
tive value. Instead, it changes whatever sign the operand has to start with.
Thus, if the operand starts with a positive value, the unary minus operator
changes it to negative. But if the operand starts with a negative value, the
unary minus operator makes it positive. The following examples illustrate
this point:

int a = 5; // a is 5
int b = -a; // b is -5
int c = -b; // c is +5

Interestingly enough, the unary plus operator doesn’t actually do anything.
For example:

int a = -5; // a is -5
int b = +a; // b is -5
a = 5; // a is now 5
int c = +a; // c is 5

Notice that if a starts out positive, +a is also positive. But if a starts out neg-
ative, +a is still negative. Thus, the unary + operator has no effect. I guess
Java provides the unary plus operator out of a need for balance.

You can also use these operators with more complex expressions, like this:

int a = 3, b = 4, c = 5;
int d = a * -(b + c); // d is -27

Here, b is added to c, giving a result of 9. Then, the unary minus is applied,
giving a result of –9. Finally, –9 is multiplied by a giving a result of –27.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 119

Using Increment and Decrement Operators120

Using Increment and Decrement Operators
One of the most common operations in computer programming is adding or
subtracting 1 from a variable. Adding 1 to a variable is called incrementing
the variable. Subtracting 1 is called decrementing. The traditional way to
increment a variable is like this:

a = a + 1;

Here, the expression a + 1 is calculated, and the result is assigned to the
variable a.

Java provides an easier way to do this type of calculation: the increment
(++) and decrement (--) operators. These are unary operators that apply to
a single variable. Thus, to increment the variable a, you can code just this:

a++;

Note that an expression that uses an increment or decrement operator is a
statement by itself. That’s because the increment or decrement operator is
also a type of assignment operator, as it changes the value of the variable it
applies to.

You can only use the increment and decrement operators on variables, not
on numeric literals or other expressions. For example, Java doesn’t allow the
following expressions:

a = b * 5++; // can’t increment the number 5
a = (b * 5)++; // can’t increment the expression (b *

5)

Note that you can use an increment or decrement operator in an assignment
statement. For example:

int a = 5;
int b = a--; // both a and b are set to 4

When the second statement is executed, the expression a-- is evaluated
first, so a is set to 4. Then, the new value of a is assigned to b. Thus, both a
and b are set to 4.

The increment and decrement operators are unusual because they are unary
operators that can be placed either before (prefix) or after (postfix) the vari-
able they apply to. Whether you place the operator before or after the variable
can have a major affect on how an expression is evaluated. If you place an
increment or decrement operator before its variable, the operator is applied
before the rest of the expression is evaluated. As a result, the incremented
value of the variable is used in the expression. In contrast, if you place the

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 120

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using Increment and Decrement Operators 121

operator after the variable, the operator is applied after the expression is eval-
uated. Thus, the original value of the variable is used in the expression.

Confused yet? A simple example can clear it up. First, consider these state-
ments with an expression that uses a postfix increment:

int a = 5;
int b = 3;
int c = a * b++; // c is set to 15

When the expression in the third statement is evaluated, the original value of
b — 3 — is used in the multiplication. Thus, c is set to 15. Then, b is incre-
mented to 4.

Now consider this version, with a prefix increment:

int a = 5;
int b = 3;
int c = a * ++b; // c is set to 20

This time, b is incremented before the multiplication is performed, so c is
set to 20. Either way, b ends up set to 4.

Similarly, consider this example:

int a = 5;
int b = --a; // b is set to 5, a is set to 4.

This example is similar to an earlier example, but this time the prefix incre-
ment operator is used. When the second statement is executed, the value of
a is assigned to b. Then, a is decremented. As a result, b is set to 5, and a is
set to 4.

Because the increment and decrement operators can be confusing when used
with other operators in an expression, I suggest you use them alone. Whenever
you’re tempted to incorporate an increment or decrement operator into a
larger expression, pull the increment or decrement out of the expression and
make it a separate statement either before or after the expression. In other
words, code this:

b++;
c = a * b;

instead of this:

c = a * ++b;

In the first version, it’s crystal clear that b is incremented before the multi-
plication is done.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 121

Using the Assignment Operator122

Using the Assignment Operator
The standard assignment operator (=) is used to assign the result of an
expression to a variable. In its simplest form, you code it like this:

variable = expression;

For example:

int a = (b * c) / 4;

You’ve already seen plenty of examples of assignment statements like this
one, so I won’t belabor this point any further. However, I do want to point
out — just for the record — that you cannot code an arithmetic expression
on the left side of an equals sign. Thus, the following statement doesn’t
compile:

int a;
a + 3 = (b * c);

In the rest of this section, I point out some unusual ways in which you can
use the assignment operator. I don’t actually recommend that you use any of
these techniques, as they are rarely necessary and almost always confusing.
However, knowing about them can shed light on how Java expressions work
and can sometimes help you find sneaky problems in your code.

The key to understanding the rest of this section is realizing that in Java,
assignments are expressions, not statements. In other words, a = 5 is an
assignment expression, not an assignment statement. It becomes an assign-
ment statement only when you add a semicolon to the end.

The result of an assignment expression is the value that’s assigned to the
variable. For example, the result of the expression a = 5 is 5. Likewise, the
result of the expression a = (b + c) * d is the result of the expression
(b + c) * d.

The implication is that you can use assignment expressions in the middle of
other expressions. For example, the following is legal:

int a;
int b;
a = (b = 3) * 2; // a is 6, b is 3

As in any expression, the part of the expression inside the parentheses is
evaluated first. Thus, b is assigned the value 3. Then, the multiplication
is performed, and the result (6) is assigned to the variable a.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 122

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using Compound Assignment Operators 123

Now consider a more complicated case:

int a;
int b = 2;
a = (b = 3) * b; // a is 9, b is 3

What’s happening here is that the expression in the parentheses is evaluated
first, which means that b is set to 3 before the multiplication is performed.

The parentheses are important in the previous example because without
parentheses, the assignment operator is the last operator to be evaluated in
Java’s order of precedence. Thus, consider one more example:

int a;
int b = 2;
a = b = 3 * b; // a is 6, b is 6

This time, the multiplication 3 * b is performed first, giving a result of 6.
Then, this result is assigned to b. Finally, the result of that assignment
expression (6) is assigned to a.

Incidentally, the following expression is also legal:

a = b = c = 3;

This expression assigns the value 3 to all three variables. Although this code
seems pretty harmless, you’re better off just writing three assignment state-
ments. (You might guess that clumping the assignments together is more
efficient than writing them on three lines, but you’d be wrong. These three
assignments require the same number of bytecode instructions either way.)

Using Compound Assignment Operators
A compound assignment operator is an operator that performs a calculation
and an assignment at the same time. All of Java’s binary arithmetic operators
(that is, the ones that work on two operands) have equivalent compound
assignment operators. Table 3-2 lists them.

Table 3-2 Compound Arithmetic Operators
Operator Description

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment

/= Division and assignment

%= Remainder and assignment

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 123

Using the Math Class124

For example, this statement

a += 10;

is equivalent to

a = a + 10;

And this statement

z *=2;

is equivalent to

z = z * 2;

To avoid confusion, compound assignment expressions are best used by
themselves, not in combination with other expressions. For example, con-
sider these statements:

int a = 2;
int b = 3;
a *= b + 1;

Is a set to 7 or 8?

In other words, is the third statement equivalent to

a = a * b + 1; // This would give 7 as the result

or

a = a * (b + 1); // This would give 8 as the result

At first glance, you might expect the answer to be 7, because multiplication
has a higher precedence than addition. But assignment has the lowest
precedence of all, and the multiplication here is performed as part of the
assignment. As a result, the addition is performed before the multiplication.
Thus, the answer is 8. (Gotcha!)

Using the Math Class
Java’s built-in operators are useful, but they don’t come anywhere near pro-
viding all the mathematical needs of most Java programmers. That’s where
the Math class comes in. It includes a bevy of built-in methods that perform
a wide variety of mathematical calculations, from basic functions such as
calculating an absolute value or a square root to trigonometry functions

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 124

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using the Math Class 125

such as sin and cos, to practical functions such as rounding numbers or gen-
erating random numbers.

I was going to make a joke here about having to take a Math class to fully
appreciate the Math class, or how you’d better stay away from the Math
class if you didn’t do so well in Math class, or how if you’re on the football
team, maybe you can get someone to do the Math class for you. But it
seemed too easy, so I decided not to.

All the methods of the Math class are declared as static methods, which
means you can use them by specifying the class name Math followed by a
period and a method name. For example, here’s a statement that calculates
the square root of a number stored in a variable named y:

double x = Math.sqrt(y);

The Math class is contained in the java.lang package, which is automati-
cally available to all Java programs. As a result, you don’t have to provide an
import statement to use the Math class.

The following sections describe the most useful methods of the Math class.

Constants of the Math class
The Math class defines two constants that are useful for many mathematical
calculations. Table 3-3 lists these constants.

Table 3-3 Constants of the Math Class
Constant What It Is Value

PI The constant Pi (π), the 3.141592653589793
ratio of a circle’s radius and
diameter

E The base of natural logarithms 2.718281828459045

Note that these constants are only approximate values, because both π and e
are irrational numbers.

The program shown in Listing 3-2 illustrates a typical use of the constant PI.
Here, the user is asked to enter the radius of a circle. The program then cal-
culates the area of the circle in line 13. (The parentheses aren’t really
required in the expression in this statement, but they help clarify that the
expression is the Java equivalent to the formula for the area of a circle, πr2.)

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 125

Using the Math Class126

Here’s the console output for a typical execution of this program, in which
the user entered 5 as the radius of the circle:

Welcome to the circle area calculator.
Enter the radius of your circle: 5
The area is 78.53981633974483

LISTING 3-2:THE CIRCLE AREA CALCULATOR

import java.util.Scanner;

public class CircleAreaApp
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(
“Welcome to the circle area calculator.”);

System.out.print(“Enter the radius of your circle: “);
double r = sc.nextDouble();
double area = Math.PI * (r * r); ➞ 13
System.out.println(“The area is “ + area);

}
}

Mathematical functions
Table 3-4 lists the basic mathematical functions that are provided by the
Math class. As you can see, you can use these functions to calculate such
things as the absolute value of a number, the minimum and maximum of two
values, square roots, powers, and logarithms.

Table 3-4 Mathematical Functions Provided by the Math Class
Method Explanation

abs(argument) Returns the absolute value of the argument. The argument can
be an int, long, float, or double. The return value is the
same type as the argument.

cbrt(argument) Returns the cube root of the argument. The argument and
return value are doubles.

exp(argument) Returns e raised to the power of the argument. The argument
and the return value are doubles.

hypot(arg1, arg2) Returns the hypotenuse of a right triangle calculated according
to the Pythagorean theorem — √ x2 + y2 The argument and the
return values are doubles.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 126

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using the Math Class 127

Method Explanation

log(argument) Returns the natural logarithm (base e) of the argument. The
argument and the return value are doubles.

log10(argument) Returns the base 10 logarithm of the argument. The argument
and the return value are doubles.

max(arg1, arg2) Returns the larger of the two arguments. The arguments can be
int, long, float, or double, but both must be of the
same type. The return type is the same type as the arguments.

min(arg1, arg2) Returns the smaller of the two arguments. The arguments can
be int, long, float, or double, but both must be of the
same type. The return type is the same type as the arguments.

pow(arg1, arg2) Returns the value of the first argument raised to the power of
the second argument. Both arguments and the return value are
doubles.

random() Returns a random number that’s greater than or equal to 0.0 but
less than 1.0. This method doesn’t accept an argument, but the
return value is a double.

signum(argument) Returns a number that represents the sign of the argument: –1.0
if the argument is negative, 0.0 if the argument is zero, and 1.0 if
the argument is positive. The argument can be a double or a
float. The return value is the same type as the argument.

sqrt(argument) Returns the square root of the argument. The argument and
return value are doubles.

The program shown in Listing 3-3 demonstrates each of these methods
except random. When run, it produces output similar to this:

abs(b) = 50
cbrt(x) = 2.924017738212866
exp(y) = 54.598150033144236
hypot(y,z)= 5.0
log(y) = 1.0986122886681096
log10(y) = 0.47712125471966244
max(a, b) = 100
min(a, b) = -50
pow(a, c) = 1000000.0
random() = 0.8536014557793756
signum(b) = -1.0
sqrt(x) = 1.7320508075688772

You can use this output to get an idea of the values returned by these Math
class methods. For example, you can see that the expression Math.sqrt(y)
returns a value of 5.0 when y is 25.0.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 127

Using the Math Class128

The following paragraphs point out a few interesting tidbits concerning
these methods:

✦ You can use the abs and signnum methods to force the sign of one
variable to match the sign of another, like this:

int a = 27;
int b = -32;
a = Math.abs(a) * Math.signum(b); // a is

now -27;

✦ You can use the pow method to square a number, like this:

double x = 4.0;
double y = Math.pow(x, 2); // a is now 16;

However, simply multiplying the number by itself is often just as easy
and just as readable:

double x = 4.0;
double y = x * x; // a is now 16;

✦ In the classic movie The Wizard of Oz, when the Wizard finally grants
the Scarecrow his brains, the Scarecrow suddenly becomes intelligent
and quotes the Pythagorean theorem, which is used by the hypot
method of the Math class. Unfortunately, he quotes it wrong. What the
Scarecrow actually says in the movie is: “The sum of the square roots of
any two sides of an isosceles triangle is equal to the square root of the
remaining side.” Silly scarecrow. What he should have said, of course, is
“The square of the hypotenuse of any right triangle is equal to the sum
of the squares of the other two sides.”

✦ Every time you run the program in Listing 3-3, you get a different result for
the random method call. The random method is interesting enough that I
describe it separately, in the next section “Creating random numbers.”

LISTING 3-3: A PROGRAM THAT USES THE MATHEMATICAL METHODS

OF THE MATH CLASS

public class MathFunctionsApp
{

public static void main(String[] args)
{

int a = 100;
int b = -50;
int c = 3;
double x = 25.0;
double y = 3.0;
double z = 4.0;

System.out.println(“abs(b) = “ + Math.abs(b));
System.out.println(“cbrt(x) = “ + Math.cbrt(x));

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 128

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using the Math Class 129

System.out.println(“exp(y) = “ + Math.exp(z));
System.out.println(“hypot(y,z)= “ + Math.hypot(y,z));
System.out.println(“log(y) = “ + Math.log(y));
System.out.println(“log10(y) = “ + Math.log10(y));
System.out.println(“max(a, b) = “ + Math.max(a, b));
System.out.println(“min(a, b) = “ + Math.min(a, b));
System.out.println(“pow(a, c) = “ + Math.pow(a, c));
System.out.println(“random() = “ + Math.random());
System.out.println(“signum(b) = “ + Math.signum(b));
System.out.println(“sqrt(x) = “ + Math.sqrt(y));

}
}

Creating random numbers
Sooner or later, you’re going to want to write programs that play simple
games. Almost all games have some element of chance built in to them, so
you need a way to create computer programs that don’t work exactly the
same every time you run them. The easiest way to do that is to use the
random method of the Math class, which Table 3-4 lists along with the other
basic mathematical functions of the Math class.

The random method returns a double whose value is greater than or equal
to 0.0 but less than 1.0. Within this range, the value returned by the random
method is different every time you call it, and is essentially random.

Strictly speaking, computers are not capable of generating truly random
numbers. However, clever computer scientists over the years have devel-
oped ways to generate numbers that are random for all practical purposes.
These numbers are called pseudorandom numbers because although they
aren’t completely random, they look random to most mortal human beings.

The random method generates a random double value between 0.0 (inclu-
sive, meaning it could be 0.0) and 1.0 (exclusive, meaning it can’t be 1.0).
However, most computer applications that need random values need
random integers between some arbitrary low value (usually 1, but not
always) and some arbitrary high value. For example, a program that plays
dice needs random numbers between 1 and 6, while a program that deals
cards needs random numbers between 1 and 52 (53 if jokers are used).

As a result, you need a Java expression that converts the double value
returned by the random function into an int value within the range your
program calls for. The following code shows how to do this, with the values
set to 1 and 6 for a dice-playing game:

int low = 1; // the lowest value in the range
int high = 6; // the highest value in the range
int rnd = (int)(Math.random() * (high – low + 1)) + low;

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 129

Using the Math Class130

This expression is a little complicated, so I show you how it’s evaluated step
by step:

1. The random method to get a random double value. This value is greater
than 0.0 but less than 5.0.

2. The random value is multiplied by the high end of the range minus the
low end, plus 1. In this example, the high end is 6, and the low end is 1,
so you now have a random number that’s greater than or equal to 0.0
but less than 6.0. (It could be 5.99999999999999, but it never is 6.0.)

3. This value is then converted to an integer by the (int) cast. You now
have an integer that’s either 0, 1, 2, 3, 4, or 5. (Remember that when you
cast a double to an int, any fractional part of the value is simply dis-
carded. Because the number is less than 6.0, it never truncates to 6.0
when it is cast to an int.)

4. The low value in the range is now added to the random number.
Assuming the low is 1, the random number is now either 1, 2, 3, 4, 5, or 6.
That’s just what you want: a random number between 1 and 6.

To give you an idea of how this random number calculation works, Listing 3-4
shows a program that places this calculation in a method called randomInt
and then calls it to simulate 100 dice rolls. The randomInt method accepts
two parameters representing the low and high ends of the range, and it
returns a random integer within the range. In the main method of this pro-
gram, the randomInt method is called 100 times, and each random number
is printed by a call to System.out.print.

The console output for this program looks something like this:

Here are 100 random rolls of the dice:
4 1 1 6 1 2 6 6 6 6 5 5 5 4 5 4 4 1 3 6 1 3 1 4 4 3 3 3 5 6 5 6 6 3 5 2

2 6 3 3
4 1 2 2 4 2 2 4 1 4 3 6 5 5 4 4 2 4 1 3 5 2 1 3 3 5 4 1 6 3 1 6 5 2 6 6

3 5 4 5
2 5 4 5 3 1 4 2 5 2 1 4 4 4 6 6 4 6 3 3

However, every time you run this program, you see a different sequence of
100 numbers.

The program in Listing 3-4 uses several Java features you haven’t seen yet.

LISTING 3-4: ROLLING THE DICE

public class DiceApp
{

public static void main(String[] args)
{

int roll;
String msg = “Here are 100 random rolls of the dice:”;

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 130

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Using the Math Class 131

System.out.println(msg);
for (int i=0; i<100; i++) ➞ 8
{

roll = randomInt(1, 6); ➞ 10
System.out.print(roll + “ “); ➞ 11

}
System.out.println();

}

public static int randomInt(int low, int high) ➞ 16
{

int result = (int)(Math.random() ➞ 18
* (high - low + 1)) + low;

return result; ➞ 20
}

}

The following paragraphs explain how the program works, but don’t worry
if you don’t get all of the elements in this program. The main thing to see is
the expression that converts the random double value returned by the
Math.double method to an integer.

➞ 8 The for statement causes the statements in its body (lines 10 and
11) to be executed 100 times. Don’t worry about how this statement
works for now; you find out about it in Book II, Chapter 5.

➞10 This statement calls the randomInt method, specifying 1 and 6 as
the range for the random integer to generate. The resulting random
number is assigned to the roll variable.

➞11 The System.out.print method is used to print the random
number followed by a space. Because this statement calls the print
method rather than the println method, the random numbers are
printed on the same line rather than on separate lines.

➞16 The declaration for the randomInt method indicates that the
method returns an int value and accepts two int arguments, one
named low, the other named high.

➞18 This expression converts the random double value to an integer
between low and high.

➞20 The return statement sends the random number back to the state-
ment that called the randomInt method.

Rounding functions
The Math class has four methods that round or truncate float or double
values. Table 3-5 lists these methods. As you can see, each of these methods
uses a different technique to calculate an integer value that’s near the
double or float value passed as an argument. Note that even though all
four of these methods rounds a floating-point value to an integer value, only

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 131

Using the Math Class132

the round method actually returns an integer type (int or long, depend-
ing on whether the argument is a float or a double). The other methods
return doubles that happen to be integer values.

Table 3-5 Rounding Functions Provided by the Math Class
Method Explanation

ceil(argument) Returns the smallest double value that is an integer and is
greater than or equal to the value of the argument.

floor(argument) Returns the largest double value that is an integer and is less
than or equal to the value of the argument.

rint(argument) Returns the double value that is an integer and is closest to
the value of the argument. If two integer values are equally
close, returns the one that is even. If the argument is already an
integer, returns the argument value.

round(argument) Returns the integer that is closest to the argument. If the argu-
ment is a double, returns a long. If the argument is a
float, returns an int.

Listing 3-5 shows a program that uses each of the four methods to round
three different double values: 29.4, 93.5, and –19.3. Here’s the output
from this program:

round(x) = 29
round(y) = 94
round(z) = -19

ceil(x) = 30.0
ceil(y) = 94.0
ceil(z) = -19.0

floor(x) = 29.0
floor(y) = 93.0
floor(z) = -20.0

rint(x) = 29.0
rint(y) = 94.0
rint(z) = -19.0

Note that each of the four methods produces a different result for at least
one of the values:

✦ All the methods except ceil return 29.0 (or 29) for the value 29.4.
ceil returns 30.0, which is the smallest integer that’s greater than
29.4.

✦ All the methods except floor return 94.0 (or 94) for the value 93.5.
floor returns 93.0 because that’s the largest integer that’s less than

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 132

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Formatting Numbers 133

93.99. rint returns 94.0 because it’s an even number, and 93.5 is
midway between 93.0 and 94.0.

✦ All the methods except floor return –19.0 (or –19) for –19.3. floor
returns 2–20 because –20 is the largest integer that’s less than –19.3.

LISTING 3-5: A PROGRAM THAT USES THE ROUNDING METHODS

OF THE MATH CLASS

public class RoundingApp
{

public static void main(String[] args)
{

double x = 29.4;
double y = 93.5;
double z = -19.3;

System.out.println(“round(x) = “ + Math.round(x));
System.out.println(“round(y) = “ + Math.round(y));
System.out.println(“round(z) = “ + Math.round(z));
System.out.println();
System.out.println(“ceil(x) = “ + Math.ceil(x));
System.out.println(“ceil(y) = “ + Math.ceil(y));
System.out.println(“ceil(z) = “ + Math.ceil(z));
System.out.println();
System.out.println(“floor(x) = “ + Math.floor(x));
System.out.println(“floor(y) = “ + Math.floor(y));
System.out.println(“floor(z) = “ + Math.floor(z));
System.out.println();
System.out.println(“rint(x) = “ + Math.rint(x));
System.out.println(“rint(y) = “ + Math.rint(y));
System.out.println(“rint(z) = “ + Math.rint(z));

}
}

Formatting Numbers
Most of the programs you’ve seen so far have used the System.out.
println or System.out.print method to print the values of variables
that contain numbers. When you pass a numeric variable to one of these
methods, the variable’s value is converted to a string before it’s printed.
The exact format used to represent the value isn’t very pretty. For example,
large values are printed without any commas. And all the decimal digits for
double or float values are printed, whether you want them to or not.

In many cases, you want to format your numbers before you print them.
For example, you might want to add commas to large values and limit the
number of decimal places printed. Or, if a number represents a monetary
amount, you might want to add a dollar sign (or whatever currency symbol

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 133

Formatting Numbers134

is appropriate for your locale). To do that, you can use the NumberFormat
class. Table 3-6 lists the NumberFormat class methods.

Like many aspects of Java, the procedure for using the NumberFormat
class is a little awkward. It’s designed to be efficient for applications that
need to format a lot of numbers, but it’s overkill for most applications.

Table 3-6 Methods of the NumberFormat Class
Method Explanation

getCurrencyInstance() A static method that returns a
NumberFormat object that formats
currency values.

getPercentInstance() A static method that returns a
NumberFormat object that formats
percentages.

getNumberInstance() A static method that returns a
NumberFormat object that formats
basic numbers.

format(number) Returns a string that contains the format-
ted number.

setMinimumFractionDigits(int) Sets the minimum number of digits to dis-
play to the right of the decimal point.

setMaximumFractionDigits(int) Sets the maximum number of digits to dis-
play to the right of the decimal point.

The procedure for using the NumberFormat class to format numbers
takes a little getting used to. First, you must call one of the static
getXxxInstance methods to create a NumberFormat object that can
format numbers in a particular way. Then, if you want, you can call the
setMinimumFractionDigits or setMaximumFractionDigits meth-
ods to set the number of decimal digits to be displayed. Finally, you call that
object’s format method to actually format a number.

Note that the NumberFormat class is in the java.text package, so you
must include the following import statement at the beginning of any class
that uses NumberFormat:

import java.text.NumberFormat;

Here’s an example that uses the NumberFormat class to format a double
value as currency:

double salesTax = 2.425;
NumberFormat cf = NumberFormat.getCurrencyInstance();
System.out.println(cf.format(salesTax));

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 134

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Formatting Numbers 135

When you run this code, the following line is printed to the console:

$2.43

Note that the currency format rounds the value from 2.425 to 2.43.

Here’s an example that formats a number using the general number format,
with exactly three decimal places:

double x = 19923.3288;
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMinimumFractionDigits(3);
nf.setMaximumFractionDigits(3);
System.out.println(nf.format(x));

When you run this code, the following line is printed:

19,923.329

Here, the number is formatted with a comma, and the value is rounded to
three places.

Here’s an example that uses the percentage format:

double grade = .92;
NumberFormat pf = NumberFormat.getPercentInstance();
System.out.println(pf.format(grade));

When you run this code, the following line is printed:

92%

If your program formats several numbers, consider creating the
NumberFormat object as a class variable. That way, the NumberFormat
object is created once when the program starts. Then, you can use the
NumberFormat object from any method in the program’s class. Here’s a
simple example that shows how this works:

import java.text.NumberFormat;

public class NumberFormatClassApp
{

static NumberFormat cf =
NumberFormat.getCurrencyInstance();

public static void main(String[] args)
{

printMyAllowance();
printCostOfPaintBallGun();

}

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 135

Weird Things about Java Math136

public static void printMyAllowance()
{

double myAllowance = 5.00;
cf = NumberFormat.getCurrencyInstance();
System.out.println(“My allowance: “

+ cf.format(myAllowance));
}

public static void printCostOfPaintBallGun()
{

double costOfPaintBallGun = 69.95;
cf = NumberFormat.getCurrencyInstance();
System.out.println(“Cost of Paint Ball Gun: “

+ cf.format(costOfPaintBallGun));
}

}

Here, the cf variable is created as a class variable. Then, both the printMy
Allowance and printCostOfPaintBallGun methods can use it.

Weird Things about Java Math
Believe it or not, computers — even the most powerful ones — have certain
limitations when it comes to performing math calculations. These limitations
are usually insignificant, but sometimes they sneak up and bite you. The fol-
lowing sections describe the things you need to watch out for when doing
math in Java.

Integer overflow
The basic problem with integer types is that they have a fixed size. As a
result, the number has a size limit that can be stored in a short, int, or
long variable. Although long variables can hold numbers that are huge,
sooner or later you come across a number that’s too big to fit in even a long
variable.

For example, consider this admittedly contrived example:

int a = 1000000000;
System.out.println(a);
a += 1000000000;
System.out.println(a);
a += 1000000000;
System.out.println(a);
a += 1000000000;
System.out.println(a);

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 136

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Weird Things about Java Math 137

Here, you expect the value of a to get bigger after each addition. But here’s
the output that’s displayed:

1000000000
2000000000
-1294967296
-294967296

The first addition seems to work, but after that, the number becomes nega-
tive! That’s because the value has reached the size limit of the int data
type. Unfortunately, Java doesn’t tell you that this error has happened. It
simply crams the int variable as full of bits as it can, discards whatever bits
don’t fit, and hopes you don’t notice. Because of the way int stores nega-
tive values, large positive values suddenly become large negative values.

The moral of the story is that if you’re working with large integers, you
should use long rather than int because long can store much larger num-
bers than int. If your programs deal with numbers large enough to be a
problem for long, consider using floating-point types instead. As you see in
the next section, floating-point types can handle even larger values than
long, and they let you know when you exceed their capacity.

Floating-point weirdness
Floating-point numbers have problems of their own. For starters, floating-
point numbers are stored using the binary number system (base 2), but
humans work with numbers in the decimal number system (base 10).
Unfortunately, accurately converting numbers between these two systems is
sometimes impossible. That’s because in any number base, certain fractions
can’t be represented exactly. For example, base 10 has no way to exactly rep-
resent the fraction 1⁄3. You can approximate it as 0.3333333, but eventually you
reach the limit of how many digits you can store, so you have to stop. In
base 2, it happens that one of the fractions you can’t accurately represent is
the decimal value 1⁄10. In other words, a float or double variable can’t accu-
rately represent 0.1.

Don’t believe me? Try running this code:

float x = 0.1f;
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMinimumFractionDigits(10);
System.out.println(nf.format(x));

The resulting output is this:

0.1000000015

Although 0.1000000015 is close to 0.1, it isn’t exact.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 137

Weird Things about Java Math138

In most cases, Java’s floating-point math is close enough not to matter. The
margin of error is extremely small. If you’re using Java to measure the size of
your house, you’d need an electron microscope to notice the error. However,
if you’re writing applications that deal with financial transactions, normal
rounding can sometimes magnify the errors to make them significant. You
might charge a penny too much or too little sales tax. And, in extreme cases,
your invoices might actually have obvious addition errors.

I’ll have much more to say about this floating-point numbers in Bonus
Chapter 1 on this book’s Web site. For now, just realize that you can’t use
float or double to represent money unless you don’t care whether or not
your books are in balance.

Of course, integer types are stored in binary too. But integers aren’t subject
to the same errors that floating-point types are because integers don’t repre-
sent fractions at all. So you don’t have to worry about this type of error for
integer types.

Dividing by zero
According to the basic rules of mathematics, you can’t divide a number by
zero. The reason is simple: Division is the inverse of multiplication. That
means that if a * b = c, then it is also true that a = c / b. If you were
to allow b to be zero, division would be meaningless because any number
times zero is zero. Therefore, both a and c would also have to be zero. In
short, mathematicians solved this dilemma centuries ago by saying that divi-
sion by zero is simply not allowed.

So what happens if you do attempt to divide a number by zero in a Java pro-
gram? The answer depends on whether you’re dividing integers or floating-
point numbers. If you’re dividing integers, the statement that attempts the
division by zero chokes up what is called an exception, which is an impolite
way of crashing the program. In Book II, Chapter 8, you find out how to inter-
cept this exception to allow your program to continue. But in the meantime,
any program you write that attempts an integer division by zero crashes.

If you try to divide a floating-point type by zero, the results are not so abrupt.
Instead, Java assigns the floating-point result one of the special values listed
in Table 3-7. The following paragraphs explain how these special values are
determined:

✦ If you divide a number by zero and the sign of both numbers is the
same, the result is positive infinity. For example, 40.0 divided by 0.0 is
positive infinity, as is –34.0 divided by –0.0.

✦ If you divide a number by zero and the signs of the numbers are differ-
ent, the result is negative infinity. For example, –40.0 divided by 0.0 is
negative infinity, as is 34.0 divided by 0.0.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 138

Book II
Chapter 3

W
orking w

ith
N

um
bers and

Expressions
Weird Things about Java Math 139

✦ If you divide zero by zero, the result is Not a Number regardless of the
signs.

Floating-point zeros can be positive or negative. Java considers positive and
negative zeros to be equal numerically.

If you attempt to print a floating-point value that has one of these special
values, Java converts the value to an appropriate string. For example, sup-
pose you execute the following statements:

double i = 50.0;
double j = 0.0;
double k = i / j;
System.out.println(k);

The resulting console output is

infinity

If i were –50.0, the console would display –infinity. And if i were zero,
the console would display NaN.

Table 3-7 Special Constants of the float and double Classes
Constant Meaning

POSITIVE_INFINITY Positive infinity

NEGATIVE_INFINITY Negative infinity

NaN Not a number

The following paragraphs describe some final bits of weirdness I want to
sneak in before closing this chapter:

✦ NaN is not equal to itself, which can have some strange consequences.
For example:

double x = Math.sqrt(-50); // Not a number
double y = x;
if (x == y)

System.out.println(“x equals y”);

Okay, I know I jumped the gun here on the if statement, because I don’t
cover if statements until Book II, Chapter 4. So just assume for the sake
of argument that the if statement tests whether the variable x is equal
to the variable y. Because this test follows immediately after an assign-
ment statement that assigns the value of x to y, you can safely assume
that x equals y, right?

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 139

Weird Things about Java Math140

Wrong. Because x is NaN, y also is NaN. And NaN is never considered to
be equal to any other value, including another NaN. Thus, the compari-
son in the if statement fails.

✦ Another strange consequence: You can’t assume that a number minus
itself is always zero. Consider this statement:

double z = x – x; // not necessarily zero

Shouldn’t this statement always set z to zero? Not if x is NaN. In that
case, not a number minus not a number is still not a number.

✦ One more, and then I’ll stop: Any mathematical operation involving infin-
ity results in either another infinity or not a number. For example, infinity
+ 5 still equals infinity. So Buzz Lightyear’s call to “Infinity and beyond”
just isn’t going to happen. But infinity minus infinity gives not a number.

12_58961X bk02ch03.qxd 3/29/05 3:33 PM Page 140

Chapter 4: Making Choices

In This Chapter
� Boolean expressions for fun and profit (or is it, for fun or profit?)

� Your basic, run-of-the mill if statement

� else clauses and else-if statements

� Nested if statements

� Using logical operators

� The weird ?: operator

� The proper way to do string comparisons

So far in this book, all the programs have run straight through from start
to finish, without making any decisions along the way. In this chapter,

you discover two Java statements that let you create some variety in your
programs. The if statement lets you execute a statement or a block of
statements only if some conditional test turns out to be true. And the
switch statement lets you execute one of several blocks of statements
depending on the value of an integer variable.

The if statement relies heavily on the use of boolean expressions, which are
expressions that yield a simple true or false result. Because you can’t do
even the simplest if statement without a boolean expression, this chapter
begins by showing you how to code simple boolean expressions that test
the value of a variable. Later, after looking at the details of how the if state-
ment works, I revisit boolean expressions to see how to combine them to
make complicated logical decisions. Then, I get to the switch statement.

You’re going to have to put your thinking cap on for much of this chapter, as
most of it plays with logic puzzles. Find yourself a comfortable chair in a
quiet part of the house, turn off the TV, and pour yourself a cup of coffee.

Using Simple Boolean Expressions
All if statements, as well as several of the other control statements that I
describe in Book II, Chapter 5 (while, do, and for) use boolean expres-
sions to determine whether to execute or skip a statement (or a block of
statements). A boolean expression is a Java expression that, when evalu-
ated, returns a boolean value — either true or false.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 141

Using Simple Boolean Expressions142

As you discover later in this chapter, boolean expressions can be very compli-
cated. However, most of the time, you use simple expressions that compare
the value of a variable with the value of some other variable, a literal, or
|perhaps a simple arithmetic expression. This comparison uses one of the
relational operators listed in Table 4-1. All these operators are binary opera-
tors, which means they work on two operands.

Table 4-1 Relational Operators
Operator Description

== Returns true if the expression on the left evaluates to the
same value as the expression on the right.

!= Returns true if the expression on the left does not evaluate to
the same value as the expression on the right.

< Returns true if the expression on the left evaluates to a value
that is less than the value of the expression on the right.

<= Returns true if the expression on the left evaluates to a value
that is less than or equal to the expression on the right.

> Returns true if the expression on the left evaluates to a value
that is greater than the value of the expression on the right.

>= Returns true if the expression on the left evaluates to a value
that is greater than or equal to the expression on the right.

A basic boolean expression has this form:

expression relational-operator expression

Java evaluates a boolean expression by first evaluating the expression on
the left, then evaluating the expression on the right, and finally applying the
relational operator to determine if the entire expression evaluates to true
or false.

Here are some simple examples of relational expressions. For each example,
assume that the following statements were used to declare and initialize the
variables:

int i = 5;
int j = 10;
int k = 15;
double x = 5.0;
double y = 7.5;
double z = 12.3;

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 142

Book II
Chapter 4

M
aking Choices

Using Simple Boolean Expressions 143

Now, here are the sample expressions along with their results based on the
values supplied:

Expression Value Explanation

i == 5 true The value of i is 5.

i == 10 false The value of i is not 10.

i == j false i is 5, and j is 10, so they are not equal.

i == j - 5 true i is 5, and j – 5 is 5.

i > 1 true i is 5, which is greater than 1.

j == i * 2 true j is 10, and i is 5, so i * 2 is also 10.

x = i true Casting allows the comparison, and 5.0 is
equal to 5.

k < z false Casting allows the comparison, and 15 is
greater than 12.3.

i * 2 < y false i * 2 is 10, which is not less than 7.5.

Note that the relational operator that tests for equality is two equal signs in
a row (==). A single equal sign is the assignment operator. When you’re first
learning Java, you may frequently type the assignment operator when you
mean the equals operator, like this:

if (i = 5)

Java won’t let you get away with this, so you have to correct your mistake
and recompile the program.

At first, doing so seems like a nuisance. The more you work with Java, the
more you realize that it really is a nuisance, but one you can get used to.

Another important warning: Do not test strings using any of the relational
operators listed in Table 4-1, including the equals operator. You’re probably
tempted to test strings like this:

inputString == “Yes”

However, this is not the correct way to compare strings in Java. You find out
the correct way to compare strings in the section “Comparing Strings” later
in this chapter.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 143

Using If Statements144

Using If Statements
The if statement is one of the most important statements in any program-
ming language, and Java is no exception. The following sections describe the
ins and outs of using the various forms of Java’s powerful if statement.

Simple if statements
In its most basic form, an if statement lets you execute a single statement
or a block of statements only if a boolean expression evaluates to true. The
basic form of the if statement is this:

if (boolean-expression)
statement

Note that the boolean expression must be enclosed in parentheses. Also, if
you use only a single statement, it must end with a semicolon. But the state-
ment can also be a statement block enclosed by braces. In that case, each
statement within the block needs a semicolon, but the block itself doesn’t.

Here’s an example of a typical if statement:

double commissionRate = 0.0;
if (salesTotal > 10000.0)

commissionRate = 0.05;

In this example, a variable named commissionRate is initialized to 0.0,
and then set to 0.05 if salesTotal is greater than 10,000.

Some programmers find it helpful to visualize the operation of an if state-
ment in a flowchart, as shown in Figure 4-1. In this flowchart, the diamond
symbol represents the condition test. If the sales total is greater than 10,000,
the statement in the rectangle is executed. If not, that statement is bypassed.

Indenting the statement under the if statement is customary to make the
structure of your code more obvious. It isn’t necessary, but always a good
idea.

Here’s an example that uses a block rather than a single statement:

double commissionRate = 0.0;
if (salesTotal > 10000.0)
{

commissionRate = 0.05;
commission = salesTotal * commissionRate;

}

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 144

Book II
Chapter 4

M
aking Choices

Using If Statements 145

In this example, the two statements within the braces are executed if
salesTotal is greater than 10000.0. Otherwise, neither statement is
executed.

Here are a few additional points about simple if statements:

✦ Some programmers prefer to code the opening brace for the statement
block on the same line as the if statement itself, like this:

if (salesTotal > 10000.0) {
commissionRate = 0.05;
commission = salesTotal * commissionRate;

}

This method is simply a matter of style, so either technique is acceptable.

✦ Indentation by itself doesn’t create a block. For example, consider this
code:

if (salesTotal > 10000.0)
commissionRate = 0.05;
commission = salesTotal * commissionRate;

Here, I didn’t use the braces to mark a block, but indented the last state-
ment as if it were part of the if statement. Don’t be fooled; the last
statement is executed whether or not the expression in the if state-
ment evaluates to true.

✦ Some programmers like to code a statement block even for if state-
ments that conditionally execute just one statement. For example:

salesTotal
> 10000

No

Yes

commissionRate
= 0.05

Figure 4-1:
The
flowchart
for an if
statement.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 145

Using If Statements146

if (salesTotal > 10000.0)
{

commissionRate = 0.05;
}

That’s not a bad idea, because it makes the structure of your code a
little more obvious by adding extra white space around the statement.
And if you later decide you need to add a few statements to the block,
the braces are already there.

✦ If only one statement needs to be conditionally executed, some program-
mers put it on the same line as the if statement, like this:

if (salesTotal > 10000.0) commissionRate = 0.05;

This method works, but I’d avoid it. Your classes are easier to follow if
you use line breaks and indentation to highlight their structure.

if-else statements
An if-else statement adds an additional element to a basic if statement:
a statement or block that’s executed if the boolean expression is not true.
Its basic format is

if (boolean-expression)
statement

else
statement

Here’s an example:

double commissionRate;
if (salesTotal <= 10000.0)

commissionRate = 0.02;
else

commissionRate = 0.05;

In this example, the commission rate is set to 2% if the sales total is less than
or equal to 10,000. If the sales total is greater than 10,000, the commission
rate is set to 5%.

Figure 4-2 shows a flowchart for this if-else statement.

In some cases, you can avoid the need for the else part of an if-else
statement by cleverly rearranging your code. For example, this code has the
same effect as the previous if-else statement:

double commissionRate = 0.05;
if (salesTotal <= 10000.0)

commissionRate = 0.02;

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 146

Book II
Chapter 4

M
aking Choices

Using If Statements 147

You can use blocks for either or both of the statements in an if-else. For
example, here’s an if-else statement in which both statements are blocks:

double commissionRate;
if (salesTotal <= 10000.0)
{

commissionRate = 0.02;
level1Count++;

}
else
{

commissionRate = 0.05;
level2Count++;

}

Nested if statements
The statement that goes in the if or else part of an if-else statement can
be any kind of Java statement, including another if or if-else statement.
This is called nesting, and an if or if-else statement that includes
another if or if-else statement is called a nested if statement.

The general form of a nested if statement is this:

if (expression-1)
if (expression-2)

statement-1

salesTotal
> 10000

NoYes

commissionRate
= 0.02

commissionRate
= 0.05

Figure 4-2:
The
flowchart
for an if-else
statement.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 147

Using If Statements148

else
statement-2

else
if (expression-3)

statement-3
else

statement-4

In this example, expression-1 is first evaluated. If it evaluates to true,
expression-2 is evaluated. If that expression is true, statement-1 is
executed; otherwise, statement-2 is executed. But if expression-1 was
false, then expression-3 is evaluated. If expression-3 is true,
statement-3 is executed; otherwise, statement-4 is executed.

An if statement that’s contained within another if statement is called an
inner if statement, and an if statement that contains another if statement
is called an outer if statement. Thus, in the previous example, the if statement
that tests expression-1 is an outer if statement, and the if statements that
test expression-2 and expression-3 are inner if statements.

Nesting can be as complex as you want, but try to keep it as simple as possi-
ble. And be sure to use indentation to indicate the structure of the nested
statements.

As an example, suppose your company has two classes of sales representa-
tives (class 1 and class 2), and they get a different sales commission for sales
below $10,000 and sales above $10,000 according to this table:

Sales Class 1 Class 2

$0 to $9,999 2% 2.5%

$10,000 and over 4% 5%

You could implement this commission structure with a nested if statement:

if (salesClass == 1)
if (salesTotal < 10000.0)

commissionRate = 0.02;
else

commissionRate = 0.04;
else

if (salesTotal < 10000.0)
commissionRate = 0.025;

else
commissionRate = 0.05;

This example assumes that if the salesClass variable isn’t 1, it must be 2.
If that’s not the case, you have to use an additional if statement for class-2
sales reps:

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 148

Book II
Chapter 4

M
aking Choices

Using If Statements 149

if (salesClass == 1)
if (salesTotal < 10000.0)

commissionRate = 0.02;
else

commissionRate = 0.04;
else if (salesClass == 2)

if (salesTotal < 10000.0)
commissionRate = 0.025;

else
commissionRate = 0.05;

Notice that I place this extra if statement on the same line as the else key-
word. That’s a common practice for a special form of nested if statements
called else-if statements. You find more about this type of nesting in the
next section.

You could also just use a pair of separate if statements:

if (salesClass == 1)
if (salesTotal < 10000.0)

commissionRate = 0.02;
else

commissionRate = 0.04;

if (salesClass == 2)
if (salesTotal < 10000.0)

commissionRate = 0.025;
else

commissionRate = 0.05;

The result is the same. However, this technique works only if the if state-
ment itself doesn’t change the variable being tested. If the first if statement
changes the value of the salesClass variable, this statement doesn’t work.

Note that you could also have implemented the sales commission structure
by testing the sales level in the outer if statement and the sales representa-
tive’s class in the inner statements:

if (salesTotal < 10000)
if (salesClass == 1)

commissionRate = 0.02;
else

commissionRate = 0.04;
else

if (salesClass == 1)
commissionRate = 0.025;

else
commissionRate = 0.05;

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 149

Using If Statements150

The trick when using nested if statements is knowing how Java pairs else
keywords with if statements. The rule is actually very simple: Each if key-
word is matched with the most previous if statement that hasn’t already
been paired with an else keyword. You can’t coax Java into pairing the if
and else keywords differently by using indentation. For example, suppose
that class 2 sales reps don’t get any commission, so the inner if statements
in the previous example don’t need else statements. You might be tempted
to calculate the commission rate using this code:

if (salesTotal < 10000)
if (salesClass == 1)

commissionRate = 0.02;
else

if (salesClass == 1)
commissionRate = 0.025;

However, it won’t work. The indentation creates the impression that the
else keyword is paired with the first if statement, but in reality it’s paired
with the second if statement. As a result, no sales commission rate is set
for sales of $10,000 or more.

This problem has two solutions. One is to use braces to clarify the structure:

if (salesTotal < 10000)
{

if (salesClass == 1)
commissionRate = 0.02;

}
else
{

if (salesClass == 1)
commissionRate = 0.025;

}

The other is to add an else statement that specifies an empty statement
(a semicolon by itself) to the first inner if statement:

if (salesTotal < 10000)
if (salesClass == 1)

commissionRate = 0.02;
else ;

else
if (salesClass == 1)

commissionRate = 0.025;

The empty else statement is paired with the inner if statement, so the
second else keyword is properly paired with the outer if statement.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 150

Book II
Chapter 4

M
aking Choices

Using If Statements 151

else-if statements
A common pattern for nested if statements is to have a series of if-else
statements with another if-else statement in each else part:

if (expression-1)
statement-1

else if (expression-2)
statement-2

else if (expression-3)
statement-3

These are sometimes called else-if statements, although that’s an unoffi-
cial term. Officially, all that’s going on is that the statement in the else part
happens to be another if statement, so this statement is just a type of a
nested if statement. However, it’s an especially useful form of nesting.

For example, suppose you want to assign four different commission rates
based on the sales total, according to this table:

Sales Commission

Over $10,000 5%

$5,000 to $9,999 3.5%

$1,000 to $4,999 2%

Under $1,000 0%

You can easily implement a series of else-if statements:

if (salesTotal >= 10000.0)
commissionRate = 0.05;

else if (salesTotal >= 5000.0)
commissionRate = 0.035;

else if (salesTotal >= 1000.0)
commissionRate = 0.02;

else
commissionRate = 0.0;

Figure 4-3 shows a flowchart for this sequence of else-if statements.

You have to carefully think through how you set up these else-if state-
ments. For example, at first glance, this sequence looks like it might also work:

if (salesTotal > 0.0)
commissionRate = 0.0;

else if (salesTotal >= 1000.0)
commissionRate = 0.02;

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 151

Using If Statements152

else if (salesTotal >= 5000.0)
commissionRate = 0.035;

else if (salesTotal >= 10000.0)
commissionRate = 0.05;

However, this scenario won’t work. These if statements always set the com-
mission rate to 0% because the boolean expression in the first if statement
always tests true (assuming the salesTotal isn’t zero or negative — and
if it is, none of the other if statements matter). As a result, none of the
other if statements are ever evaluated.

salesTotal
>= 10000

Yes

No

commissionRate
= 0.05

salesTotal
>= 5000

Yes commissionRate
= 0.035

No

salesTotal
>= 1000

Yes

No

commissionRate
= 0.02

commissionRate
= 0.0

Figure 4-3:
The
flowchart for
a sequence
of else-if
statements.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 152

Book II
Chapter 4

M
aking Choices

Mr. Spock’s Favorite Operators (The Logical Ones, of Course) 153

Mr. Spock’s Favorite Operators
(The Logical Ones, of Course)

A logical operator (sometimes called a boolean operator) is an operator that
returns a boolean result that’s based on the boolean result of one or two
other expressions. Expressions that use logical operators are sometimes
called compound expressions because the effect of the logical operators is to
let you combine two or more condition tests into a single expression. Table
4-2 lists the logical operators.

Table 4-2 Logical Operators
Operator Name Type Description

! Not Unary Returns true if the operand to the right eval-
uates to false. Returns false If the
operand to the right is true.

& And Binary Returns true if both of the operands evalu-
ate to true. Both operands are evaluated
before the And operator is applied.

| Or Binary Returns true if at least one of the operands
evaluates to true. Both operands are evalu-
ated before the Or operator is applied.

^ Xor Binary Returns true if one and only one of the
operands evaluates to true. If both operands
evaluate to true or if both operands evaluate
to false, returns false.

&& Conditional And Binary Same as &, but if the operand on the left
returns false, returns falsewithout eval-
uating the operand on the right.

|| Conditional Or Binary Same as |, but if the operand on the left
returns true, returns truewithout evaluat-
ing the operand on the right.

The following sections describe these operators in excruciating detail.

Using the ! operator
The simplest of the logical operators is not (!). Technically, it’s a unary
prefix operator, which means that you use it with one operand, and you code
it immediately in front of that operand. (Also, this operator is technically
called the complement operator, not the not operator. But in real life, every-
one calls it not.)

The not operator reverses the value of a boolean expression. Thus, if the
expression is true, not changes it to false. If the expression is false, not
changes it to true.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 153

Mr. Spock’s Favorite Operators (The Logical Ones, of Course)154

For example:

!(i = 4)

This expression evaluates to true if i is any value other than 4. If i is 4, it
evaluates to false. It works by first evaluating the expression (i = 4).
Then, it reverses the result of that evaluation.

Don’t confuse the not logical operator (!) with the not equals relational
operator (!=). Although they are sometimes used in similar ways, the not
operator is more general. For example, I could have written the previous
example like this:

i != 4

The result is the same. However, the not operator can be applied to any
expression that returns a true-false result, not just an equality test.

Note: You must almost always enclose the expression that the ! operator is
applied to in parentheses. For example, consider this expression:

! i == 4

Assuming that i is an integer variable, the compiler doesn’t allow this
expression because it looks like you’re trying to apply the ! operator to the
variable, not the result of the comparison. A quick set of parentheses solves
the problem:

!(i == 4)

Using the & and && operators
The & and && operators combine two boolean expressions and return true
only if both expressions are true. This is called an and operation, because
the first expression and the second expression must be true for the And
operator to return a true.

For example, suppose the sales commission rate should be 2.5% if the sales
class is 1 and the sales total is $10,000 or more. You could perform this
test with two separate if statements (as I did earlier in this chapter), or you
could combine the tests into one if statement:

if ((salesClass == 1) & (salesTotal >= 10000.0))
commissionRate = 0.025;

Here, the expressions (salesClass == 1) and (salesTotal >=
10000.0) are evaluated separately. Then, the & operator compares the
results. If they’re both true, the & operator returns true. If one or both are
false, the & operator returns false.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 154

Book II
Chapter 4

M
aking Choices

Mr. Spock’s Favorite Operators (The Logical Ones, of Course) 155

Notice that I used parentheses liberally to clarify where one expression ends
and another begins. Using parentheses isn’t always necessary, but when you
use logical operators, I suggest you always use parentheses to clearly iden-
tify the expressions being compared.

The && operator is similar to the & operator but leverages our knowledge of
logic. Because both expressions compared by the & operator must be true
for the entire expression to be true, there’s no reason to evaluate the
second expression if the first one returns false. The & isn’t aware of this,
so it blindly evaluates both expressions before determining the results. The
&& operator is smart enough to stop when it knows what the outcome is.

As a result, almost always use && instead of &. Here’s the previous example,
this time coded smartly with &&:

if ((salesClass == 1) && (salesTotal >= 10000.0))
commissionRate = 0.025;

Why do I say you should almost always use &&? Because sometimes the
expressions themselves have side effects that are important. For example,
the second expression might involve a method call that updates a database,
and you want the database updated whether or not the first expression eval-
uates to true or false. In that case, you want to use & instead of && to
ensure that both expressions get evaluated.

Relying on side effects of expressions can be risky, and you can almost
always find a better way to write your code so that the side effects are
avoided. In other words, placing an important call to a database update
method inside a compound expression buried in an if statement probably
isn’t a good idea.

Using the | and || operators
The | and || operators are called or operators because they return true if
the first expression is true or if the second expression is true. They also
return true if both expressions are true. (You find the | symbol on your
keyboard just above the Enter key.)

Suppose that sales representatives get no commission if the total sales are
less than $1,000 or if the sales class is 3. You could do that with two separate
if statements:

if (salesTotal < 1000.0)
commissionRate = 0.0;

if (salesClass == 3)
commissionRate = 0.0;

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 155

Mr. Spock’s Favorite Operators (The Logical Ones, of Course)156

But with an or operator, you can do the same thing with a compound condition:

if ((salesTotal < 1000.0) | (salesClass == 3))
commissionRate = 0.0;

To evaluate the expression for this if statement, Java first evaluates the
expressions on either side of the | operator. Then, if at least one of them is
true, the whole expression is true. Otherwise, the expression is false.

In most cases, you should use the conditional Or operator (||) instead of
the regular Or operator (|), like this:

if ((salesTotal < 1000.0) || (salesClass == 3))
commissionRate = 0.0;

Like the conditional And operator (&&), the conditional Or operator stops
evaluating as soon as it knows what the outcome is. For example, suppose
the sales total is $500. Then, there’s no need to evaluate the second expres-
sion. Because the first expression evaluates to true and only one of the
expressions needs to be true, Java can skip the second expression alto-
gether. Of course, if the sales total is $5,000, the second expression must still
be evaluated.

As with the And operators, you should use the regular Or operator only if
your program depends on some side effect of the second expression, such
as work done by a method call.

Using the ^ operator
The ^ operator performs what in the world of logic is known as an exclusive
or, commonly abbreviated as xor. It returns true if one and only one of the
two subexpressions is true. If both expressions are true or if both expres-
sions are false, the ^ operator returns false.

Most programmers don’t bother with the ^ operator because it’s pretty con-
fusing. My feelings won’t be hurt if you skip this section.

Put another way, the ^ operator returns true if the two subexpressions
have different results. If they both have the same result, it returns false.

As an example, suppose you’re writing software that controls your model
railroad set and you want to find out if two switches are set in a dangerous
position that might allow a collision. If the switches were represented by
simple integer variables named switch1 and switch2 and 1 meant the
track was switched to the left and 2 meant the track was switched to the
right, you could easily test them like this:

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 156

Book II
Chapter 4

M
aking Choices

Mr. Spock’s Favorite Operators (The Logical Ones, of Course) 157

if (switch1 == switch2)
System.out.println(“Trouble! The switches are the same”);

else
System.out.println(“OK, the switches are different.”);

But what if, for some reason, one of the switches is represented by an int
variable where 1 means the switch is left and any other value means the
switch is right, but the other is an int variable where –1 means the switch is
left and any other value means the switch is right. (Who knows, maybe the
switches were made by different manufacturers.) You could use a compound
condition like this:

if (((switch1==1)&&(switch2==-1)) ||
((switch1!=1)&&(switch2!=-1)))
System.out.println(“Trouble! The switches are the same”);

else
System.out.println(“OK, the switches are different.”);

But a xor operator could do the job with a simpler expression:

if ((switch1==1)^(switch2==-1))
System.out.println(“OK, the switches are different.”);

else
System.out.println(“Trouble! The switches are the same”);

Frankly, the ^ operator is probably one you should avoid using. In fact, most
of the Java books on my bookshelf (and believe me, I have a lot of them)
don’t even mention this operator except in its other, more useful application
as a bitwise operator (see Bonus Chapter 2 on this book’s Web site for infor-
mation about bitwise operators). That’s probably because many applications
don’t use it as a logic operator, and the applications that it is suitable for can
also be solved with the more traditional And and Or operators.

Combining logical operators
You can combine simple boolean expressions to create more complicated
expressions. For example:

if ((salesTotal<1000.0)||((salesTotal<5000.0)&&
(salesClass==1))||((salestotal < 10000.0)&&
(salesClass == 2)))
CommissionRate = 0.0;

Can you tell what the expression in this if statement does? It sets the com-
mission to zero if any one of these three conditions is true:

✦ The sales total is less than $1,000.

✦ The sales total is less than $5,000, and the sales class is 1.

✦ The sales total is less than $10,000, and the sales class is 2.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 157

Mr. Spock’s Favorite Operators (The Logical Ones, of Course)158

In many cases, you can clarify how an expression works just by indenting its
pieces differently and spacing out its subexpressions. For example, this ver-
sion of the previous if statement is a little easier to follow:

if ((salesTotal < 1000.0)
|| ((salesTotal < 5000.0) && (salesClass == 1))
|| ((salestotal < 10000.0) && (salesClass == 2))

)
commissionRate = 0.0;

However, figuring out exactly what this if statement does is still tough. In
many cases the better thing to do is to skip the complicated expression and
code separate if statements:

if (salesTotal < 1000.0)
commissionRate = 0.0;

if ((salesTotal < 5000.0) && (salesClass == 1))
commissionRate = 0.0;

if ((salestotal < 10000.0) && (salesClass == 2))
commissionRate = 0.0;

Boolean expressions can get a little complicated when you use more than
one logical operator, especially if you mix And and Or operators. For exam-
ple, consider this expression:

if (a==1 && b==2 || c==3)
System.out.println(“It’s true!”);

else
System.out.println(“No it isn’t!”);

What do you suppose this if statement does if a is 5, b is 7, and c = 3?
The answer is that the expression evaluates to true and “It’s true!” is
printed. That’s because Java applies the operators from left to right. So the
&& operator is applied to a==1 (which is false) and b==2 (which is also
false). Thus, the && operator returns false. Then the || operator is
applied to that false result and the result of c==3, which is true. Thus, the
entire expression returns true.

Wouldn’t this expression have been more clear if you had used a set of
parentheses to clarify what the expression does? For example:

if ((a==1 && b==2) || c==3)
System.out.println(“It’s true!”);

else
System.out.println(“No it isn’t!”);

Now you can clearly see that the && operator is evaluated first.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 158

Book II
Chapter 4

M
aking Choices

Comparing Strings 159

Using the Conditional Operator
Java has a special operator called the conditional operator that’s designed to
eliminate the need for if statements altogether in certain situations. It’s a
ternary operator, which means that it works with three operands. The gen-
eral form for using the conditional operator is this:

boolean-expression ? expression-1 : expression-2

The boolean expression is evaluated first. If it evaluates to true, then
expression-1 is evaluated, and the result of this expression becomes the
result of the whole expression. If the expression is false, expression-2 is
evaluated, and its results are used instead.

For example, suppose you want to assign a value of 0 to an integer variable
named salesTier if total sales are less than $10,000 and a value of 1 if the
sales are $10,000 or more. You could do that with this statement:

int tier = salesTotal > 10000.0 ? 1 : 0;

Although not required, a set of parentheses helps make this statement easier
to follow:

int tier = (salesTotal > 10000.0) ? 1 : 0;

One common use for the conditional operator is when you’re using concate-
nation to build a text string and you have a word that might need to be
plural, based on the value of an integer variable. For example, suppose you
want to create a string that says “You have x apples”, with the value of
a variable named appleCount substituted for x. But if apples is 1, the
string should be “You have 1 apple”, not “You have 1 apples”.

The following statement does the trick:

String msg = “You have “ + appleCount + “ apple”
+ ((appleCount>1) ? “s.” : “.”);

When Java encounters the ? operator, it evaluates the expression
(appleCount>1). If true, it uses the first string (s.). If false, it uses the
second string (“.”).

Comparing Strings
Comparing strings in Java takes a little extra care because the == operator
doesn’t really work the way it should. For example, suppose you want to
know if a string variable named answer contains the value “Yes”. You
might be tempted to code an if statement like this:

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 159

Comparing Strings160

if (answer == “Yes”)
System.out.println(“The answer is Yes.”);

Unfortunately, that’s not correct. The problem is that in Java, strings are ref-
erence types, not primitive types, and when you use the == operator with
reference types, Java compares the references to the objects, not the objects
themselves. As a result, the expression answer == “Yes” doesn’t test
whether the value of the string referenced by the answer variable is “Yes”.
Instead, it tests whether the answer string and the literal string “Yes” point
to the same string object in memory. In many cases, they do. But sometimes
they don’t, and the results are difficult to predict.

The correct way to test a string for a given value is to use the equals
method of the String class:

if (answer.equals(“Yes”))
System.out.println(“The answer is Yes.”);

This method actually compares the value of the string object referenced by
the variable with the string you pass as a parameter and returns a boolean
result to indicate whether the strings have the same value.

The String class has another method, equalsIgnoreCase, that’s also
useful for comparing strings. It compares strings but ignores case, which is
especially useful when you’re testing string values entered by users. For
example, suppose you’re writing a program that ends only when the user
enters the word End. You could use the equals method to test the string:

if (input.equals(“end”))
// end the program

But then, the user would have to enter end exactly. If the user enters End or
END, the program won’t end. It’s better to code the if statement like this:

if (input.equalsIgnoreCase(“end”))
// end the program

Then, the user could end the program by entering end, End, END, or
even eNd.

You can find much more about working with strings in Book IV, Chapter 1.
For now, just remember that to test for string equality in an if statement (or
in one of the other control statements that’s presented in the next chapter),
you must use the equals or equalsIgnoreCase method instead of the
== operator.

13_58961x bk02ch04.qxd 3/29/05 3:34 PM Page 160

Chapter 5: Going Around in Circles
(Or, Using Loops)

In This Chapter
� The thrill of while loops

� The rapture of infinite loops

� The splendor of do loops

� The joy of validating input

� The wonder of for loops

� The ecstasy of nested loops

So far, all the programs in this book have started, run quickly through
their main method, and then ended. If Dorothy from The Wizard of Oz

were using these programs, she’d probably say, “My, programs come and go
quickly around here!”

In this chapter, you find out how to write programs that don’t come and go
so quickly. They hang around by using loops, which let them execute the
same statements more than once.

Loops are the key to writing one of the most common types of programs:
programs that get input from the user, do something with it, then get more
input from the user and do something with that, and keep going this way
until the user has had enough.

Or, put another way, loops are like the instructions on your shampoo:
Lather. Rinse. Repeat.

Like if statements, loops rely on conditional expressions to tell them when
to stop looping. Without conditional expressions, loops would go on forever,
and your users would grow old watching them run. So, if you haven’t yet
read Book II, Chapter 4, I suggest you do so before continuing much further.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 161

Your Basic while Loop162

Your Basic while Loop
The most basic of all looping statements in Java is while. The while state-
ment creates a type of loop that’s called a while loop, which is simply a loop
that executes continuously as long as some conditional expression evaluates
to true. while loops are useful in all sorts of programming situations, so
you use while loops a lot. (I tell you about other kinds of loops later in this
chapter.)

The while statement
The basic format of the while statement is like this:

while (expression)
statement

The while statement begins by evaluating the expression. If the expression
is true, statement is executed. Then, the expression is evaluated again,
and the whole process repeats. If the expression is false, statement is
not executed, and the while loop ends.

Note that the statement part of the while loop can either be a single state-
ment or a block of statements contained in a pair of braces. Loops that have
just one statement aren’t very useful, so nearly all the while loops you
code use a block of statements. (Well, okay, sometimes loops with a single
statement are useful. It isn’t unheard of. Just not all that common.)

A counting loop
Here’s a simple program that uses a while loop to print the even numbers
from 2 through 20 on the console:

public class EvenCounter
{

public static void main(String[] args)
{

int number = 2;
while (number <= 20)
{

System.out.print(number + “ “);
number += 2;

}
System.out.println();

}
}

If you run this program, the following output is displayed in the console
window:

2 4 6 8 10 12 14 16 18 20

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 162

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
Breaking Out of a Loop 163

The conditional expression in this program’s while statement is number
<= 20. That means the loop repeats as long as the value of number is less
than or equal to 20. The body of the loop consists of two statements. The
first prints the value of number followed by a space to separate this number
from the next one. Then, the second statement adds 2 to number.

Figure 5-1 shows a flowchart for this program. This flowchart can help you
visualize the basic decision making process of a loop.

Breaking Out of a Loop
In many programs, you need to set up a loop that has some kind of escape
clause. Java’s escape clause is the break statement. When a break state-
ment is executed in a while loop, the loop ends immediately. Any remaining
statements in the loop are ignored, and the next statement executed is
the statement that follows the loop.

number
<= 20?

Yes
print number

add 2 to number

set number to 2

print blank line

No

Figure 5-1:
The
flowchart
for a while
loop.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 163

Looping Forever164

For example, suppose you’re afraid of the number 12. (I’m not doctor and I
don’t play one on TV, but I think the scientific name for this condition would
be duodecaphobia.) You could modify the counting program shown in the
previous section so that when it gets to the number 12, it panics and aborts
the loop:

public class Duodecaphobia
{

public static void main(String[] args)
{

int number = 2;
while (number <= 20)
{

if (number == 12)
break;

System.out.print(number + “ “);
number += 2;

}
System.out.println();

}
}

When you run this program, the following line is displayed on the console:

2 4 6 8 10

Whew! That was close. Almost got to 12 there.

Looping Forever
One common form of loop is called an infinite loop. That’s a loop that goes on
forever. You can create infinite loops many ways in Java (not all of them inten-
tional), but the easiest is to just specify true for the while expression.

Here’s an example:

public class CountForever
{

public static void main(String[] args)
{

int number = 2;
while (true)
{

System.out.print(number + “ “);
number += 2;

}
}

}

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 164

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
Looping Forever 165

If you run this program, your console window quickly fills up with numbers
and just keeps going. That’s great if you like even numbers, but eventually
you’ll tire of this and want it to stop. You can stop an infinite loop three ways:

✦ Turn off your computer.

✦ Hit your computer with an ax or other heavy object.

✦ Close the console window.

The last one is probably the one you want to go with here.

Obviously, infinite loops are something you want to avoid in your programs.
So whenever you use a while expression that’s always true, be sure to
throw in a break statement to give your loop some way to terminate. For
example, you could use an infinite loop with a break statement in the duo-
decaphobia program:

public class Duodecaphobia
{

public static void main(String[] args)
{

int number = 2;
while (true)
{

if (number == 12)
break;

System.out.print(number + “ “);
number += 2;

}
System.out.println();

}
}

Here, the loop looks like it might go on forever, but the break statement
panics out of the loop when it hits 12.

Letting the user decide when to quit
It turns out that infinite loops are also useful when you want to let the user
be in charge of when to stop the loop. For example, suppose you don’t know
what numbers a user is afraid of, so you want to count numbers until the
user says to stop. Here’s a program that does that:

import java.util.Scanner;

public class NumberPhobia
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 165

Looping Forever166

{
int number = 2;
String input;

while (true)
{

System.out.println(number + “ “);
System.out.print(“Do you want keep

counting?”
+ “ (Y or N)”);

input = sc.next();
if (input.equalsIgnoreCase(“N”))

break;
number += 2;

}
System.out.println(“\nWhew! That was

close.\n”);
}

}

Here’s some typical console output from this program, for a user who has
octophobia:

2
Do you want keep counting? (Y or N)y
4
Do you want keep counting? (Y or N)y
6
Do you want keep counting? (Y or N)n

Whew! That was close.

Another way to let the user decide
Another way to write a loop that a user can opt out of is to test the input
string in the while condition. The only trick here is that you must first ini-
tialize the input string to the value that continues the loop. Otherwise, the
loop doesn’t execute at all! Here’s a variation of the NumberPhobia pro-
gram that uses this technique:

import java.util.Scanner;

public class NumberPhobia2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

int number = 2;
String input = “Y”;

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 166

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
Using the continue Statement 167

while (input.equalsIgnoreCase(“Y”))
{

System.out.println(number + “ “);
System.out.print(“Do you want keep

counting?”
+ “ (Y or N)”);

input = sc.next();
number += 2;

}
System.out.println(“\nWhew! That was close.”);

}
}

This program works almost the same as the previous version, but with a
subtle difference. In the first version, if the user says N after the program dis-
plays 6, the value of the number variable after the loop is 6. That’s because
the break statement bails out of the loop before adding 2 to number. But in
this version, the value of number is 8.

Using the continue Statement
The break statement is rather harsh: It completely bails out of the loop.
Sometimes that’s what you need, but just as often, you don’t really need to
quit the loop; you just need to skip a particular iteration of the loop. For
example, the Duodecaphobia program presented earlier in this chapter
stops the loop when it gets to 12. What if you just want to skip the number
12, so you go straight from 10 to 14?

To do that, you can use the break statement’s kinder, gentler relative, the
continue statement. The continue statement sends control right back to
the top of the loop, where the expression is immediately evaluated again. If
the expression is still true, the loop’s statement or block is executed again.

Here’s a version of the Duodecaphobia program that uses a continue state-
ment to skip the number 12 rather than stop counting altogether when it
reaches 12:

public class Duodecaphobia2
{

public static void main(String[] args)
{

int number = 0;
while (number < 20)
{

number += 2;
if (number == 12)

continue;
System.out.print(number + “ “);

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 167

do-while Loops168

}
System.out.println();

}
}

Run this program, and you get the following output in the console window:

2 4 6 8 10 14 16 18 20

Notice that I had to make several changes to this program to get it to work
with a continue statement instead of a break statement. If I had just
replaced the word break with continue, the program wouldn’t have
worked. That’s because the statement that added 2 to the number came
after the break statement in the original version. As a result, if you just
replace the break statement with a continue statement, you end up with
an infinite loop once you reach 12 because the statement that adds 2 to
number never gets executed.

To make this program work with a continue statement, I rearranged the
statements in the loop body so that the statement that adds 2 to number
comes before the continue statement. That way, the only statement
skipped by the continue statement is the one that prints number to the
console.

Unfortunately, this change affected other statements in the program as well.
Because 2 is added to number before number is printed, I had to change the
initial value of number from 2 to 0, and I had to change the while expres-
sion from number <= 20 to number < 20.

do-while Loops
A do-while loop (sometimes just called a do loop) is similar to a while loop,
but with a critical difference: In a do-while loop, the condition that stops
the loop isn’t tested until after the statements in the loop have executed.
The basic form of a do-while loop is this:

do
statement

while (expression);

Note that the while keyword and the expression aren’t coded until after the
body of the loop. As with a while loop, the body for a do-while loop can
be a single statement or a block of statements enclosed in braces.

Also, notice that the expression is followed by a semicolon. do-while is the
only looping statement that ends with a semicolon.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 168

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
do-while Loops 169

Here’s a version of the EvenCounter program that uses a do-while loop
instead of a while loop:

public class EvenCounter2
{

public static void main(String[] args)
{

int number = 2;
do
{

System.out.print(number + “ “);
number += 2;

} while (number <= 20);

System.out.println();
}

}

Here’s the most important thing to remember about do-while loops: The
statement or statements in the body of a do-while loop are always exe-
cuted at least once. In contrast, the statement or statements in the body of
a while loop are not executed at all if the while expression is false the
first time it is evaluated.

Look at the flowchart in Figure 5-2 to see what I mean. You can see that exe-
cution starts at the top of the loop and flows through to the decision test
after the loop’s body has been executed once. Then, if the decision test is
true, control flies back up to the top of the loop. Otherwise, it spills out the
bottom of the flowchart.

Here are a few other things to be aware of concerning do-while loops:

✦ You often can skip initializing the variables that appear in the expression
before the loop because the expression isn’t evaluated until the state-
ments in the loop body have been executed at least once.

✦ You can use break and continue statements in a do-while loop just
as you can in a while loop.

✦ Some programmers like to place the brace that begins the loop body
on the same line as the do statement and the while statement that ends
the do-while loop on the same line as the brace that marks the end
of the loop body. Whatever makes you happy is fine with me. Just
remember that the compiler is agnostic when it comes to matters of
indentation and spacing.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 169

Validating Input from the User170

Validating Input from the User
do-while loops are especially useful for validating input by the user. For
example, suppose you’re writing a program that plays a betting game, and
you want to get the amount of the user’s bet from the console. The user can
bet any dollar amount he wants (whole dollars only though), but can’t bet
more than he has in the bank, and he can’t bet a negative amount or zero.
Here’s a program that uses a do-while loop to get this input from the user:

number
< 20?

Yes

set number to 2

add 2 to number

print number

print blank line

No

Figure 5-2:
The
flowchart
for a do-
while loop.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 170

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
Validating Input from the User 171

import java.util.Scanner;

public class GetABet
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

int bank = 1000; // assume the user has $1,000
int bet; // the bet entered by the user

System.out.println(“You can bet between 1 and “ +
bank);

do
{

System.out.print(“Enter your bet: “);
bet = sc.nextInt();

} while ((bet <= 0) || (bet > bank));
System.out.println(“Your money’s good here.”);

}
}

Here, the expression used by the do-while loop validates the data entered
by the user, which means it checks the data against some set of criteria to
make sure the data is acceptable.

The || operator performs an or test. It returns true if at least one of the
expressions on either side of the operator is true. So if the bet is less than
or equal to zero (bet <= 0), or if the bet is greater than the money in the
bank (bet > bank), this expression returns true.

This type of validation testing only checks that if the user has entered a valid
number, it is in an acceptable range. If the user enters something that isn’t a
valid number, such as the word Buttercup or Humperdink, the program
chokes badly and spews forth a bunch of vile exception messages upon the
console. You find out how to clean up that mess in Book II, Chapter 8.

(Actually, you can avoid this problem by using either a do loop or a while
loop and the hasNextDouble method of the Scanner class that I describe
in Book II, Chapter 2.)

If you want to display an error message when the user enters incorrect
input, you have to use an if statement inside the loop, and this if state-
ment must duplicate the expression that validates the input data. Thus, the
expression that does the validation has to appear twice. For example:

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 171

Validating Input from the User172

import java.util.Scanner;

public class GetABet2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

int bank = 1000; // assume the user has $1,000
int bet; // the bet entered by the user

System.out.println(“You can bet between 1 and “ +
bank);

do
{

System.out.print(“Enter your bet: “);
bet = sc.nextInt();
if ((bet <= 0) || (bet > bank))

System.out.println(“What, are you
crazy?”);

} while ((bet <= 0) || (bet > bank));
System.out.println(“Your money’s good here.”);

}
}

Here, the if statement displays the message “What, are you crazy?”
if the user tries to enter an inappropriate bet.

You can avoid duplicating the expression that does the data validation in two
ways. One is to add a boolean variable that’s set in the body of the do-
while loop if the data is invalid, as in this example:

import java.util.Scanner;

public class GetABet3
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

int bank = 1000; // assume the user has $1,000
int bet; // the bet entered by the user
boolean validBet; // indicates if bet is valid

System.out.println(“You can bet between 1 and “ +
bank);

do
{

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 172

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
The Famous for Loop 173

System.out.print(“Enter your bet: “);
bet = sc.nextInt();
validBet = true;
if ((bet <= 0) || (bet > bank))
{

validBet = false;
System.out.println(“What, are you

crazy?”);
}

} while (!validBet);
System.out.println(“Your money’s good here.”);

}
}

In this example, I use a boolean variable named validBet to indicate
whether the user has entered a valid bet. After the user enters a bet, this vari-
able is set to true before the if statement tests the validation criteria. Then,
if the if statement finds that the bet is not valid, validBet is set to false.

The Famous for Loop
In addition to while and do-while loops, Java offers one more kind of
loop: the for loop. You may have noticed that many of the loops presented so
far in this minibook have involved counting. It turns out that counting loops
are quite common in computer programs, so the people who design computer
programming languages (they’re called “computer programming language
designers”) long ago concocted a special kind of looping mechanism that’s
designed just for counting.

The basic principle behind a for loop is that the loop itself maintains a
counter variable — that is, a variable whose value is increased each time the
body of the loop is executed. For example, if you want a loop that counts
from 1 to 10, you’d use a counter variable that starts with a value of 1 and is
increased by 1 each time through the loop. Then, you’d use a test to end the
loop when the counter variable reaches 10. The for loop lets you set this
up all in one convenient statement.

People who majored in Computer Science call the counter variable an iterator.
They do so because they think we don’t know what it means. But we know
perfectly well that the iterator is where you put your beer to keep it cold.

The formal format of the for loop
I would now like to inform you of the formal format for the for loop, so you
know how to form it from now on. The for loop follows this basic format:

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 173

The Famous for Loop174

for (initialization-expression; test-expression; count-
expression)
statement;

The three expressions in the parentheses following the keyword for control
how the for loop works. The following paragraphs explain what these three
expressions do:

✦ The initialization expression is executed before the loop begins. Usually,
you use this expression to initialize the counter variable. If you haven’t
declared the counter variable before the for statement, you can declare
it here too.

✦ The test expression is evaluated each time the loop is executed to deter-
mine whether the loop should keep looping. Usually, this expression
tests the counter variable to make sure it is still less than or equal to the
value you want to count to. The loop keeps executing as long as this
expression evaluates to true. When the test expression evaluates to
false, the loop ends.

✦ The count expression is evaluated each time the loop executes. Its job is
usually to increment the counter variable.

Figure 5-3 shows a flowchart to help you visualize how a for loop works.

Here’s a simple for loop that displays the numbers 1 to 10 on the console:

public class CountToTen
{

public static void main(String[] args)
{

for (int i = 1; i <= 10; i++)
System.out.println(i);

}
}

Run this program and here’s what you see on the console:

1
2
3
4
5
6
7
8
9
10

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 174

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
The Famous for Loop 175

This for loop apart has the following pieces:

✦ The initialization expression is int i = 1. This expression declares a
variable named i of type int and assigns it an initial value of 1.

✦ The test expression is i <= 10. As a result, the loop continues to exe-
cute as long as i is less than or equal to 10.

✦ The count expression is i++. As a result, each time the loop executes,
the variable i is incremented.

✦ The body of the loop is the single statement System.out.
println(i). As a result, each time the loop executes, the value of the
i variable is printed to the console.

I made up those terms I use to describe the three expressions in a for loop.
Officially, Java calls them the ForInit Expression, the Expression, and the
ForUpdate Expression. Don’t you think my terms are more descriptive?

test
expression

initialization
expression

statement

count expression

True

False
Done

Figure 5-3:
The
flowchart
for a for
loop.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 175

The Famous for Loop176

Scoping out the counter variable
If you declare the counter variable in the initialization statement, the scope
of the counter variable is limited to the for statement itself. Thus, you can
use the variable in the other expressions that appear within the parentheses
and in the body of the loop, but you can’t use it outside of the loop. For
example, this code causes a compiler error:

public class CountToTenError
{

public static void main(String[] args)
{

for (int i = 1; i <=10; i++)
System.out.println(i);

System.out.println(“The final value of i is “ + i);
}

}

That’s because the last statement in the main method refers to the variable
i, which has gone out of scope because it was declared within the for loop.

However, you don’t have to declare the counter variable in the for statement
itself. Thus, the following program works:

public class CountToTenErrorFixed
{

public static void main(String[] args)
{

int i;
for (i = 1; i <=10; i++)

System.out.println(i);
System.out.println(“The final value of i is “ +

i);
}

}

Note that because the i variable is declared before the for statement, the
initialization expression doesn’t name the variable’s data type. When you
run this program, the following appears in the console window:

1
2
3
4
5
6
7
8
9
10
The final value of i is 11

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 176

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
The Famous for Loop 177

Counting even numbers
Earlier in this chapter, you saw a program that counts even numbers up to
20. You can do that with a for loop too. All you have to do is adjust the
count expression. For example, here’s a version of the CountEven program
that uses a for loop:

public class ForEvenCounter
{

public static void main(String[] args)
{

for (int number = 2; number <= 20; number += 2)
System.out.print(number + “ “);

System.out.println();
}

}

Run this program, and sure enough, the console window displays the following:

2 4 6 8 10 12 14 16 18 20

Counting backwards
No rule says for loops can count only forwards. To count backwards, you
simply have to adjust the three for loop expressions. As usual, the initializa-
tion expression specifies the starting value for the counter variable. The test
expression uses a greater-than test instead of a less-than test. And the count
expression subtracts from the counter variable rather than adds to it.

For example:

public class CountDown
{

public static void main(String[] args)
{

for (int count = 10; count >= 1; count--)
{

System.out.println(count);
}

}
}

Run this program, and you see this result in the console window:

10
9
8
7
6
5

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 177

The Famous for Loop178

4
3
2
1

For those of you who grew up like I did in the 1960s, watching NASA launches
religiously, you’ll appreciate this variation of the countdown program:

public class LaunchControl
{

public static void main(String[] args)
{

System.out.print(“We are go for launch in T minus
“);

for (int count = 10; count >= 0; count--)
{

if (count == 8)
System.out.println(“Ignition sequence

start!”);
else

System.out.println(count + “...”);
}
System.out.println(“All engines running!”);
System.out.println(“Liftoff! We have a liftoff!”);

}
}

When you run it, here’s the output that’s displayed:

We are go for launch in T minus 10...
9...
Ignition sequence start!
7...
6...
5...
4...
3...
2...
1...
0...
All engines running!
Liftoff! We have a liftoff!

Can’t you hear the voice of Paul Haney, the famous “Voice of Mission Control”
for NASA in the 1960s? If you can’t, you’re not nearly as nerdy as I am.

for loops without bodies
Some programmers get a kick out of writing code that is as terse as possible.
I think Seinfeld did an episode about that . . . Jerry had a girlfriend who was a
“terse-coder.” He had to dump her because he couldn’t understand her code.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 178

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
The Famous for Loop 179

Anyway, terse coders sometimes like to play with for statements in an
effort to do away with the body of a for loop altogether. To do that, they
take advantage of the fact that you can code any expression you want in the
count expression part of a for statement, including method calls. For exam-
ple, here’s a program that prints the numbers 1 to 10 on the console using a
for statement that has no body:

public class TerseCoder
{

public static void main(String[] args)
{

for (int i = 1; i <=10; System.out.println(i++));
}

}

Here, the count expression is a call to System.out.println. The param-
eter to the println method cleverly uses the increment operator so the
variable is both printed and incremented in the same expression.

Stay away from terse coders! Seinfeld was right to dump her.

Ganging up your expressions
An obscure aspect of for loops is that the initialization and count expres-
sions can actually be a list of expressions separated by commas. This can
sometimes be useful if you need to keep track of two counter variables at the
same time. For example, here’s a program that counts from 1 to 10 and 10 to
1 at the same time, using two counter variables:

public class CountBothWays
{

public static void main(String[] args)
{

int a, b;
for (a = 1, b = 10; a <= 10; a++, b--)

System.out.println(a + “ “ + b);
}

}

If you run this program, here’s what you see in the console window:

1 10
2 9
3 8
4 7
5 6
6 5
7 4
8 3
9 2
10 1

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 179

The Famous for Loop180

Keep in mind these rules when you use more than one expression for the ini-
tialization and counter expressions:

✦ In the initialization expression, you can’t declare variables if you use
more than one expression. That’s why I declared the a and b variable
before the for statement in the CountBothWays example.

✦ The expressions in an expression list can be assignment statements,
increment or decrement statements (such as a++), method calls, or
object creation statements that use the new keyword to create an object
from a class. Other types of statements, such as if statements or loops,
are not allowed.

✦ You can’t list more than one expression in the test expression. However,
you can use compound conditions created with boolean operators, so you
don’t need to use an expression list.

Here, just to prove I could do it, is a version of the LaunchController pro-
gram that uses a bodiless for loop:

public class ExpressionGanging
{

public static void main(String[] args)
{

System.out.print(“We are go for launch in T minus
“);

for (int count = 10; count >= 0;
System.out.println((count == 8) ?

“Ignition sequence start!” :
count + “...”),

count--);
System.out.println(“All engines running!”);
System.out.println(“Liftoff! We have a

liftoff!”);
}

}

This program actually looks more complicated than it is. The count expres-
sion is a list of two expressions. First is a call to System.out.println
that uses the ternary ?: operator to determine what to print. The ?: opera-
tor first evaluates the count variable to see if it equals 8. If so, the string
“Ignition sequence start!” is sent to the println method.
Otherwise, count + “...” is sent. The second expression simply incre-
ments the count variable.

I think you’ll agree that coding the for statement like this example is way
out of line. It’s better to keep the expressions simple and do the real work in
the loop’s body.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 180

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
The Famous for Loop 181

Omitting expressions
Yet another oddity about for loops is that all three of the expressions are
optional. If you omit one or more of the expressions, you just code the semi-
colon as a placeholder so the compiler knows.

Omitting the test expression or the iteration expression is not common, but
omitting the initialization expression is common. For example, the variable
you’re incrementing in the for loop may already be declared and initialized
before you get to the loop. In that case, you can omit the initialization
expression, as in this example:

Scanner sc = new Scanner(System.in);
System.out.print(“Where should I start? “);
int a = sc.nextInt();
for (; a >= 0; a--)

System.out.println(a);

This for loop simply counts down from whatever number the user enters to
zero.

If you omit the test expression, you’d better throw a break statement in the
loop somewhere. Otherwise, you find yourself in an infinite loop.

You can also omit all three of the expressions if you want to, as in this example:

for(;;)
System.out.println(“Oops”);

This program also results in an infinite loop. There’s little reason to do this
because while(true) has the same effect and is more obvious.

Breaking and continuing your for loops
You can use a break in a for loop just as you can in a while or do-while
loop. For example, here I revisit the Duodecaphobia program from earlier in
the chapter, this time with a for loop:

public class ForDuodecaphobia
{

public static void main(String[] args)
{

for (int number = 2; number <=20; number += 2)
{

if (number == 12)
break;

System.out.print(number + “ “);
}
System.out.println();

}
}

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 181

Nesting Your Loops182

As before, this version counts by 2s until it gets to 20. But when it hits 12, it
panics and aborts the loop, so it never actually gets to 14, 16, 18, or 20. So
the console output loops like this:

2 4 6 8 10

And here’s a version that uses a continue statement to simply skip 12
rather than abort the loop:

public class ForDuodecaphobia2
{

public static void main(String[] args)
{

for (int number = 2; number <=20; number += 2)
{

if (number == 12)
continue;

System.out.print(number + “ “);
}
System.out.println();

}
}

The console output from this version looks like this:

2 4 6 8 10 14 16 18 20

Nesting Your Loops
Loops can contain loops. The technical term for this is Loop-de-Loop. Just
kidding. Actually, the technical term is nested loop. A nested loop is simply a
loop that is completely contained inside another loop. The loop that’s inside
is called the inner loop, and the loop that’s outside is called the outer loop.

A simple nested for loop
To demonstrate the basics of nesting, here’s a simple little program that uses
a pair of nested for loops:

public class NestedLoop
{

public static void main(String[] args)
{

for(int x = 1; x < 10; x++)
{

for (int y = 1; y < 10; y++)

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 182

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
Nesting Your Loops 183

System.out.print(x + “-” + y + “ “);
System.out.println();

}
}

}

This program consists of two for loops. The outer loop uses x as its
counter variable, and the inner loop uses y. For each execution of the outer
loop, the inner loop executes 10 times and prints a line that shows the value
of x and y for each pass through the inner loop. When the inner loop fin-
ishes, a call to System.out.println with no parameters starts a new
line. Then, the outer loop cycles so the next line is printed.

When you run this program, the console displays this text:

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9
4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9
5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9
6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9
7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9
8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9
9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9

A guessing game
Listing 5-1 shows a more complicated but realistic example of nesting. This
program implements a simple guessing game in which the computer picks a
number between 1 and 10 and you have to guess the number. After you
guess, the computer tells you if you’re right or wrong, and then asks if you
want to play again. If you enter Y or y, the game starts over.

The nesting comes into play because the entire game is written in a while
loop that repeats as long as you say you want to play another game. Then,
within that loop, each time the game asks for input from the user, it uses a
do-while loop to validate the user’s entry. Thus, when the game asks the
user to guess a number between 1 and 10, it keeps looping until the number
entered by the user is in that range. And when the game asks the user
whether he or she wants to play again, it loops until the user enters Y, y, N,
or n.

Here’s a sample of the console output displayed by this program:

Let’s play a guessing game!

I’m thinking of a number between 1 and 10.
What do you think it is? 5
You’re wrong! The number was 8

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 183

Nesting Your Loops184

Play again? (Y or N)y

I’m thinking of a number between 1 and 10.
What do you think it is? 32
I said, between 1 and 10. Try again: 5
You’re wrong! The number was 6

Play again? (Y or N)maybe

Play again? (Y or N)ok

Play again? (Y or N)y

I’m thinking of a number between 1 and 10.
What do you think it is? 5
You’re right!

Play again? (Y or N)n
Thank you for playing.

LISTING 5-1:THE GUESSING GAME

import java.util.Scanner;

public class GuessingGame
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

boolean keepPlaying = true; ➞ 10

System.out.println(“Let’s play a guessing game!”);
while (keepPlaying) ➞ 13
{

boolean validInput; ➞ 15
int number, guess;
String answer;

// Pick a random number
number = (int)(Math.random() * 10) + 1; ➞ 20

// Get the guess
System.out.println(“\nI’m thinking of a number “

+ “between 1 and 10.”);
System.out.print(“What do you think it is? “);
do ➞ 26
{

guess = sc.nextInt();
validInput = true;
if ((guess < 1) || (guess > 10))
{

System.out.print(“I said, between 1 and 10. “

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 184

Book II
Chapter 5

Going Around in
Circles (Or, Using

Loops)
Nesting Your Loops 185

+ “Try again: “);
validInput = false;

}
} while (!validInput); ➞ 36

// Check the guess
if (guess == number) ➞ 39

System.out.println(“You’re right!”);
else

System.out.println(“You’re wrong!”);

// Play again?
do ➞ 46
{

System.out.print(“\nPlay again? (Y or N)”);
answer = sc.next();
validInput = true;
if (answer.equalsIgnoreCase(“Y”))

;
else if (answer.equalsIgnoreCase(“N”))

keepPlaying = false;
else

validInput = false;
} while (!validInput); ➞ 57

} ➞ 58
System.out.println(“\nThank you for playing!”); ➞ 59

}
}

The following paragraphs describe some of the key lines in this program:

➞10 Defines a boolean variable named keepPlaying that’s initialized to
true and changed to false when the user indicates he or she has
had enough of this silly game.

➞13 Begins the main while loop for the game. The loop continues as long
as keepPlaying is true. This loop ends on line 58.

➞15 Defines a boolean variable named validInput that’s used to indi-
cate whether the user’s input is valid. The same variable is used for
both the entry of the user’s guess and the Y or N string at the end of
each round.

➞20 Picks a random number between 1 and 10. For more information,
refer to Book II, Chapter 3.

➞26 Begins the do-while loop that gets a valid guess from the user. This
loop ends on line 36. The statements in this loop read the user’s guess
from the console, and then test to make sure it is between 1 and 10. If
so, validInput is set to true. Otherwise, validInput is set to
false, an error message is displayed, and the loop repeats so the user
is forced to guess again. The loop continues as long as validInput is
false.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 185

Nesting Your Loops186

➞39 The if statement compares the user’s guess with the computer’s
number. A message is displayed to indicate whether the user guessed
right or wrong.

➞46 Begins the do-while loop that asks whether the user wants to play
again. This loop ends on line 57. The statements in this loop read a
string from the user. If the user enters Y or y, validInput is set to
true. (keepPlaying is already true, so it is left alone.) If the user
enters N or n, validInput is set to true, and keepPlaying is set
to false. And if the user enters anything else, validInput is set to
false. The loop continues as long as validInput is false.

➞59 This statement is executed after the program’s main while loop fin-
ishes to thank the user for playing the game.

14_58961X bk02ch05.qxd 3/29/05 3:35 PM Page 186

Chapter 6: Pulling a Switcheroo

In This Chapter
� The trouble with big else-if statements

� Using the switch statement

� Creating case groups

� Using characters with case

� Falling through the cracks

In Book II, Chapter 4, you find out about the workhorses of Java decision
making: boolean expressions and the mighty if statement. In this chapter,

you discover another Java tool for decision making: the switch statement.
The switch statement is a pretty limited beast, but it excels at one particu-
lar type of decision making: choosing one of several actions based on a value
stored in an integer variable. As it turns out, the need to do just that comes
up a lot. So you want to keep the switch statement handy when such a
need arises.

else-if Monstrosities
Many applications call for a simple logical selection of things to be done
depending on some value that controls everything. As I describe in Book II,
Chapter 4, such things are usually handled with big chains of else-if
statements all strung together.

Unfortunately, these things can quickly get out of hand. else-if chains
can end up looking like DNA double-helix structures, or those things that
dribble down from the tops of the computer screens in The Matrix.

For example, Listing 6-1 shows a bit of a program that might be used to decode
error codes in a Florida or Ohio voting machine.

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 187

else-if Monstrosities188

LISTING 6-1:THE ELSE-IF VERSION OF THE VOTING MACHINE ERROR DECODER

import java.util.Scanner;

public class VoterApp
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(“Welcome to the voting machine “
+ “error code decoder.\n\n”
+ “If your voting machine generates “
+ “an error code,\n”
+ “you can use this program to determine “
+ “the exact\ncause of the error.\n”);

System.out.print(“Enter the error code: “);
int err = sc.nextInt();

String msg;
if (err==1)
msg = “Voter marked more than one candidate.\n”
+ “Ballot rejected.”;

else if (err==2)
msg = “Box checked and write-in candidate “
+ “entered.\nBallot rejected.”;

else if (err==3)
msg = “Entire ballot was blank.\n”
+ “Ballot filled in according to secret plan.”;

else if (err==4)
msg = “Nothing unusual about the ballot.\n”
+ “Voter randomly selected for tax audit.”;

else if (err==5)
msg = “Voter filled in every box.\n”
+ “Ballot counted twice.”;

else if (err==6)
msg = “Voter drooled in voting machine.\n”
+ “Beginning spin cycle.”;

else if (err==7)
msg = “Voter lied to pollster after voting.\n”
+ “Voter’s ballot changed “
+ “to match polling data.”;

else
msg = “Voter filled out ballot correctly.\n”
+ “Ballot discarded anyway.”;

System.out.println(msg);
}

}

Wow! And this program has to decipher just 7 different error codes. What if
the machine had 500 different codes?

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 188

Book II
Chapter 6

Pulling a
Sw

itcheroo
A Better Version of the Voter Machine Error Decoder Program 189

A Better Version of the Voter Machine
Error Decoder Program

Fortunately, Java has a special statement that’s designed just for the kind of
task represented by the Voter Machine Error Decoder program: the switch
statement. Specifically, the switch statement is sometimes useful when you
need to select one of several alternatives based on the value of an integer or
character type variable.

Listing 6-2 shows a version of the Voter Machine Error Decoder program that
uses a switch statement instead of a big else-if structure. I think you’ll
agree that this version of the program is a bit easier to follow. The switch
statement makes it clear that the messages are all selected based on the
value of the err variable.

LISTING 6-2:THE SWITCH VERSION OF THE VOTING MACHINE ERROR DECODER

import java.util.Scanner;

public class VoterApp2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(“Welcome to the voting machine “
+ “error code decoder.\n\n”
+ “If your voting machine generates “
+ “an error code,\n”
+ “you can use this program to determine “
+ “the exact\ncause of the error.\n”);

System.out.print(“Enter the error code: “);
int err = sc.nextInt();

String msg;

switch (err)
{
case 1:
msg = “Voter marked more than one candidate.\n”
+ “Ballot rejected.”;

break;
case 2:
msg = “Box checked and write-in candidate “
+ “entered.\nBallot rejected.”;
break;

continued

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 189

Using the switch Statement190

LISTING 6-2 (CONTINUED)

case 3:
msg = “Entire ballot was blank.\n”
+ “Ballot filled in according to secret plan.”;

break;
case 4:
msg = “Nothing unusual about the ballot.\n”
+ “Voter randomly selected for tax audit.”;

break;
case 5:
msg = “Voter filled in every box.\n”
+ “Ballot counted twice.”;

break;
case 6:
msg = “Voter drooled in voting machine.\n”
+ “Beginning spin cycle.”;

break;
case 7:
msg = “Voter lied to pollster after voting.\n”
+ “Voter’s ballot changed “
+ “to match polling data.”;

break;
default:
msg = “Voter filled out ballot correctly.\n”
+ “Ballot discarded anyway.”;

break;
}
System.out.println(msg);

}
}

Using the switch Statement
The basic form of the switch statement is this:

switch (expression)
{

case constant:
statements;
break;

[case constant-2:
statements;
break;] ...

[default:
statements;
break;] ...

}

The expression must evaluate to an int, short, byte, or char. It can’t be
a long or a floating-point type.

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 190

Book II
Chapter 6

Pulling a
Sw

itcheroo
A Boring Business Example Complete with Flowchart 191

You can code as many case groups as you want or need. Each begins with
the word case followed by a constant (usually a simple numeric literal) and
a colon. Then, you code one or more statements that you want executed if
the value of the switch expression equals the constant. The last line of
each case group is a break statement, which causes the entire switch
statement to end.

The default group, which is optional, is like a catch-all case group. Its
statements are executed only if none of the previous case constants match
the switch expression.

Note that the case groups are not true blocks marked with braces. Instead,
each case group begins with the case keyword and ends with the case key-
word that starts the next case group. However, all the case groups together
are defined as a block marked with a set of braces.

The last statement in each case group usually is a break statement. A break
statement causes control to skip to the end of the switch statement. If you
omit the break statement, control falls through to the next case group.
Accidentally leaving out break statements is the most common cause of
trouble with the switch statement.

A Boring Business Example Complete with Flowchart
Okay, the Voter Machine Error Decoder was kind of fun. Now here’s a more
down-to-earth example. Suppose you need to set a commission rate based
on a sales class represented by an integer that can be 1, 2, or 3, according to
this table:

Class Commission Rate

1 2%

2 3.5%

3 5%

Any other value 0%

You could do this with the following switch statement:

double commissionRate;
switch (salesClass)
{

case 1:
commissionRate = 0.02;
break;

case 2:
commissionRate = 0.035;
break;

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 191

A Boring Business Example Complete with Flowchart192

case 3:
commissionRate = 0.05;
break;

default:
commissionRate = 0.0;
break;

}

Figure 6-1 shows a flowchart that describes the operation of this switch state-
ment. As you can see, this flowchart is similar to the flowchart that was shown
in Figure 4-3 in Book II, Chapter 4. That’s because the operation of the switch
statement is similar to the operation of a series of else-if statements.

salesClass
= 1

Yes

No

commissionRate
= 0.02

salesClass
= 2

Yes commissionRate
= 0.035

No

salesClass
= 3

Yes

No

commissionRate
= 0.05

commissionRate
= 0.0

Figure 6-1:
The
flowchart
for a switch
statement.

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 192

Book II
Chapter 6

Pulling a
Sw

itcheroo
Putting if Statements Inside switch Statements 193

I like flowcharts because they remind me of my old days of computer pro-
gramming, when we had to draw flowcharts for every program we wrote
before we were allowed to write any code. The flowcharts didn’t really help
us write better programs, but they were fun to draw.

Putting if Statements Inside switch Statements
You’re free to include any type of statements you want in the case groups,
including if statements. For example, suppose your commission structure
depends on total sales as well as sales class, like this:

Class Sales < $10,000 Sales $10,000 and Above

1 1% 2%

2 2.5% 3.5%

3 4% 5%

Any other value 0% 0%

Then, you can use the following switch statement:

double commissionRate;
switch (salesClass)
{

case 1:
if (salesTotal < 10000.0)

commissionRate = 0.01;
else

commissionRate = 0.02;
break;

case 2:
if (salesTotal < 10000.0)

commissionRate = 0.025;
else

commissionRate = 0.035;
break;

case 3:
if (salesTotal < 10000.0)

commissionRate = 0.04;
else

commissionRate = 0.05;
break;

default:
commissionRate = 0.0;
break;

}

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 193

Creating Character Cases194

Here, each case group includes an if statement. If necessary, these if state-
ments could be complex nested if statements.

Other than the if statements within the case groups, there’s nothing else
here to see, folks. Move along.

Creating Character Cases
Aside from having a nice alliterative title, this section shows how you can
use a char variable rather than an integer in a switch statement. When
you use a char type, providing two consecutive case constants for each
case group is common, to allow for both lower- and uppercase letters. For
example, suppose you need to set the commission rates based on character
codes rather than integer values for the sales class, according to this table:

Class Commission Rate

A or a 2%

B or b 3.5%

C or c 5%

Any other value 0%

Here’s the switch statement to do the trick:

double commissionRate;
switch (salesClass)
{

case ‘A’:
case ‘a’:

commissionRate = 0.02;
break;

case ‘B’:
case ‘b’:

commissionRate = 0.035;
break;

case ‘C’:
case ‘c’:

commissionRate = 0.05;
break;

default:
commissionRate = 0.0;
break;

}

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 194

Book II
Chapter 6

Pulling a
Sw

itcheroo
Falling through the Cracks 195

The key to understanding this example is realizing that you don’t have to
code any statements at all for a case group, and that if you omit the break
statement from a case group, control falls through to the next case group.
Thus, the case ‘A’ group doesn’t contain any statements, but it falls
through to the case ‘a’ group.

You use apostrophes, not quotation marks, to create character literals.

Falling through the Cracks
Although the most common cause of problems with the switch statement
is accidentally leaving out a break statement at the end of a case group,
sometimes you need to do it on purpose. For example, many applications have
features that are progressively added based on a control variable. For exam-
ple, your local car wash might sell several packages with different services:

Package Services

A Wash, vacuum, and hand dry

B Package A + Wax

C Package B + Leather/Vinyl Treatment

D Package C + Tire Treatment

E Package D + New Car Scent

Listing 6-3 shows an application that displays all the products you get when
you order a specific package. It works by testing the package codes in a
switch statement in reverse order (starting with package E) and adding
the products that come with each package to the details variable. None of
the case groups except the last includes a break statement. As a result, con-
trol falls through each case group to the next group. Thus, once a case group
has tested true, the rest of the case groups in the switch statement are
executed.

LISTING 6-3:THE CAR WASH APPLICATION

import java.util.Scanner;

public class CarWashApp
{
static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

continued

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 195

Falling through the Cracks196

LISTING 6-3 (CONTINUED)

System.out.println(“The car wash application!n\n”);
System.out.print(“Enter the package code: “);
String s = sc.next();
char p = s.charAt(0);

String details = “”;

switch (p)
{
case ‘E’:
case ‘e’:
details += “\tNew Car Scent, plus...\n”;

case ‘D’:
case ‘d’:
details += “\tTire Treatment, plus...\n”;

case ‘C’:
case ‘c’:
details += “\tLeather/Vinyl Treatment, plus...\n”;
case ‘B’:
case ‘b’:
details += “\tWax, plus...\n”;

case ‘A’:
case ‘a’:
details += “\tWash, vacuum, and hand dry.\n”;
break;

default:
details = “That’s not one of the codes.”;
break;

}
System.out.println(“\nThat package includes:\n”);
System.out.println(details);

}
}

Just between you and me, writing programs that depend on switch state-
ments falling through the cracks like this example isn’t really a good idea.
Instead, consider placing the statements for each case group in separate
methods, and then calling all the methods you need for each case group.
Then, you can use a break statement at the end of each group to prevent
falling through. Listing 6-4 shows a version of the car wash application that
uses this technique to avoid fall-throughs in the switch statement. (Using
simple fall throughs to treat upper- and lowercase characters the same isn’t
as confusing, so this program still uses that technique.)

LISTING 6-4: A VERSION OF THE CAR WASH PROGRAM THAT AVOIDS NASTY FALLS

import java.util.Scanner;

public class CarWashApp2
{

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 196

Book II
Chapter 6

Pulling a
Sw

itcheroo
Falling through the Cracks 197

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(“The car wash application!\n\n”);
System.out.print(“Enter the package code: “);
String s = sc.next();
char p = s.charAt(0);

String details = “”;

switch (p)
{
case ‘E’:
case ‘e’:
details = packageE() + packageD() + packageC()
+ packageB() + packageA();

break;
case ‘D’:
case ‘d’:
details = packageD() + packageC()
+ packageB() + packageA();

break;
case ‘C’:
case ‘c’:
details = packageC() + packageB() + packageA();
break;

case ‘B’:
case ‘b’:
details = packageB() + packageA();
break;

case ‘A’:
case ‘a’:
details = packageA();
break;

default:
details = “That’s not one of the codes.”;
break;

}
System.out.println(“\nThat package includes:\n”);
System.out.println(details);

}

public static String packageA()
{
return “\tWash, vacuum, and hand dry.\n”;

}

public static String packageB()
{
return “\tWax, plus...\n”;

}

continued

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 197

Falling through the Cracks198

LISTING 6-4 (CONTINUED)

public static String packageC()
{
return “\tLeather/Vinyl Treatment, plus...\n”;

}

public static String packageD()
{
return “\tTire Treatment, plus...\n”;

}

public static String packageE()
{
return “\tNew Car Scent, plus...\n”;

}

}

15_58961x bk02ch06.qxd 3/29/05 3:36 PM Page 198

Chapter 7: Adding Some Methods
to Your Madness

In This Chapter
� Introducing static methods

� Some good reasons to use methods in your programs

� Creating methods that return values

� Creating methods that accept parameters

In Java, a method is a block of statements that has a name and can be exe-
cuted by calling (also called invoking) it from some other place in your

program. You may not realize it, but you’re already very experienced with
using methods. For example, to print text to the console, you use the
println or print methods. To get an integer from the user, you use the
nextInt method. And to compare string values, you use either the equals
method or the equalsIgnoreCase method. And the granddaddy of all
methods, main, is the method that contains the statements that are exe-
cuted when you run your program.

All the methods you’ve used so far (with the exception of main) have been
methods that are defined by the Java API and that belong to a particular
Java class. For example, the nextInt method belongs to the Scanner
class, and the equalsIgnoreCase method belongs to the String class.

In contrast, the main method belongs to the class defined by your applica-
tion. In this chapter, you find out how to create additional methods that are
a part of your application’s class. You can then call these methods from
your main method. As you’ll see, this method turns out to be very useful for
all but the shortest Java programs.

The Joy of Methods
The use of methods can dramatically improve the quality of your program-
ming life. For example, suppose the problem your program is supposed to
solve is complicated and you need at least 1,000 Java statements to get ’er
done. You could put all those 1,000 statements in the main method, but it
would go on for pages and pages. It’s better to break your program up into
a few well-defined sections of code and place each of those sections in a
separate method. Then, your main method can simply call the other meth-
ods in the right sequence.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 199

The Basics of Making Methods200

Or, suppose your program needs to perform some calculation, such as how
long to let the main rockets burn to make a mid-course correction on a
moon-flight, and the program needs to perform this calculation in several dif-
ferent places. Without methods, you’d have to duplicate the statements that
do this calculation. That’s not only error prone, but makes your programs
more difficult to test and debug. But if you put the calculation in a method,
you can simply call the method whenever you need to perform the calcula-
tion. Thus, methods help you cut down on repetitive code.

Another good use for methods is to simplify the structure of your code that
uses long loops. For example, suppose you have a while loop that has 500
statements in its body. That makes it pretty hard to track down the closing
brace that marks the end of the body. By the time you find it, you probably
will have forgotten what the while loop does. You can simplify this while
loop by placing the code from its body in a separate method. Then, all the
while loop has to do is call the new method.

At this point, the object-oriented programming zealots in the audience are
starting to boo and hiss. A few of them have already left the auditorium.
They’re upset because I’m describing methods in traditional procedural-
programming terms instead of modern object-oriented programming terms.

Well, phooey. They’re right, but so what? I get to the object-oriented uses for
methods in Book III. There, you find out that methods have a far greater pur-
pose than simply breaking a long main method into smaller pieces. But even
so, some of the most object-oriented programs I know use methods just to
avoid repetitive code or to slice a large method into a couple of smaller
ones. So there.

The Basics of Making Methods
All methods — including the main method — must begin with a method dec-
laration. Here’s the basic form for a method declaration, at least for the
types of methods I talk about in this chapter:

public static return-type method-name (parameter-list)
{

statements...
}

The following paragraphs describe method declarations piece-by-piece:

✦ public: This keyword indicates that the method’s existence should be
publicized to the world, and that any Java program that knows about
your program (or, more accurately, the class defined for your Java pro-
gram) should be able to use your method. That’s not very meaningful for
the types of programs you’re dealing with at this point in the book, but
it will become more meaningful later on. In Book III, you find out more

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 200

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness

The Basics of Making Methods 201

about what public means, as well as some alternatives to public that
are useful in various and sundry situations.

✦ static: This keyword declares that the method is a static method,
which means that it can be called without first creating an instance of
the class in which it’s defined. The main method must always be static,
and any other methods in the class that contains the main method
should usually be static as well.

✦ return-type: After the word static comes the return type, which
indicates whether the method returns a value when it is called and, if
so, what type the value is. If the method doesn’t return a value, specify
void. (I talk more about methods that return values later in this chap-
ter, in the section “Methods That Return Values.”)

✦ method-name: Now comes the name of your method. The rules for
making up method names are the same as the rules for creating variable
names: You can use any combination of letters and numbers, but the
name has to start with a letter. And, it can include the dollar sign ($) and
underscore character (_). No other special characters are allowed.

When picking a name for your method, try to pick a name that’s relatively
short but descriptive. A method name such as calculateTheTotal
AmountOfTheInvoice is a little long, but just calc is pretty ambigu-
ous. Something along the lines of calculateInvoiceTotal seems
more reasonable to me.

✦ parameter list: You can pass one or more values to a method by
listing the values in parentheses following the method name. The param-
eter list in the method declaration lets Java know what types of parameters
a method should expect to receive and provides names so that the state-
ments in the method’s body can access the parameters as local variables.
You discover more about parameters in the section “Using Methods That
Take Parameters” later in this chapter.

If the method doesn’t accept parameters, you must still code the paren-
theses that surround the parameter list. You just leave the parentheses
empty.

✦ Method body: The method body consists of one or more Java state-
ments enclosed in a set of braces. Unlike Java statements such as if,
while, and for, you still have to use the braces even if the body of
your method consists of only one statement.

An example
Okay, all that was a little abstract. Now for a concrete example, I offer a ver-
sion of the Hello, World! program in which the message is displayed not by
the main method, but by a method named sayHello that’s called by the
main method:

public class HelloWorldMethod
{

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 201

The Basics of Making Methods202

public static void main(String[] args)
{

sayHello();
}

public static void sayHello()
{

System.out.println(“Hello, World!”);
}

}

This program is admittedly trivial, but it illustrates the basics of creating and
using methods in Java. Here, the statement in the main method calls the
sayHello method, which in turn displays a message on the console.

The order in which methods appear in your Java source file doesn’t matter.
The only rule is that all the methods must be declared within the body of the
class — that is, between the first left brace and the last right brace. For
example, here’s a version of the HelloWorldMethod program in which I
reversed the order of the methods:

public class HelloWorldMethod
{

public static void sayHello()
{

System.out.println(“Hello, World!”);
}

public static void main(String[] args)
{

sayHello();
}

}

This version of the program works exactly like the previous version.

Another example
Okay, the last example was kind of dumb. No one in his (or her) right mind
would create a method that has just one line of code, and then call it from
another method that also has just one line of code. The Hello, World! pro-
gram is too trivial to illustrate anything remotely realistic.

For example, a program in Book II, Chapter 5 plays a guessing game. Most of
this program’s main method is a large while loop that repeats the game as
long as the user wants to keep playing. This loop has 41 statements in its
body. That’s not so bad, but what if the game were 100 times more compli-
cated, so that the while loop needed 4,100 statements to play a single cycle
of the game? Do you really want a while loop that has 4,100 statements in
its body? I should think not.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 202

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness

The Basics of Making Methods 203

Listing 7-1 shows how you can simplify this game a bit just by placing the
body of the main while loop into a separate method. I called this method
playARound, because its job is to play one round of the guessing game.
Now, instead of actually playing a round of the game, the main method of
this program delegates that task to the playARound method.

LISTING 7-1: A VERSION OF THE GUESSING GAME PROGRAM THAT USES A

PLAYAROUND METHOD

import java.util.Scanner;

public class GuessingGameMethod
{

static Scanner sc = new Scanner(System.in);
static boolean keepPlaying = true; ➞ 7

public static void main(String[] args)
{

System.out.println(“Let’s play a guessing game!”);
while (keepPlaying) ➞ 12
{

playARound(); ➞ 14
}
System.out.println(“\nThank you for playing!”);

}

public static void playARound() ➞ 19
{

boolean validInput;
int number, guess;
String answer;

// Pick a random number
number = (int)(Math.random() * 10) + 1;
System.out.println(“\nI’m thinking of a number “

+ “between 1 and 10.”);

// Get the guess
System.out.print(“What do you think it is? “);
do
{

guess = sc.nextInt();
validInput = true;
if ((guess < 1) || (guess > 10))
{

System.out.print(“I said, between 1
and 10. “ + “Try again: “);

validInput = false;
}

} while (!validInput);

// Check the guess
if (guess == number)

System.out.println(“You’re right!”);

continued

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 203

Methods That Return Values204

LISTING 7-1 (CONTINUED)

else
System.out.println(“You’re wrong!”

+ “ The number was “ + number);

// Play again?
do
{

System.out.print(“\nPlay again? (Y or N)”);
answer = sc.next();
validInput = true;
if (answer.equalsIgnoreCase(“Y”))

;
else if (answer.equalsIgnoreCase(“N”))

keepPlaying = false; ➞ 60
else

validInput = false;
} while (!validInput);

}
}

Here are a few important details to notice about this method:

➞ 7 Because the main method (in line 12) and the playARound method
(in line 60) must both access the keepPlaying variable, I declared it
as a class variable rather than as a local variable in the main method.

Class variables must be static if you intend to access them from
static methods.

➞14 The body of the while loop in the main method is just one line: a
call to the playARound method. Thus, each time the loop repeats,
the program plays one round of the game with the user.

➞19 The declaration for the playARound method marks the method as
static so that the static main method can call it.

The body of the playARound method is identical to the body of the while
loop that was originally used in the single-method version of this program
shown in Book II, Chapter 5. If you want a refresher on how this code works,
I politely refer you to that chapter.

Methods That Return Values
Methods that just do work without returning any data are useful only in lim-
ited situations. The real utility of methods comes when they can perform
some mundane task such as a calculation, and then return the value of that
calculation to the calling method so the calling method can do something
with the value. You find out how to do that in the following sections.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 204

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness
Methods That Return Values 205

Declaring the method’s return type
To create a method that returns a value, you simply indicate the type of the
value returned by the method on the method declaration in place of the
void keyword. For example, here’s a method declaration that creates a
method that returns an int value:

public static int getRandomNumber()

Here, the getRandomNumber method calculates a random number, and
then returns the number to the caller.

The return type of a method can be any of Java’s primitive return types
(described in Book II, Chapter 2):

int long float char

short byte double boolean

Or, the return type can be a reference type, including a class defined by the
API such as String or a class you create yourself.

Using the return statement to return the value
When you specify a return type other than void in a method declaration,
the body of the method must include a return statement that specifies the
value to be returned. The return statement has this form:

return expression;

The expression must evaluate to a value that’s the same type as the type
listed in the method declaration. In other words, if the method returns an
int, the expression in the return statement must evaluate to an int.

For example, here’s a program that uses a method that determines a random
number between 1 and 10:

public class RandomNumber
{

public static void main(String[] args)
{

int number = getRandomNumber();
System.out.println(“The number is “ + number);

}

public static int getRandomNumber()
{

int num = (int)(Math.random() * 10) + 1;
return num;

}
}

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 205

Methods That Return Values206

In this program, the getRandomNumber method uses the Math.random
method to calculate a random number from 1 to 10. (For more information
about the Math.random method, see Book II, Chapter 3.) The return
statement returns the random number that was calculated.

Because the return statement can specify an expression as well as a simple
variable, I could just as easily have written the getRandomNumber method
like this:

public static int getRandomNumber()
{

return (int)(Math.random() * 10) + 1;
}

Here, the return statement includes the expression that calculates the
random number.

Using a method that returns a type
You can use a method that returns a value in an assignment statement, like this:

int number = getRandomNumber();

Here, the getRandomNumber method is called, and the value it returns is
assigned to the variable number.

You can also use methods that return values in expressions. For example:

number = getRandomNumber() * 10;

Here, the value returned by the getRandomNumber method is multiplied by
10, and the result is assigned to number.

You gotta have a proper return statement
If a method declares a return type other than void, it must use a return
statement to return a value. The compiler doesn’t let you get away with a
method that doesn’t have a correct return statement.

Things can sometimes get complicated if your return statements are inside
if statements. Sometimes, the compiler can get fooled and refuse to com-
pile your program. To explain this, I offer the following tale of multiple
attempts to solve what should be a simple programming problem:

Suppose you want to create a random number method that returns random
numbers between 1 and 20, but never returns 12 (because you have the condi-
tion known as duodecaphobia, which as Lucy from Peanuts would tell you is
the fear of the number 12). Your first thought is to just ignore the 12s, like this:

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 206

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness
Methods That Return Values 207

public static int getRandomNumber()
{

int num = (int)(Math.random() * 20) + 1;
if (num != 12)

return num;
}

However, the compiler isn’t fooled by your trickery here. It knows that if the
number is 12, the return statement won’t get executed. So it issues the mes-
sage missing return statement and refuses to compile your program.

Your next thought is to simply substitute 11 whenever 12 comes up:

public static int getRandomNumber()
{

int num = (int)(Math.random() * 20) + 1;
if (num != 12)

return num;
else

return 11;
}

However, later that day you realize this solution isn’t a good one because
the number isn’t really random anymore. One of the requirements of a good
random number generator is that any number should be as likely as any
other number to come up next. But because you’re changing all 12s to 11s,
you’ve made 11 twice as likely to come up as any other number.

To fix this error, you decide to put the random number generator in a loop
that ends only when the random number is not 12:

public static int getRandomNumber()
{

int num;
do
{

num = (int)(Math.random() * 20) + 1;
if (num != 12)

return num;
} while (num == 12);

}

But now the compiler refuses to compile the method again. It turns out
that the compiler is smart, but not real smart. It doesn’t catch the fact that
the condition in the do-while loop is the opposite of the condition in the
if statement, meaning that the only way out of this loop is through the
return statement in the if statement. So the compiler whines missing
return statement again.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 207

Methods That Return Values208

After thinking about it a while, you come up with this solution:

public static int getRandomNumber()
{

int num;
while (true)
{

num = (int)(Math.random() * 20) + 1;
if (num != 12)

return num;
}

}

Now everyone’s happy. The compiler knows the only way out of the loop is
through the return statement, your doudecaphobic user doesn’t have to
worry about seeing the number 12, and you know that the random number
isn’t twice as likely to be 11 as any other number. Life is good, and you can
move on to the next topic.

Another version of the guessing game program
To illustrate the benefits of using methods that return values, Listing 7-2
presents another version of the guessing game program that uses four meth-
ods in addition to main:

✦ playARound: This method plays one round of the guessing game. It
doesn’t return a value.

✦ getRandomNumber: Returns a random number between 1 and 10.

✦ getGuess: Gets the user’s guess, makes sure it is between 1 and 10, and
returns the guess if it’s within the acceptable range.

✦ askForAnotherRound: This method asks the user to play another
round and returns a boolean value to indicate whether or not the user
wants to continue playing.

LISTING 7-2: ANOTHER VERSION OF THE GUESSING GAME PROGRAM

import java.util.Scanner;

public class GuessingGameMethod2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(“Let’s play a guessing game!”);
do ➞ 11
{

playARound(); ➞ 13
} while (askForAnotherRound()); ➞ 14

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 208

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness
Methods That Return Values 209

System.out.println(“\nThank you for playing!”);
}

public static void playARound() ➞ 18
{

boolean validInput;
int number, guess;
String answer;

// Pick a random number
number = getRandomNumber(); ➞ 25

// Get the guess
System.out.println(“\nI’m thinking of a number “

+ “between 1 and 10.”);
System.out.print(“What do you think it is? “);
guess = getGuess(); ➞ 31

// Check the guess
if (guess == number)

System.out.println(“You’re right!”);
else

System.out.println(“You’re wrong!”
+ “ The number was “ + number);

}

public static int getRandomNumber() ➞ 41
{

return (int)(Math.random() * 10) + 1; ➞ 43
}

public static int getGuess() ➞ 46
{

while (true) ➞ 48
{

int guess = sc.nextInt();
if ((guess < 1) || (guess > 10))
{

System.out.print(“I said, between 1 and
10. “ + “Try again: “);

}
else

return guess; ➞ 57
}

}
public static boolean askForAnotherRound() ➞ 61
{

while (true) ➞ 63
{

String answer;
System.out.print(“\nPlay again? (Y or N) “);
answer = sc.next();
if (answer.equalsIgnoreCase(“Y”))

return true; ➞ 69
else if (answer.equalsIgnoreCase(“N”))

return false; ➞ 71
}

}
}

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 209

Methods That Return Values210

The following paragraphs point out the key lines of this program:

➞11 The start of the do loop in the main method. Each cycle of this do
loop plays one round of the game. The do loop continues until the
user indicates that he or she wants to stop playing.

➞13 Calls the playARound method to play one round of the game.

➞14 Calls the askForAnotherRound method to determine whether the
user wants to play another round. The boolean return value from this
method is used as the expression for the do loop. Thus, the do loop
repeats if the askForAnotherRound method returns true.

➞18 The start of the playARound method.

➞25 This line calls the getRandomNumber method to get a random
number between 1 and 10. The value returned by this method is
stored in the number variable.

➞31 This line calls the getGuess method to get the user’s guess. This
method returns a number between 1 and 10, which is stored in the
guess variable.

➞41 The start of the getRandomNumber method, which indicates that
this method returns an int value.

➞43 The return statement for the getRandomNumber method. The
random number is calculated using the Math.random method,
and the result of this calculation is returned as the value of the
getRandomNumber method.

➞46 The start of the getGuess method, which indicates that this method
returns an int value.

➞48 The getGuess method uses a while loop, which exits only when
the user enters a number between 1 and 10.

➞57 The return statement for the getGuess method. Note that this
return statement is in the else part of an if statement that
checks if the number is less than 1 or greater than 10. If the number
is outside of the acceptable range, the return statement isn’t exe-
cuted. Instead, the program displays an error message, and the
while loop repeats.

➞61 The start of the askForAnotherRound method, which returns a
boolean value.

➞63 The askForAnotherRound method uses a while loop that exits
only when the user enters a valid Y or N response.

➞69 The askForAnotherRound method returns true if the user enters
Y or y.

➞71 The askForAnotherRound method returns false if the user
enters N or n.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 210

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness

Using Methods That Take Parameters 211

Using Methods That Take Parameters
A parameter is a value that you can pass to a method. The method can then
use the parameter as if it were a local variable initialized with the value of
the variable passed to it by the calling method.

For example, the guessing game application that was shown in Listing 7-2
has a method named getRandomNumber that returns a random number
between 1 and 10:

public static int getRandomNumber()
{

return (int)(Math.random() * 10) + 1;
}

This method is useful, but it would be even more useful if you could tell it
the range of numbers you want the random number to fall in. For example, it
would be nice if you could call it like this to get a random number between 1
and 10:

int number = getRandomNumber(1, 10);

Then, if your program needs to roll dice, you could call the same method:

int number = getRandomNumber(1, 6);

Or, to pick a random card from a deck of 52 cards, you could call it like this:

int number = getRandomNumber(1, 52);

And you wouldn’t have to start with 1, either. To get a random number
between 50 and 100, you’d call it like this:

int number = getRandomNumber(50, 100);

In the following sections, you write methods that accept parameters.

Declaring parameters
A method that accepts parameters must list the parameters in the method
declaration. The parameters are listed in a parameter list that’s in the paren-
theses that follow the method name. For each parameter used by the method,
you list the parameter type followed by the parameter name. If you need
more than one parameter, you separate them with commas.

For example, here’s a version of the getRandomNumber method that
accepts parameters:

public static int getRandomNumber(int min, int max)
{

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 211

Using Methods That Take Parameters212

return (int)(Math.random()
* (max – min + 1)) + min;

}

Here, the method uses two parameters, both of type int, named min and
max. Then, within the body of the method, these parameters can be used as
if they were local variables.

The names you use for parameters can be the same as the names you use for
the variables you pass to the method when you call it, but they don’t have to
be. For example, you could call the getRandomNumber method like this:

int min = 1;
int max = 10;
int number = getRandomNumber(min, max);

Or, you could call it like this:

int low = 1;
int high = 10;
int number = getRandomNumber(low, high);

Or, you can dispense with the variables altogether and just pass literal
values to the method:

int number = getRandomNumber(1, 10);

You can also specify expressions as the parameter values:

int min = 1;
int max = 10;
int number = getRandomNumber(min * 10, max * 10);

Here, number is assigned a value between 10 and 100.

Scoping out parameters
The scope of a parameter is the method for which the parameter is declared.
As a result, a parameter can have the same name as local variables used in
other methods without causing any conflict. For example, consider this
program:

public class ParameterScope
{

public static void main(String[] args)
{

int min = 1;
int max = 10;
int number = getRandomNumber(min, max);
System.out.println(number);

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 212

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness

Using Methods That Take Parameters 213

}

public static int getRandomNumber(int min, int max)
{

return (int)(Math.random()
* (max – min + 1)) + min;

}
}

Here, the main method declares variables named min and max, and the
getRandomNumber method uses min and max for its parameter names.
This doesn’t cause any conflict, because in each case the scope is limited to
a single method.

Understanding pass-by-value
When Java passes a variable to a method via a parameter, the method itself
receives a copy of the variable’s value, not the variable itself. This copy is
called a pass-by-value, and it has an important consequence: If a method
changes the value it receives as a parameter, that change is not reflected in
the original variable that was passed to the method. The following program
can help clear this up:

public class ChangeParameters
{

public static void main(String[] args)
{

int number = 1;
tryToChangeNumber(number);
System.out.println(number);

}

public static void tryToChangeNumber(int i)
{

i = 2;
}

}

Here, a variable named number is set to 1, and then passed to the method
named tryToChangeNumber. This method receives the variable as a
parameter named i, and then sets the value of i to 2. Meanwhile, back
in the main method, println is used to print the value of number after the
tryToChangeNumber method returns.

Because tryToChangeNumber only gets a copy of number and not the
number variable itself, this program displays the following on the console
(drumroll please. . .): 1.

The key point is this: Even though the tryToChangeNumber method
changes the value of its parameter, that change has no effect on the original
variable that was passed to the method.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 213

Using Methods That Take Parameters214

Yet another example of the guessing game program
To show off the benefits of methods that accept parameters, Listing 7-3
shows one more version of the guessing game program. This version uses
the following methods in addition to main:

✦ playARound: This method plays one round of the guessing game. It
doesn’t return a value, but it accepts two arguments: min and max,
which indicate the minimum and maximum values for the number to be
guessed.

✦ getRandomNumber: Returns a random number between min and max
values passed as parameters.

✦ getGuess: This method also accepts two parameters, min and max, to
limit the range within which the user must guess.

✦ askForAnotherRound: This method asks the user to play another
round and returns a boolean value to indicate whether or not the user
wants to continue playing. It accepts a String value as a parameter;
this string is displayed on the console to prompt the user for a reply.

LISTING 7-3: ANOTHER VERSION OF THE GUESSING GAME PROGRAM

import java.util.Scanner;

public class GuessingGameMethod3
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(“Let’s play a guessing game!”);
do
{

playARound(1, getRandomNumber(7, 12)); ➞ 13
} while (askForAnotherRound(“Try again?”));
System.out.println(“\nThank you for playing!”);

}

public static void playARound(int min, int max)
{

boolean validInput;
int number, guess;
String answer;

// Pick a random number
number = getRandomNumber(min, max); ➞ 25

// Get the guess
System.out.println(“\nI’m thinking of a number “

+ “between “ + min + “ and “ + max + “.”); ➞ 29

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 214

Book II
Chapter 7

Adding Som
e

M
ethods to Your

M
adness

Using Methods That Take Parameters 215

System.out.print(“What do you think it is? “);
guess = getGuess(min, max); ➞ 31

// Check the guess
if (guess == number)

System.out.println(“You’re right!”);
else

System.out.println(“You’re wrong!”
+ “ The number was “ + number);

}
public static int getRandomNumber(int min, int max) ➞ 41
{

return (int)(Math.random() ➞ 43
* (max - min + 1)) + min;

}

public static int getGuess(int min, int max) ➞ 47
{

while (true)
{

int guess = sc.nextInt();
if ((guess < min) || (guess > max)) ➞ 52
{

System.out.print(“I said, between “
+ min + “ and “ + max
+ “. Try again: “);

}
else

return guess; ➞ 59
}

}
public static boolean askForAnotherRound(String prompt) ➞ 63
{

while (true)
{

String answer;
System.out.print(“\n” + prompt + “ (Y or N) “);
answer = sc.next();
if (answer.equalsIgnoreCase(“Y”))

return true;
else if (answer.equalsIgnoreCase(“N”))

return false;
}

}
}

The following paragraphs point out the key lines of this program:

➞13 Calls the playARound method to play one round of the game. The
values for min and max are passed as literals. To add a small amount
of variety to the game, the getRandomNumber method is called here
to set the value for the max to a random number from 7 to 12.

➞25 The call to the getRandomNumber method passes the values of min
and max as parameters to set the range for the random numbers.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 215

Using Methods That Take Parameters216

➞29 The message that announces to the user that the computer has
chosen a random number uses the min and max parameters to
indicate the range.

➞31 The call to the getGuess method now passes the range of accept-
able guesses.

➞41 The declaration for the getRandomNumber method specifies the
min and max parameters.

➞43 The calculation for the random number is complicated a bit by the
fact that min might not be 1.

➞47 The declaration for the getGuess method accepts the min and max
parameters.

➞52 The if statement in the getGuess method uses the min and max
values to validate the user’s input.

➞59 The return statement for the getGuess method. Note that this
return statement is in the else part of an if statement that checks
if the number is less than 1 or greater than 10. If the number is outside
of the acceptable range, the return statement isn’t executed. Instead,
the program displays an error message, and the while loop repeats.

➞63 The askForAnotherRound method accepts a string variable to use
as a prompt.

16_58961X bk02ch07.qxd 3/29/05 3:37 PM Page 216

Chapter 8: Handling Exceptions

In This Chapter
� What to do when bad things happen to good programs

� All about exceptions

� Using try, catch, and finally

� Preventing exceptions from happening in the first place

This chapter is about what happens when Java encounters an error sit-
uation that it can’t deal with. Over the years, computer programming

languages have devised many different ways to deal with these types of
errors. The earliest programming languages dealt with them rudely, by
abruptly terminating the program and printing out the entire contents of
the computer’s memory in hexadecimal. This output was called a dump.

Later programming languages tried various ways to keep the program run-
ning when serious errors occurred. In some languages, the statements that
could potentially cause an error had extra elements added to them that
would provide feedback about errors. For example, a statement that read
data from a disk file might return an error code if an I/O error occurred. Still
other languages let you create a special error processing section of the pro-
gram, to which control would be transferred if an error occurred.

Being an object-oriented programming language, Java handles errors by
using special exception objects that are created when an error occurs. In
addition, Java has a special statement called the try statement that you
must use to deal with exception objects. In this chapter, you find all the gory
details of working with exception objects and try statements.

Understanding Exceptions
An exception is an object that’s created when an error occurs in a Java pro-
gram and Java can’t automatically fix the error. The exception object contains
information about the type of error that occurred. However, the most impor-
tant information — the cause of the error — is indicated by the name of the
exception class used to create the exception. You don’t usually have to do
anything with an exception object other than figure out which one you have.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 217

Understanding Exceptions218

Each type of exception that can occur is represented by a different exception
class. For example, here are some typical exceptions:

✦ IllegalArgumentException: You passed an incorrect argument to
a method.

✦ InputMismatchException: The console input doesn’t match the
data type expected by a method of the Scanner class.

✦ ArithmeticException: You tried an illegal type of arithmetic opera-
tion, such as dividing an integer by zero.

✦ IOException: A method that performs I/O encountered an unrecover-
able I/O error.

✦ ClassNotFoundException: A necessary class couldn’t be found.

There are many other types of exceptions besides these. You find out about
many of them in later chapters of this book.

You need to know a few other things about exceptions:

✦ When an error occurs and an exception object is created, Java is said to
have thrown an exception. Java has a pretty good throwing arm, so the
exception is always thrown right back to the statement that caused it to
be created.

✦ The statement that caused the exception can catch the exception if it
wants it. But it doesn’t have to catch the exception if it doesn’t want it.
Instead, it can duck and let someone else catch the exception. That
someone else is the statement that called the method that’s currently
executing.

✦ If everyone ducks and the exception is never caught by the program, the
program ends abruptly and displays a nasty looking exception message
on the console. More on that in the next section.

✦ Two basic types of exceptions in Java are checked exceptions and
unchecked exceptions:

• A checked exception is an exception that the compiler requires you to
provide for it one way or another. If you don’t, your program doesn’t
compile.

• An unchecked exception is an exception that you can provide for, but
you don’t have to.

✦ So far in this book, I’ve avoided using any Java API methods that throw
checked exceptions. However, I have used methods that can throw
unchecked exceptions. For example, the nextInt method of the
Scanner class throws an unchecked exception if the user enters some-
thing other than a valid integer value. For more information, read on.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 218

Book II
Chapter 8

Handling
Exceptions

Understanding Exceptions 219

Witnessing an exception
Submitted for your approval, a tale of a hastily written Java program, quickly
put together to illustrate certain Java programming details while ignoring
others. Out of sight, out of mind, as they say. Said program played a guessing
game with the user, accepting numeric input via a class called Scanner. Yet this
same program ignored the very real possibility that the user may enter strange
and unexpected data, data that could hardly be considered numeric, at least not
in the conventional sense. The time: Now. The place: Here. This program is
about to cross over into . . . the Exception Zone.

The program I’m talking about here is, of course, the guessing game program
that’s appeared in several forms in recent chapters. (You can find the most
recent version at the very end of Book II, Chapter 7.) This program includes
a validation routine that prevents the user from making a guess that’s not
between 1 and 10. However, that validation routine assumes that the user has
entered a valid integer number. If the user enters something other than an
integer value, the nextInt method of the Scanner class fails badly.

Figure 8-1 shows an example of what the console looks like if the user enters
text (such as five) instead of a number. The first line after the user enters
the incorrect data says the program has encountered an exception named
InputMismatchException. In short, this exception means that the data
entered by the user couldn’t be properly matched with the type of data that
was expected by the Scanner class. That’s because the nextInt method
expected to find an integer, and instead it found the word five.

Finding the culprit
You can find the exact statement in your program that caused the exception
to occur by examining the lines that are displayed right after the line that
indicates which exception was encountered. These lines, called the stack
trace, list the different methods that the exception passed through before

Figure 8-1:
This
program
has slipped
into The
Exception
Zone.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 219

Catching Exceptions220

your program was completely aborted. Usually, the first method listed is
deep in the bowels of the Java API, and the last method listed is your appli-
cation’s main method. Somewhere in the middle, you find the switch from
methods in the Java API to a method in your program. That’s usually where
you find the statement in your program that caused the error.

In Figure 8-1, the stack trace lines look like this:

at java.util.Scanner.throwFor(Scanner.java:819)
at java.util.Scanner.next(Scanner.java:1431)
at java.util.Scanner.nextInt(Scanner.java:2040)
at java.util.Scanner.nextInt(Scanner.java:2000)
at GuessingGameMethod3.getGuess(GuessingGameMethod3.java:51)
at GuessingGameMethod3.playARound(GuessingGameMethod3.java:31)
at GuessingGameMethod3.main(GuessingGameMethod3.java:13)

Each line lists not only a class and method name, but also the name of
the source file that contains the class and the line number where the
exception occurred. Thus, the first line in this stack trace indicates that
the exception is handled in the throwFor method of the Scanner class
at line 819 of the Scanner.java file. The next three lines also indicate
methods in the Scanner class. The first line to mention the guessing game
class (GuessingGameMethod3) is the fifth line. It shows that the excep-
tion happened at line 51 in the GuessingGameMethod3.java file. Sure
enough, that’s the line that calls the nextInt method of the Scanner
class to get input from the user.

Catching Exceptions
Whenever you use a statement that might throw an exception, you should
write special code to anticipate and catch the exception. That way, your pro-
gram won’t crash as shown in Figure 8-1 if the exception occurs.

You catch an exception by using a try statement, which has this general
form:

try
{

statements that can throw exceptions
}
catch (exception-type identifier)
{

statements executed when exception is thrown
}

Here, you place the statements that might throw an exception within a try
block. Then, you catch the exception with a catch block.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 220

Book II
Chapter 8

Handling
Exceptions

Catching Exceptions 221

Here are a few things to note about try statements:

✦ You can code more than one catch block. That way, if the statements in
the try block might throw more than one type of exception, you can
catch each type of exception in a separate catch block.

✦ For scoping purposes, the try block is its own self-contained block, sep-
arate from the catch block. As a result, any variables you declare in the
try block are not visible to the catch block. If you want them to be,
declare them immediately before the try statement.

✦ You can also code a special block called a finally block after all the
catch blocks. For more information about coding finally blocks, see
the section “Using a finally Block” later in this chapter.

✦ The various exception classes in the Java API are defined in different
packages. If you use an exception class that isn’t defined in the standard
java.lang package that’s always available, you need to provide an
import statement for the package that defines the exception class.

A simple example
To illustrate how to provide for an exception, here’s a program that divides
two numbers and uses a try/catch statement to catch an exception if the
second number turns out to be zero:

public class DivideByZero
{

public static void main(String[] args)
{

int a = 5;
int b = 0; // you know this won’t work
try
{

int c = a / b; // but you try it anyway
}
catch (ArithmeticException e)
{

System.out.println(“Oops, you can’t divide by
zero.”);

}
}

}

Here, the division occurs within a try block, and a catch block handles
ArithmeticException. ArithmethicException is defined by
java.lang, so an import statement for it isn’t necessary.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 221

Catching Exceptions222

When you run this program, the following is displayed on the console:

Oops, you can’t divide by zero.

There’s nothing else to see here. The next section shows a more complicated
example, though.

Another example
Listing 8-1 shows a simple example of a program that uses a method to get a
valid integer from the user. If the user enters a value that isn’t a valid integer,
the catch block catches the error and forces the loop to repeat.

LISTING 8-1: GETTING A VALID INTEGER

import java.util.*;

public class GetInteger
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(“Enter an integer: “);
int i = GetInteger();
System.out.println(“You entered “ + i);

}

public static int GetInteger()
{

while (true)
{

try
{

return sc.nextInt();
}
catch (InputMismatchException e)
{

sc.next();
System.out.print(“That’s not an integer. “

+ “Try again: “);
}

}
}

}

Here, the statement that gets the input from the user and returns it to the
methods called is coded within the try block. If the user enters a valid inte-
ger, this statement is the only one in this method that gets executed.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 222

Book II
Chapter 8

Handling
Exceptions

Handling Exceptions with a Pre-emptive Strike 223

However, if the user enters data that can’t be converted to an integer, the
nextInt method throws an InputMismatchException. Then, this
exception is intercepted by the catch block, which disposes of the user’s
incorrect input by calling the next method as well as displays an error mes-
sage. The while loop then repeats.

Here’s what the console might look like for a typical execution of this program:

Enter an integer: three
That’s not an integer. Try again: 3.001
That’s not an integer. Try again: 3
You entered 3

Here are a few other things to note about this program:

✦ The import statement specifies java.util.* to import all the
classes from the java.util package. That way, the Input
MismatchException class is imported.

✦ The next method must be called in the catch block to dispose of the
user’s invalid input because the nextInt method leaves the input value
in the Scanner’s input stream if an InputMismatchException is
thrown. If you omit the statement that calls next, the while loop keeps
reading it, throws an exception, and displays an error message in an infi-
nite loop. If you don’t believe me, look at Figure 8-2. I found this error
out the hard way. (The only way to make it stop is to close the console
window.)

Handling Exceptions with a Pre-emptive Strike
The try statement is a useful and necessary tool in any Java programmer’s
arsenal. However, the best way to handle exceptions is to prevent them from
happening in the first place. That’s not possible all the time, but in many

Figure 8-2:
Why you
have to call
next to
discard the
invalid input.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 223

Handling Exceptions with a Pre-emptive Strike224

cases it is. The key is to test your data before performing the operation that
can lead to an exception and skipping or bypassing the operation of the data
that is problematic. (One thing I really hate is problematic data.)

For example, you can usually avoid the ArithmethicException that
results from dividing integer data by zero by checking the data before per-
forming the division:

if (b != 0)
c = a / b;

This eliminates the need for enclosing the division in a try block because
you know the division by zero won’t happen.

You can apply this same technique to input validation using the hasNextInt
method of the Scanner class. This method checks the next input value to
make sure it’s a valid integer. (The Scanner class calls the next input value a
token, but that won’t be on the test.) You can do this technique in several
ways, and I’ve been encouraging you to ponder the problem since Book II,
Chapter 2. Now, the long awaited answer. Listing 8-2 shows a version of the
GetInteger method that uses a while loop to avoid the exception.

LISTING 8-2: ANOTHER VERSION OF THE GETINTEGER METHOD

import java.util.*;

public class GetInteger2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(“Enter an integer: “);
int i = GetInteger();
System.out.println(“You entered “ + i);

}

public static int GetInteger()
{

while (!sc.hasNextInt())
{

sc.nextLine();
System.out.print(“That’s not an integer. “

+ “Try again: “);
}
return sc.nextInt();

}
}

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 224

Book II
Chapter 8

Handling
Exceptions
Catching All Exceptions at Once 225

This is a clever little bit of programming, don’t you think? The conditional
expression in the while statement calls the hasNextInt method of the
Scanner to see if the next value is an integer. The while loop repeats as
long as this call returns false, indicating that the next value is not a valid
integer. The body of the loop calls nextLine to discard the bad data and
displays an error message. The loop ends only when you know you have
good data in the input stream, so the return statement calls nextInt to
parse the data to an integer and return the resulting value.

Catching All Exceptions at Once
Java provides a catch-all exception class called Exception that all other
types of exceptions are based on. (Don’t worry about the details of what I
mean by that. When you read Book III, Chapter 4, it will make more sense.)

If you don’t want to be too specific in a catch block, you can specify
Exception instead of a more specific exception class. For example:

try
{

int c = a / b;
}
catch (Exception e)
{

System.out.println(“Oops, you can’t divide by
zero.”);

}

In this example, the catch block specifies Exception rather than
ArithmeticException.

If you have some code that might throw several different types of exceptions,
and you want to provide specific processing for some but general processing
for all the others, code the try statement:

try
{

// statements that might throw several types of
// exceptions

}
catch (InputMismatchException e)
{

// statements that process InputMismatchException
}
catch (IOException e)
{

// statements that process IOException
}
catch (Exception e)

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 225

Displaying the Exception Message226

{
// statements that process all other exception types

}

In this example, imagine that the code in the try block might throw an
InputMismatchException, an IOException, and perhaps some other
type of unanticipated exception. Here, the three catch blocks provide for
each of these possibilities.

When you code more than one catch block on a try statement, always list
the more specific exceptions first. If you include a catch block to catch
Exception, list it last.

Displaying the Exception Message
In most cases, the catch block of a try statement won’t do anything at
all with the exception object passed to it. However, you may occasionally
want to display an error message; exception objects have a few interesting
methods that can come in handy from time to time. These methods are
listed in Table 8-1.

Table 8-1 Methods of the Exception Class
Method Description

String getMessage() A text message that describes the error.

void printStackTrace() Prints the stack trace to the standard error stream.

String toString() Returns a description of the exception. This descrip-
tion includes the name of the exception class fol-
lowed by a colon and the getMessagemessage.

The following example shows how you might print the message for an excep-
tion in a catch block:

try
{

int c = a / b;
}
catch (Exception e)
{

System.out.println(e.getMessage());
}

This code displays the text / by zero on the console if b has a value of
zero. You can get even more interesting output with this line in the catch
clause:

e.printStackTrace(System.out);

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 226

Book II
Chapter 8

Handling
Exceptions

Using a finally Block 227

Using a finally Block
A finally block is a block that appears after all of the catch blocks for a
statement. It’s executed whether or not any exceptions are thrown by the
try block or caught by any catch blocks. Its purpose is to let you clean up
any mess that might be left behind by the exception, such as open files or
database connections.

The basic framework for a try statement with a finally block is this:

try
{

statements that can throw exceptions
}
catch (exception-type identifier)
{

statements executed when exception is thrown
}
finally
{

statements that are executed whether or not
exceptions occur

}

Listing 8-3 shows a contrived but helpful example that demonstrates
how to use the finally clause. In this example, a method called
divideTheseNumbers tries to divide the numbers twice. If the division
fails the first time (due to a divide-by-zero exception), it tries the division
again. Completely irrational, I know. But persistent, like a teenager.

LISTING 8-3: A PROGRAM THAT USES A FINALLY CLAUSE

public class CrazyWithZeros
{

public static void main(String[] args)
{

try
{

int answer = divideTheseNumbers(5, 0); ➞ 7
}
catch (Exception e) ➞ 9
{

System.out.println(“Tried twice, “
+ “still didn’t work!”);

}
}

public static int divideTheseNumbers(int a, int b) ➞ 16
throws Exception

continued

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 227

Using a finally Block228

LISTING 8-3 (CONTINUED)

{
int c;
try
{

c = a / b; ➞ 22
System.out.println(“It worked!”); ➞ 23

}
catch (Exception e)
{

System.out.println(“Didn’t work the first time.”); ➞ 27
c = a / b; ➞ 28
System.out.println(“It worked the second time!”); ➞ 29

}
finally
{

System.out.println(“Better clean up my mess.”); ➞ 33
}
System.out.println(“It worked after all.”); ➞ 35
return c; ➞ 36

}
}

Here’s the console output for the program:

Didn’t work the first time.
Better clean up my mess.
Tried twice, still didn’t work!

The following paragraphs explain what’s going on, step by step:

➞ 7 The main method calls the divideTheseNumbers method, passing
5 and 0 as the parameters. You know already this method isn’t going
to work.

➞ 9 The catch clause catches any exceptions thrown by line 7.

➞16 The divideTheseNumbers method declares that it throws
Exception.

➞22 The first attempt to divide the numbers.

➞23 If the first attempt succeeds, this line is executed, and the message
“It worked!” is printed. Alas, the division throws an exception, so
this line never gets executed.

➞27 Instead, the catch clause catches the exception, and the message
“Didn’t work the first time.” is displayed. That’s the first
line in the console output.

➞28 The divideTheseNumbers method stubbornly tries to divide the
same two numbers again. This time, there’s no try statement to
catch the error.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 228

Book II
Chapter 8

Handling
Exceptions

Handling Checked Exceptions 229

➞29 However, because another exception is thrown for the second divi-
sion, this line is never executed. Thus, you don’t see the message
“It worked the second time!” on the console. (If you do,
you’re in an episode of The Twilight Zone.)

➞33 This statement in the finally clause is always executed, no matter
what happens. That’s where the second line in the console output
came from.

After the finally clause executes, the ArithmeticException is
thrown back up to the calling method, where it is caught by line 9.
That’s where the last line of the console output came from.

➞35 If the division did work, this line would be executed after the try
block ends, and you’d see the message “It worked after
all.” on the console.

➞36 Then, the return statement would return the result of the division.

Handling Checked Exceptions
Checked exceptions are exceptions that the designers of Java feel your pro-
grams absolutely must provide for, one way or another. Whenever you code
a statement that might throw a checked exception, your program must do
one of two things:

✦ Catch the exception by placing the statement within a try statement
that has a catch block for the exception.

✦ Specify a throws clause on the method that contains the statement to
indicate that your method doesn’t want to handle the exception, so it’s
passing the exception up the line.

This is known as the catch-or-throw rule. In short, any method that includes a
statement that might throw a checked exception must acknowledge that it
knows the exception might be thrown. The method does this by either han-
dling it directly, or passing the exception up to its caller.

To illustrate the use of checked exceptions, I have to use some classes with
methods that throw them. Up to now, I’ve avoided introducing classes that
throw checked exceptions. So the following illustrations use some classes you
aren’t yet familiar with. Don’t worry about what those classes do or how they
work. The point is to learn how to handle the checked exceptions they throw.

The catch-or-throw compiler error
Here’s a program that uses a class called FileInputStream. To create an
object from this class, you must pass the constructor a string that contains
the path and name of a file that exists on your computer. If the file can’t be
found, the FileInputStream throws a FileNotFoundException that

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 229

Handling Checked Exceptions230

you must either catch or throw. This class is found in the java.io package,
so any program that uses it must include an import java.io statement.

Consider the following program:

import java.io.*;

public class FileException1
{

public static void main(String[] args)
{

openFile(“C:\test.txt”);
}

public static void openFile(String name)
{

FileInputStream f = new FileInputStream(name);
}

}

This program won’t compile. The compiler issues the following error message:

unreported exception java.io.FileNotFoundException;
must be caught or declared to be thrown

This message simply means that you have to deal with the FileNotFound
Exception.

Catching FileNotFoundException
One way to deal with the FileNotFoundException is to catch it using an
ordinary try statement:

import java.io.*;

public class FileException2
{

public static void main(String[] args)
{

openFile(“C:\test.txt”);
}

public static void openFile(String name)
{

try
{

FileInputStream f = new
FileInputStream(name);

}
catch (FileNotFoundException e)
{

System.out.println(“File not found.”);

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 230

Book II
Chapter 8

Handling
Exceptions

Handling Checked Exceptions 231

}
}

}

In this example, the message “File not found.” is displayed if the
C:\test.txt file doesn’t exist.

Throwing the FileNotFoundException
Suppose you don’t want to deal with this error condition in the openFile
method, but would rather just pass the exception up to the method that
calls the openFile method?

To do that, you omit the try statement. Instead, you add a throws clause
to the openFile method’s declaration. That indicates that the openFile
method knows that it contains a statement that might throw a FileNot
FoundException, but that it doesn’t want to deal with that exception here.
Instead, the exception is passed up to the caller.

Here’s the openFile method with the throws clause added:

public static void openFile(String name)
throws FileNotFoundException

{
FileInputStream f = new FileInputStream(name);

}

As you can see, the throws clause simply lists the exception or exceptions
that the method might throw. If more than one exception is on the list, sepa-
rate them with commas:

public static void readFile(String name)
throws FileNotFoundException, IOException

Adding a throws clause to the openFile method means that when the
FileNotFoundException occurs, it is simply passed up to the method
that called the openFile method. That means the calling method (in this
illustration, main) must either catch or throw the exception. To catch the
exception, the main method would have to be coded like this:

public static void main(String[] args)
{

try
{

openFile(“C:\test.txt”);
}
catch (FileNotFoundException e)
{

System.out.println(“File not found.”);
}

}

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 231

Handling Checked Exceptions232

Then, if the file doesn’t exist, the catch block catches the exception, and
the error message is displayed.

Throwing an exception from main
If you don’t want the program to handle the FileNotFound exception at
all, you can add a throws clause to the main method, like this:

public static void main(String[] args)
throws FileNotFoundException

{
openFile(“C:\test.txt”);

}

Then, the program abruptly terminates with an exception message and stack
trace if the exception occurs.

Swallowing exceptions
What if you don’t want to do anything if a checked exception occurs? In
other words, you want to simply ignore the exception? You can do that by
catching the exception in the catch block of a try statement, but leaving
the body of the catch block empty. For example:

public static void openFile(String name)
{

try
{

FileInputStream f = new FileInputStream(name);
}
catch (FileNotFoundException e)
{
}

}

Here, the FileNotFoundException is caught and ignored. This is called
swallowing the exception.

Swallowing an exception is considered to be a bad programming practice.
Simply swallowing exceptions that you know you should handle when work-
ing on a complicated program is tempting. Because you plan on getting back
to that exception handler after you iron out the basic functions of the pro-
gram, a little exception swallowing doesn’t seem like that bad of an idea.
The problem is, inevitably, you’ll never get back to the exception handler.
So your program gets rushed into production with swallowed exceptions.

If you must swallow exceptions, at least write a message to the console indi-
cating that the exception occurred. That way, you have a constant reminder
that the program has some unfinished details yet to attend to.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 232

Book II
Chapter 8

Handling
Exceptions
Throwing Your Own Exceptions 233

Note that not all exception swallowing is bad. For example, suppose you want
the openFile method to return a boolean value to indicate whether the file
exists, rather than throw an exception. Then, you could code the method
something like this:

public static boolean openFile(String name)
{

boolean fileOpened = false;
try
{

FileInputStream f = new FileInputStream(name);
fileOpened = true;

}
catch (FileNotFoundException e)
{
}
return fileOpened;

}

Here, the exception isn’t really swallowed. Instead, its meaning is converted
to a boolean result that’s returned from the method. As a result, the error
condition indicated by the FileNotFoundException isn’t lost.

Throwing Your Own Exceptions
Although uncommon, you may want to write methods that throw exceptions
all on their own. To do that, you use a throw statement. The throw state-
ment has the following basic format:

throw new exception-class();

The exception-class can be Exception or a class that’s derived from
Exception. You find out how to create your own classes — including
exception classes — in Book III. For now, I just focus on writing a method
that throws a general Exception.

Here’s a program that demonstrates the basic structure for a method that
throws an exception:

public class MyException
{

public static void main(String[] args)
{

try
{

doSomething(true);
}
catch (Exception e)
{

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 233

Throwing Your Own Exceptions234

System.out.println(“Exception!”);
}

}

public static void doSomething(boolean t) throws
Exception

{
if (t)

throw new Exception();
}

}

Here, the doSomething method accepts a boolean value as a parameter. If
this value is true, it throws an exception. Otherwise, it doesn’t do anything.

Here are the essential points to glean from this admittedly trivial example:

✦ You throw an exception by executing a throw statement. The throw
statement specifies the exception object to be thrown.

✦ If a method contains a throw statement, it must include a throws
clause in its declaration.

✦ A method that calls a method that throws an exception must either
catch or throw the exception.

✦ Yup, this example is pretty trivial. But it illustrates the essential points.

17_58961X bk02ch08.qxd 3/29/05 3:38 PM Page 234

Book III

Object-Oriented
Programming

18_58961X pt03.qxd 3/29/05 3:38 PM Page 235

Contents at a Glance
Chapter 1: Understanding Object-Oriented Programming..237

Chapter 2: Making Your Own Classes ..249

Chapter 3: Working with Statics ..265

Chapter 4: Using Subclasses and Inheritance ..273

Chapter 5: Using Abstract Classes and Interfaces..293

Chapter 6: Using the Object and Class Classes ..305

Chapter 7: Using Inner Classes ..329

Chapter 8: Packaging and Documenting Your Classes ..339

18_58961X pt03.qxd 3/29/05 3:38 PM Page 236

Chapter 1: Understanding
Object-Oriented Programming

In This Chapter
� Looking at what object-oriented programming is

� Understanding objects and classes

� Investigating inheritance and interfaces

� Designing programs with objects

� Diagramming with UML

This chapter is a basic introduction to object-oriented programming. It
introduces you to some of the basic concepts and terms you need to

know as you learn about the specific details of how object-oriented pro-
gramming works in Java.

If you’re more of a hands-on type, you may want to just skip this chapter
and go straight to Book III, Chapter 2, where you find out how to create your
own classes in Java. Then, you can always return to this chapter later to
learn about the basic concepts that drive object-oriented programming.
Either way is okay by me. I get paid the same whether you read this chapter
now or skip it and come back to it later.

What Is Object-Oriented Programming?
The term object-oriented programming means many different things. But at
its heart, object-oriented programming is a type of computer programming
based on the premise that all programs are essentially computer-based sim-
ulations of real-world objects or abstract concepts. For example:

✦ Flight simulator programs attempt to mimic the behavior of real air-
planes. Some do an amazingly good job: military and commercial pilots
train on them. In the 1960s, the Apollo astronauts used a computer-
controlled simulator to practice for their moon landings.

✦ Many computer games are simulations of actual games humans play,
such as baseball, Nascar racing, and chess. But even abstract games
such as Pac Man or Final Fantasy 4 attempt to model the behavior
of creatures and objects that could exist somewhere. Thus, those

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 237

Understanding Objects238

programs simulate a conceptual game — one that can’t actually be played
anywhere in the real world, but that can by simulated by a computer.

✦ Business programs can be thought of as simulations of business
processes, such as order taking, customer service, shipping, and billing.
For example, an invoice isn’t just a piece of paper; it’s a paper that repre-
sents a transaction that has occurred between a company and one of its
customers. Thus, a computer-based invoice is really just a simulation of
that transaction.

The notion of a programming language having a premise of this sort isn’t new.
Traditional programming languages such as C and its predecessors, including
even COBOL, are based on the premise that computer programs are comput-
erized implementations of procedures — the electronic equivalent of “Step 1:
Insert Tab A into Slot B.” The LISP programming language is based on the
idea that all programming problems can be looked at as different ways of
manipulating lists. And the ever popular database manipulation language
SQL views programming problems as ways to manipulate mathematical sets.

Here are some additional thoughts about the notion of computer programs
being simulations of real-world objects or abstract concepts:

✦ Sometimes the simulation is better than the real thing. Word processing
programs started out as simulations of typewriters, but a modern word
processing program is far superior to any typewriter.

✦ The idea that all computer programs are simulations of one type or
another isn’t a new one. In fact, the first object-oriented programming
language (Simula) was developed in the 1960s. By 1967, this language had
many of the features we now consider fundamental to object-oriented
programming, including classes, objects, inheritance, and virtual
methods.

✦ Come to think of it, manual business record keeping systems are simula-
tions too. A file cabinet full of printed invoices doesn’t hold actual
orders. It holds written representations of those orders. A computer is a
better simulation device than a file cabinet, but both are simulations.

Understanding Objects
All this talk of simulations is getting a little existential for me, so now I’m
turning to the nature of the objects that make up object-oriented program-
ming. Objects — both in the real world and in the world of programming —
are entities that have certain basic characteristics. The following sections
describe some of the more important of these characteristics: identity, type,
state, and behavior.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 238

Book III
Chapter 1

Understanding
Object-Oriented

Program
m

ing
Understanding Objects 239

Objects have identity
Every object in an object-oriented program has an identity. In other words,
every occurrence of a particular type of object — called an instance — can
be distinguished from every other occurrence of the same type of object, as
well as from objects of other types.

In the real world, object identity is a pretty intuitive and obvious concept.
Pick up two apples, and you know that although both of them are apples
(that’s the object type, described in the next section), you know they aren’t
the same apple. Each has a distinct identity. They’re both roughly the same
color, but not exactly. They’re both roundish, but have minor variations in
shape. Either one (or both) could have a worm inside.

Open a file cabinet that’s full of invoices and you find page after page of
papers that look almost identical to one another. However, each one has an
invoice number printed somewhere near the top of the page. This number
isn’t what actually gives each of these invoices a unique identity, but it gives
you an easy way to identify each individual invoice, just as your name gives
others an easy way to identify you.

In object-oriented programming, each object has its own location in the com-
puter’s memory. Thus, two objects, even though they may be of the same
type, have their own memory location. The address of the starting location
for an object provides us with a way of distinguishing one object from
another, because no two objects can occupy the same location in memory.

Here are a few other important thoughts about object identity in Java:

✦ Java pretty much keeps each object’s identity to itself. In other words,
there’s no easy way to get the memory address of an object. Java figures
that’s none of your business, and rightfully so. If Java made that infor-
mation readily available to you, you’d be tempted to tinker with it, which
can cause all sorts of problems as any C or C++ programmer can tell you.

✦ Java objects have something called a hash code, which is an int value
that’s automatically generated for every object and almost represents
the object’s identity. In most cases, the hash code for an object is based
on the object’s memory address. But not always. Java doesn’t guarantee
that two distinct objects won’t have the same hash code.

✦ When used with objects, the equality operator (==) actually tests the
object identity of two variables or expressions. If they refer to the same
object instance, the two variables or expressions are considered equal.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 239

Understanding Objects240

Objects have type
I remember studying Naming of Parts, a fine poem written by Henry Reed in
1942, back when I was an English major in college:

Today we have naming of parts. Yesterday,
We had daily cleaning. And tomorrow morning,
We shall have what to do after firing. But today,
Today we have naming of parts. Japonica
Glistens like coral in all of the neighboring gardens,

And today we have naming of parts.

Sure, it’s a fine anti-war poem and all that, but it’s also a little instructive
about object-oriented programming. After the first stanza, the poem goes on
to name the parts of a rifle:

This is the lower sling swivel. And this
Is the upper sling swivel, whose use you will see,
When you are given your slings. And this is the piling swivel,
Which in your case you have not got.

Imagine a whole room of new soldiers taking apart their rifles, while the drill
sergeant tells them “This is the lower sling swivel. And this is the upper sling
swivel. . .” Each soldier’s rifle has one of these parts — in object-oriented
terms, an object of a particular type. The lower-sling swivels in each sol-
dier’s rifle are different objects, but all are of the type LowerSlingSwivel.

Like the drill sergeant in this poem, object-oriented programming lets you
assign names to the different kind of objects in a program. In Java, types are
defined by classes. So when you create an object from a type, you’re saying
that the object is of the type specified by the class. For example, the follow-
ing statement creates an object of type Invoice:

Invoice i = new Invoice();

Then, the identity of this object (that is, its address in memory) is assigned
to the variable i, which the compiler knows can hold references to objects
of type Invoice.

Objects have state
Now switch gears to another literary genius:

One fish, two fish,
Red fish, blue fish

In object-oriented terms, Dr. Seuss here is enumerating a pair of objects of
type Fish. The Fish type apparently has two attributes — call them number
and color. These two objects have differing values for these attributes:

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 240

Book III
Chapter 1

Understanding
Object-Oriented

Program
m

ing
Understanding Objects 241

Attribute Object 1 Object 2

Number One Two

Color Red Blue

The type of an object determines what attributes the object has. Thus, all
objects of a particular type have the same attributes. However, they don’t
necessarily have the same values for those attributes. In this example, all
Fish have attributes named Number and Color, but the two Fish objects
have different values for these attributes.

The combination of the values for all the attributes of an object is called the
object’s state. Unlike its identity, an object’s state can and usually does
change over its lifetime. For example, some fish can change colors. The total
sales for a customer changes each time the customer buys another product.
The grade point average for a student changes each time a new class grade
is recorded. And the address and phone number of an employee changes if
the employee moves.

Here are a few more interesting details about object state:

✦ Some of the attributes of an object are publicly known, but others can
be private. The private attributes may be vital to the internal operation
of the object, but no one outside of the object knows they exist. They’re
like your private thoughts: They affect what you say and do, but nobody
knows them but you.

✦ In Java, the state of an object is represented by class variables, which
are called fields. A public field is a field that’s declared with the public
keyword so the variable can be visible to the outside world.

Objects have behavior
Another characteristic of objects is that they have behavior, which means they
can do things. Like state, the specific behavior of an object depends on its
type. But unlike state, the behavior isn’t different for each instance of a type.
For example, suppose all the students in a classroom have calculators of the
same type. Ask them all to pull out the calculators and add two numbers —
any two numbers of their choosing. All the calculators display a different
number, but they all add the same. In other words, they all have a different
state, but the same behavior.

Another way to say that objects have behavior is to say they provide serv-
ices that can be used by other objects. You’ve already seen plenty examples
of objects that provide services to other objects. For example, objects cre-
ated from the NumberFormat class provide formatting services that turn
numeric values into nicely formatted strings like $32.95.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 241

The Life Cycle of an Object242

In Java, the behavior of an object is provided by its methods. Thus, the
format method of the NumberFormat class is what provides the format-
ting behavior for NumberFormat objects.

Here are a few other notable points about object behavior:

✦ The interface of a class is the set of methods and fields that the class
makes public so other objects can access them.

✦ Exactly how an object does what it does can and should be hidden
within the object. Someone who uses the object needs to know what the
object does, but doesn’t need to know how it works. If you later find a
better way for the object to do its job, you can swap in the new improved
version without anyone knowing the difference.

The Life Cycle of an Object
As you work with objects in Java, understanding how objects are born, live
their lives, and die is important. This topic is called the life cycle of an
object, and it goes something like this:

✦ Before an object can be created from a class, the class must be loaded.
To do that, the Java runtime locates the class on disk (in a .class file)
and reads it into memory. Then, Java looks for any static initializers that
initialize static fields — fields that don’t belong to any particular instance
of the class, but rather belong to the class itself and are shared by all
objects created from the class.

A class is loaded the first time you create an object from the class or the
first time you access a static field or method of the class. For example,
when you run the main method of a class, the class is initialized because
the main method is static.

✦ An object is created from a class when you use the new keyword. To
initialize the class, Java allocates memory for the object and sets up a
reference to the object so the Java runtime can keep track of it. Then,
Java calls the class constructor, which is like a method but is called only
once, when the object is created. The constructor is responsible for
doing any processing required to initialize the object, such as initializing
variables, opening files or databases, and so on.

✦ The object lives its life, providing access to its public methods and fields
to whoever wants and needs them.

✦ When it’s time for the object to die, the object is removed from memory
and Java drops its internal reference to it. You don’t have to destroy
objects yourself. A special part of the Java runtime called the garbage
collector takes care of destroying all objects when they are no longer
in use.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 242

Book III
Chapter 1

Understanding
Object-Oriented

Program
m

ing
Working with Related Classes 243

Working with Related Classes
So far, most of the classes you’ve seen in this book have created objects that
stand on their own, each being a little island unto itself. However, the real
power of object-oriented programming lies in its ability to create classes that
describe objects that are closely related to each other.

For example, baseballs are similar to softballs. Both are specific types of
balls. They both have a diameter and a weight. And both can be thrown,
caught, or hit. However, they have different characteristics that cause them
to behave differently when thrown, caught, or hit.

If you’re creating a program that simulated the way baseballs and softballs
work, you need a way to represent these two types of balls. One option is to
create separate classes to represent each type of ball. These classes are sim-
ilar, so you can just copy most of the code from one class to the other.

Another option is to use a single class to represent both types of balls. Then,
you pass a parameter to the constructor to indicate whether an instance of
the class behaves like a baseball or like a softball.

However, Java has two object-oriented programming features that are
designed specifically to handle classes that are related like this: inheritance
and interfaces. I briefly describe these features in the following sections.

Inheritance
Inheritance is an object-oriented programming technique that lets you use
one class as the basis for another. The existing class is called the base class,
superclass, or parent class, and the new class that’s derived from it is called
the derived class, subclass, or child class.

When you create a subclass, the subclass is automatically given all the meth-
ods and fields defined by its superclass. You can use these methods and
fields as is, or you can override them to alter their behavior. In addition, you
can add additional methods and fields that define data and behavior that’s
unique to the subclass.

You could use inheritance to solve the baseball/softball problem from the
previous section by creating a class named Ball that provides the basic
features of all types of balls, and then using it as the base class for separate
classes named BaseBall and SoftBall. Then, these classes could over-
ride the methods that need to behave differently for each type of ball.

One way to think of inheritance is as a way to implement is-a-type-of relation-
ships. For example, a softball is a type of ball, as is a baseball. Thus, inheritance
is an appropriate way to implement these related classes. For more informa-
tion about inheritance, see Book III, Chapter 4.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 243

Designing a Program with Objects244

Interfaces
An interface is a set of methods and fields that a class must provide to imple-
ment the interface. The interface itself is simply a set of public method and
field declarations that are given a name. Note that the interface itself doesn’t
provide any code that implements those methods. Instead, it just provides
the declarations. Then, a class that implements the interface provides an
implementation for each of the methods the interface defines.

You could use an interface to solve the baseball/softball problem by creating
an interface named Ball that specifies all the methods and fields that a ball
should have. Then, you could create the SoftBall and BaseBall classes
so that they both implement the Ball interface.

Interfaces are closely related to inheritance, but have two key differences:

✦ The interface itself doesn’t provide code that implements any of its
methods. An interface is just a set of method and field signatures. In con-
trast, a base class can provide the implementation for some or all of its
methods.

✦ A class can have only one base class. However, a class can implement as
many interfaces as necessary.

You find out about interfaces in Book III, Chapter 5.

Designing a Program with Objects
An object-oriented program usually isn’t just a single object. Instead, it’s a
group of objects that work together to get a job done. The most important
part of developing an object-oriented program is designing the classes that
are used to create the program’s objects. The basic idea is to break a large
problem down into a set of classes that are each manageable in size and
complexity. Then, you write the Java code that implements those classes.

So, the task of designing an object-oriented application boils down to decid-
ing what classes the application requires and what the public interface to
each of those classes are. If you plan your classes well, implementing the
application is easy. But if you poorly plan your classes, you’ll have a hard
time getting your application to work.

One common way to design object-oriented applications is to divide the
application into several distinct layers or tiers that provide distinct types of
functions. The most common is a three-layered approach, as shown in Figure
1-1. Here, the objects of an application are split up into three basic layers:

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 244

Book III
Chapter 1

Understanding
Object-Oriented

Program
m

ing
Diagramming Classes with UML 245

✦ Presentation: The objects in this layer handle all the direct interaction
with users. For example, the HTML pages in a Web application go in this
layer, as do the Swing page and frame classes in a GUI-based application
(I cover Swing in Book VI).

✦ Logic: The objects in this layer represent the core objects of the applica-
tion. For a typical business-type application, this layer includes objects
that represent business entities such as customer, products, orders,
suppliers, and the like. This layer is sometimes called the business rules
layer because the objects in this layer are responsible for carrying out
the rules that govern the application.

✦ Database: The objects in this layer handle all the details of interacting
with whatever form of data storage is used by the application. For exam-
ple, if the data is stored in a SQL database, the objects in this layer
handle all of the SQL.

Diagramming Classes with UML
Since the very beginning of computer programming, programmers have
loved to create diagrams of their programs. Originally, they drew flowcharts
that graphically represented a program’s procedural logic.

Flowcharts were good at diagramming procedures, but they were way too
detailed. When the Structured Programming craze hit in the 1970s and pro-
grammers started thinking about the overall structure of their programs,
they switched from flowcharts to structure charts, which illustrated the
organizational relationships among the modules of a program or system.

AccountUpdater

Account

AccountDB

Presentation layer

Logic layer

Database layer

ReportCreator

Customer

CustomerDB

Figure 1-1:
Three-
layered
design.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 245

Diagramming Classes with UML246

Now that object-oriented programming is the thing, programmers draw class
diagrams to illustrate the relationships among the classes that make up an
application. For example, the simple class diagram shown in Figure 1-2 shows
a class diagram for a simple system that has four classes. The rectangles rep-
resent the classes themselves, and the arrows represent the relationships
among the classes.

You can draw class diagrams in many ways. To add some consistency to
their diagrams, most programmers use a standard called UML, which stands
for Unified Modeling Language. The class diagram in Figure 1-2 is an example
of a simple UML diagram, but UML diagrams can get much more complicated
than this example.

The following sections describe the details of creating UML class diagrams.
Note that these sections don’t even come close to explaining all the features
of UML. I include just the basics of creating UML class diagrams so that you
can make some sense of UML diagrams when you see them, and so that you
know how to draw simple class diagrams to help you design the class struc-
ture for your applications. If you’re interested in digging deeper into UML,
check out UML 2 For Dummies by Michael Jesse Chonoles and James A.
Schardt (Wiley).

Drawing classes
The basic element in a class diagram is a class. In UML, each class is drawn
as a rectangle. At the minimum, the rectangle must include the class name.
However, you can subdivide the rectangle into two or three compartments
that can contain additional information about the class, as shown in
Figure 1-3.

«abstract»
Person

Staff

Database

Student

Figure 1-2:
A simple
class
diagram.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 246

Book III
Chapter 1

Understanding
Object-Oriented

Program
m

ing
Diagramming Classes with UML 247

The middle compartment of a class lists the class variables, while the
bottom compartment lists the class methods. The name of each variable or
method can be preceded by a visibility indicator, which can be one of the
symbols listed in Table 1-1. In actual practice, omiting the visibility indicator
and listing only those fields or methods that have public visibility is common.

Table 1-1 Visibility Indicators for Class Variables and Methods
Indicator Description

+ Public

- Private

Protected

If you want, you can include type information for variables as well as for
methods and parameters. The type of a variable is indicated by following the
variable name with a colon and the type:

connectionString: String

A method’s return type is indicated in the same way:

getCustomer(): Customer

Parameters are listed within the parentheses, and both the name and type
are listed. For example:

getCustomer(custno: int): Customer

Note: Omitting the type and parameter information from UML diagrams is
common.

CustomerDB

+connectionString

+connectionStatus

+getCustomer

+updateCustomer

+deleteCustomer

+addCustomer

+getCustomerList

Figure 1-3:
A class.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 247

Diagramming Classes with UML248

Interfaces are drawn pretty much the same as classes, but the class name is
preceded by the word interface:

«interface»
ProductDB

Note: The word interface is enclosed within a set of double-left and double-
right arrows. These arrows aren’t just two less-than or greater-than symbols
typed in a row; they’re a special symbol. Fortunately, this symbol is a stan-
dard part of the ASCII character set. You can access them in Microsoft Word
via the Insert Symbol command.

Drawing arrows
Besides rectangles to represent classes, class diagrams also include arrows
to represent relationships among classes. UML uses a variety of different
types of arrows, as I describe in the following paragraphs.

A solid line with a hollow closed arrow at one end represents inheritance:

The arrow points to the base class.

A dashed line with a hollow close arrow at one end indicates that a class
implements an interface:

The arrow points to the interface. A solid line with an open arrow indicates
an association:

An association simply indicates that two classes work together. It may be
that one of the classes creates objects of the other class, or that one class
requires an object of the other class to perform its work. Or, perhaps
instances of one class contain instances of the other class.

You can add a name to an association arrow to indicate its purpose. For
example, if an association arrow indicates that instances of one class create
objects of another class, you can place the word Creates next to the arrow.

19_58961X bk03ch01.qxd 3/29/05 3:39 PM Page 248

Chapter 2: Making Your
Own Classes

In This Chapter
� Creating your own class

� Looking at the pieces of a class declaration

� Finding out about class fields

� Constructing constructors

� Adding methods to your classes

� Using the this keyword

Okay, class, it’s time to learn how to create your own classes.

In this chapter, you discover the basics of creating classes in Java. All Java
programs are classes, so you’ve already seen many examples of classes. For
example, you’ve seen class headers such as public class GuessingGame
and static methods such as public static void main. Now, in this
chapter, I show you how to create programs that have more than one class.

Declaring a Class
All classes must be defined by a class declaration that provides the name for
the class and the body of the class. Here’s the most basic form of a class
declaration:

[public] class ClassName {class-body}

The public keyword indicates that this class is available for use by other
classes. Although it is optional, you usually include it on your class declara-
tions. After all, the main reason you write class declarations is so that other
classes can create objects from the class. Find out more about using the
public keyword in the section “Where classes go” later in this chapter.

In later chapters of this book, you find out about some additional elements
that can go in a class declaration. The format I’m describing here is just the
basic format, which you use to create basic classes.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 249

Declaring a Class250

Picking class names
The ClassName is an identifier that provides a name for your class. You can
use any identifier you want to name a class, but the following three guide-
lines can simplify your life:

✦ Begin the class name with a capital letter. If the class name consists
of more than one word, capitalize each word. For example, Ball,
RetailCustomer, and GuessingGame.

✦ Whenever possible, use nouns for your class names. Classes create
objects, and nouns are the words you use to identify objects. Thus, most
class names should be nouns.

✦ Avoid using the name of a Java API class. No rule says you have to, but
if you create a class that has the same name as a Java API class, you
have to use fully qualified names (like java.util.Scanner) to tell
your class and the API class with the same name apart.

There are literally thousands of Java API classes, so avoiding them all is
pretty hard. But at the least, you should avoid commonly used Java
class names as well as any API classes your application is likely to use.
For example, creating a class named String or Math is just asking for
trouble.

What goes in the class body
The class body of a class is everything that goes within the braces at the end
of the class declaration. The public class ClassName part of a class
declaration takes just one line, but the body of the class declaration may
take hundreds of lines. Or thousands if you get carried away.

The class body can contain the following elements:

✦ Fields: Variable declarations define the public or private fields of a class.

✦ Methods: Method declarations define the methods of a class.

✦ Constructors: A constructor is a block of code that’s similar to a method
but is run to initialize an object when an instance is created. A construc-
tor must have the same name as the class itself and, although it resembles
a method, it doesn’t have a return type.

✦ Initializers: These are stand-alone blocks of code that are run only once,
when the class is initialized. There are actually two types, called static
initializers and instance initializers. Although you won’t use them often, I
talk about instance initializers later in this chapter, in the section “Using
Initializers.” For information about static initializers, refer to Book III,
Chapter 3.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 250

Book III
Chapter 2

M
aking Your Ow

n
Classes

Declaring a Class 251

✦ Other classes and interfaces: A class can include another class, which is
then called an inner class or a nested class. Classes can also contain inter-
faces. For more information about inner classes, see Book III, Chapter 7.
And for information about interfaces, refer to Book III, Chapter 5.

Unlike some programming languages, the order in which items appear in the
class body doesn’t matter. Still, being consistent about the order in which
you place things in your classes is a good idea. That way you know where to
find them. I usually code all the fields together at the start of the class, fol-
lowed by constructors and then methods. If the class includes initializers,
I place them near the fields they initialize. And if the class includes inner
classes, I usually place them after the methods that use them.

Some programmers like to place the fields at the end of the class rather than
at the beginning. Whatever brings you happiness is fine with me.

The fields, methods, classes, and interfaces contained within a class are
called the members of the class. Constructors and initializers aren’t consid-
ered to be members, for reasons that are too technical to explain just yet.
(You can find the explanation in Book III, Chapter 3.)

Where classes go
A public class must be written in a source file that has the same name as the
class, with the extension java. For example, a public class named Greeter
must be placed in a file named Greeter.java.

As a result, you can’t place two public classes in the same file. For example,
the following source file (named DiceGame.java) won’t compile:

public class DiceGame
{

public static void main(String[] args)
{

Dice d = new Dice();
d.roll();

}
}

public class Dice
{

public void roll()
{

// code that rolls the dice goes here
}

}

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 251

Declaring a Class252

The compiler coughs up a message indicating that Dice is a public class
and must be declared in a file named Dice.java.

This problem has two solutions. The first is to remove the public keyword
from the Dice class:

public class DiceGame
{

public static void main(String[] args)
{

Dice d = new Dice();
d.roll();

}
}

class Dice
{

public void roll()
{

// code that rolls the dice goes here
}

}

The compiler gladly accepts this program.

This is not the same thing as an inner class. An inner class is a class that’s
defined within the body of another class, and is available only from within
that class. For more information about inner classes, see Book III, Chapter 7.

When you code more than one class in a single source file, Java still creates
a separate class file for each class. Thus, when you compile the DiceGame.
java file, the Java compiler creates two class files, named DiceGame.class
and Dice.class.

Removing the public keyword from a class is acceptable for relatively
small programs. But its limitation is that the Dice class is available only to
the classes defined within the DiceGame.java file. If you want the Dice
class to be more widely available, opt for the second solution: Place it —
with the public keyword — in a separate file named Dice.java.

If you’re going to create an application that has several public classes, create
a separate folder for the application. Then, save all the class files for the
application to this folder. If your class files are together in the same folder,
the Java compiler can find them. If you place them in separate folders, you
may need to adjust your ClassPath environment variable to help the com-
piler find the classes.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 252

Book III
Chapter 2

M
aking Your Ow

n
Classes

Working with Members 253

Working with Members
The members of a class are the fields and methods defined in the class body.
(Technically, classes and interfaces defined within a class are members too.
But I don’t discussed them in this chapter, so you can ignore them for now.)

The following sections describe the basics of working with fields and meth-
ods in your classes.

Fields
A field is a variable that’s defined in the body of a class, outside of any of the
class’ methods. Fields, which are also called class variables, are available to
all the methods of a class. In addition, if the field specifies the public key-
word, the field is visible outside of the class. If you don’t want the field to be
visible outside of the class, use the private keyword instead.

Fields are defined the same as any other Java variable, but can have a modifier
that specifies whether the field is public or private. Here are some examples of
public field declarations:

public int trajectory = 0;
public String name;
public Player player;

To create a private field, specify private instead of public:

private int x-position = 0;
private int y-position = 0;
private String error-message = “”;

Fields can also be declared as final:

public final int MAX_SCORE = 1000;

The value of a final field can’t be changed once it has been initialized.
Note: Spelling final field names with all capital letters is customary
(but not required).

Methods
You define methods for a class using the same techniques that I describe in
Book II, Chapter 7. To declare a method that’s available to users of your class,
add the public keyword to the method declaration:

public boolean isActive()
{

return this.isActive;
}

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 253

Getters and Setters254

To create a private method that can be used within the class but isn’t visible
outside of the class, use the private keyword:

private void calculateLunarTrajectory()
{

// code to get the calculated lunar trajectory
}

Understanding visibility
In the preceding sections, I mention that both fields and methods can use
the public or private keywords to indicate whether or not the field or
method can be accessed from outside of the class. This is called the visibility
of the field or method.

The combination of all the members that have public access is sometimes
called the public interface of your class. These members are the only means
that other objects have to communicate with objects created from your class.
As a result, carefully consider which public fields and methods your class
declares.

The term expose is sometimes used to refer to the creation of public fields
and methods. For example, if a class has a public method named isActive,
you could say that the class exposes the isActive method. That simply
means that the method is available to other classes.

You can use private fields and methods within a class but not from other
classes. They’re used to provide implementation details that may be crucial
to the operation of your class, but that shouldn’t be exposed to the outside
world. Private fields and methods are sometimes called internal members,
because they’re available only from within the class.

Getters and Setters
One of the basic goals of object-oriented programming is to hide the imple-
mentation details of a class inside the class while carefully controlling what
aspects of the class are exposed to the outside world. As a general rule, you
should avoid creating public fields. Instead, you can make all your fields pri-
vate. Then, you can selectively grant access to the data those fields contain
by adding special methods called accessors to the class.

There are two types of accessors: A get accessor (also called a getter) is a
method that retrieves a field value, while a set accessor (setter) is a method
that sets a field value. These methods are usually named getFieldName
and setFieldName, respectively. For example, if the field is named count,
the getter and setter methods are named getCount and setCount.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 254

Book III
Chapter 2

M
aking Your Ow

n
Classes

Getters and Setters 255

Here’s a class that uses a private field named Health to indicate the health
of a player in a game program:

public class Player
{

private int health;

public int getHealth()
{

return health;
}

public void setHealth(int h)
{

health = h;
}

}

Here, the health field itself is declared as private, so it can’t be accessed
directly. Instead, it can be accessed only through the methods getHealth
and setHealth.

Creating classes with accessors rather than simple public fields have several
benefits:

✦ You can create a read-only property by providing a get accessor but not
a set accessor. Then, other classes can retrieve the property value, but
can’t change it.

✦ Instead of storing the property value in a private field, you can calculate
it each time the get accessor method is called. For example, suppose you
have a class named Order that includes fields named unitPrice and
quantityOrdered. This class might also contain a getOrderTotal
method that looks like this:

public double getOrderTotal()
{

return unitPrice * quantityOrdered;
}

Here, instead of returning the value of a class field, the get accessor cal-
culates the value to be returned.

✦ You can protect the class from bad data by validating data in a property
set accessor and either ignoring invalid data or throwing an exception if
invalid data is passed to the method. For example, suppose you have a
set accessor for an int property named Health whose value can be
from 0 to 100. Here’s a set accessor that prevents the Health property
from being set to an incorrect value:

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 255

Getters and Setters256

public void setHealth(int h)
{

if (h < 0)
health = 0;

else if (h > 100)
health = 100;

else
health = h;

}

Here, if the setHealth method is called with a value less than zero, the
health is set to zero. Likewise, if the value is greater than 100, the health
is set to 100.

For a little added insight on the use of accessors, see the sidebar “The
Accessor Pattern.”

The Accessor Pattern
The use of accessors as described in the section “Getters and Setters” in this chapter is an exam-
ple of a design pattern that’s commonly used by Java programmers. The Accessor pattern is
designed to provide a consistent way to set or retrieve the value of class fields without having to
expose the fields themselves to the outside world.

Most Java programmers quickly learn that one of the basic guidelines of object-oriented program-
ming is to avoid public fields. Unfortunately, they often respond to this guideline by making all fields
private, and then providing get and set accessors for every field whether they need them or not. So
they write classes that look like this:

Public class MyClass
{

private int fieldX;
private int fieldY;
public int getX() { return x; }
public void setX(int xValue) { this.x = xValue; }
public int getY() { return y; }
public void setY(int yValue) { this.y = yValue; }

}

Why not just make fieldX and fieldY public fields and skip the accessors?

To be honest, you may as well. The point of making your fields private is so that you can carefully
control access to them. If you blindly create accessors for all your fields, you may as well just
make the fields public.

Instead, carefully consider which fields really should be accessible to the outside world, and pro-
vide accessors only for those fields that really need them.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 256

Book III
Chapter 2

M
aking Your Ow

n
Classes

Overloading Methods 257

Overloading Methods
A Java class can contain two or more methods with the same name, provided
those methods accept different parameters. This is called overloading and is
one of the keys to building flexibility into your classes. With overloading, you
can anticipate different ways someone might want to invoke an object’s func-
tions, and then provide overloaded methods for each alternative.

The term overloading is accurate, but a little unfortunate. Normally, when
you say something is overloaded, there’s a problem. For example, I once saw
a picture of a Volkswagen Jetta loaded down with 3,000 pounds of lumber.
(You can find the picture courtesy of Snopes.com, the Urban Legend
Reference Page Web site, at www.snopes.com/photos/lumber.asp.)
That’s a classic example of overloading. You don’t have to worry about Java
collapsing under the weight of overloaded methods.

You’re already familiar with several classes that have overloaded methods,
though you may not realize it. For example, the PrintWriter class (which
you access via System.out) defines ten different versions of the println
method that allow you to print different types of data. The following lines
show the method declaration for each of these overloads:

void println()
void println(boolean x)
void println(char x)
void println(char[] x)
void println(double x)
void println(float x)
void println(int x)
void println(long x)
void println(Object x)
void println(String x)

The basic rule when creating overloaded methods is that every method
must have a unique signature. A method’s signature is the combination of its
name and the number and types of parameters it accepts. Thus, each of the
println methods has a different signature because although each has the
same name, each accepts a different parameter type.

Two things that are not a part of a method’s signature are

✦ The method’s return type: You can’t code two methods with the same
name and parameters but with different return types.

✦ The names of the parameters: All that matters to the method signature
are the types of the parameters and the order in which they appear.
Thus, the following two methods have the same signature:

double someMethodOfMine(double x, boolean y)
double someMethodOfMine(double param1, boolean

param2)

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 257

Creating Constructors258

Creating Constructors
A constructor is a block of code that’s called when an instance of an object is
created. In many ways, a constructor is similar to a method, but with a few
differences:

✦ A constructor doesn’t have a return type.

✦ The name of the constructor must be the same as the name of the class.

✦ Unlike methods, constructors are not considered to be members of a
class. (That’s only important when it comes to inheritance, which is cov-
ered in Book III, Chapter 4.)

✦ A constructor is called when a new instance of an object is created. In
fact, it’s the new keyword that calls the constructor. After creating the
object, you can’t call the constructor again.

Here’s the basic format for coding a constructor:

public ClassName (parameter-list) [throws exception...]
{

statements...
}

The public keyword indicates that other classes can access the construc-
tor. That’s usually what you want, although in the next chapter you see why
you might want to create a private constructor. ClassName must be the
same as the name of the class that contains the constructor. And you code
the parameter list the same as you code it for a method.

Notice also that a constructor can throw exceptions if it encounters situa-
tions it can’t recover from. For more information about throwing exceptions,
refer to Book II, Chapter 8.

Basic constructors
Probably the most common reason for coding a constructor is to provide ini-
tial values for class fields when you create the object. For example, suppose
you have a class named Actor that has fields named firstName and
lastName. You can create a constructor for the Actor class:

public Actor(String first, String last)
{

firstName = first;
lastName = last;

}

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 258

Book III
Chapter 2

M
aking Your Ow

n
Classes

Creating Constructors 259

Then, you create an instance of the Actor class by calling this constructor:

Actor a = new Actor(“Arnold”, “Schwarzenegger”);

A new Actor object for Arnold Schwarzenegger is created.

Like methods, constructors can be overloaded. In other words, you can pro-
vide more than one constructor for a class, provided each constructor has a
unique signature. For example, here’s another constructor for the Actor
class:

public Actor(String first, String last, boolean good)
{

firstName = first;
lastName = last;
goodActor = good;

}

This constructor lets you create an Actor object with additional informa-
tion besides the actor’s name:

Actor a = new Actor(“Arnold”, “Schwarzenegger”, false);

Default constructors
I grew up on Dragnet. I can still hear Joe Friday reading some thug his rights:
“You have the right to an attorney during questioning. If you desire an attor-
ney and cannot afford one, an attorney will be appointed to you free of
charge.”

Java constructors are like that. Every class has a right to a constructor. If
you don’t provide a constructor, Java appoints one for you, free of charge.
This free constructor is called the default constructor. It doesn’t accept any
parameters and it doesn’t do anything, but it does allow your class to be
instantiated.

Thus, the following two classes are identical:

public Class1
{

public Class1() { }
}

public Class1 { }

In the first example, the class explicitly declares a constructor that doesn’t
accept any parameters and has no statements in its body. In the second
example, Java creates a default constructor that works just like the construc-
tor shown in the first example.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 259

Creating Constructors260

The default constructor is not created if you declare any constructors for the
class. As a result, if you declare a constructor that accepts parameters and
still want to have an empty constructor (with no parameters and no body),
you must explicitly declare an empty constructor for the class.

An example might clear this point up. The following code does not compile:

public class BadActorApp
{

public static void main(String[] args)
{

Actor a = new Actor(); // error: won’t compile
}

}

class Actor
{

private String lastName;
private String firstName;
private boolean goodActor;

public Actor(String last, String first)
{

lastName = last;
firstName = first;

}

public Actor(String last, String first, boolean good)
{

lastName = last;
firstName = first;
goodActor = good;

}
}

This program won’t compile because it doesn’t explicitly provide a default
constructor for the Actor class, and because it does provide other con-
structors, the default constructor isn’t automatically generated.

Calling other constructors
A constructor can call another constructor of the same class by using the
special keyword this as a method call. This technique is commonly used
when you have several constructors that build on each other.

For example, consider this class:

public class Actor
{

private String lastName;

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 260

Book III
Chapter 2

M
aking Your Ow

n
Classes

Creating Constructors 261

private String firstName;
private boolean goodActor;

public Actor(String last, String first)
{

lastName = last;
firstName = first;

}

public Actor(String last, String first, boolean good)
{

this(last, first);
goodActor = good;

}
}

Here, the second constructor calls the first constructor to set the lastName
and firstName fields. Then, it sets the goodActor field.

You have a few restrictions on how to use the this keyword as a construc-
tor call:

✦ You can call another constructor only in the very first statement of a
constructor. Thus, the following won’t compile:

public Actor(String last, String first, boolean good)
{

goodActor = good;
this(last, first); // error: won’t compile

}

If you try to compile a class with this constructor, you get a message
saying call to this must be first statement in
constructor.

✦ Each constructor can call only one other constructor. However, you can
chain constructors together. For example, if a class has three construc-
tors, the first constructor can call the second one, which in turn calls
the third one.

✦ You can’t create loops where constructors call each other. For example,
here’s a class that won’t compile:

class CrazyClass
{

private String firstString;
private String secondString;

public CrazyClass(String first, String second)
{

this(first);
secondString = second;

}

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 261

More Uses for this262

public CrazyClass(String first)
{

this(first, “DEFAULT”); // error: won’t
// compile

}
}

The first constructor starts by calling the second constructor, which
calls the first constructor. The compiler complains that this error is a
recursive constructor invocation and politely refuses to com-
pile the class.

If you don’t explicitly call a constructor in the first line of a constructor, Java
inserts code that automatically calls the default constructor of the base
class — that is, the class that this class inherits. This little detail doesn’t
become too important until you get into inheritance, which is covered in
Book III, Chapter 4. So you can just conveniently ignore it for now.

More Uses for this
As I describe in the previous section, you can use the this keyword in a
constructor to call another constructor for the current class. You can also
use this in the body of a class constructor or method to refer to the current
object — that is, the class instance for which the constructor or method has
been called.

The this keyword is usually used to qualify references to instance variables
of the current object. For example:

public Actor(String last, String first)
{

this.lastName = last;
this.firstName = first;

}

Here, this isn’t really necessary because the compiler can tell that lastName
and firstName refer to class variables. However, suppose you use lastName
and firstName as the parameter names for the constructor:

public Actor(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;

}

Here, the this keywords are required to distinguish between the parameters
named lastName and firstName and the instance variables with the same
names.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 262

Book III
Chapter 2

M
aking Your Ow

n
Classes

Using Initializers 263

You can also use this in a method body. For example:

public String getFullName()
{

Return this.firstName + “ “ + this.lastName;
}

Because this example has no ambiguity, this isn’t really required. However,
many programmers like to use this even when it isn’t necessary because it
makes it clear that you’re referring to an instance variable.

Sometimes, you use the this keyword all by itself to pass a reference to the
current object as a method parameter. For example, you can print the cur-
rent object to the console by using the following statement:

System.out.println(this);

The println method calls the object’s toString method to get a string
representation of the object, and then prints it to the console. By default,
toString prints the name of the class that the object was created from and
the object’s hash code. If you want the println method to print something
more meaningful, provide a toString method of your own for the class.

Using Initializers
An initializer (sometimes called an initializer block) is a lonely block of code
that’s placed outside of any method, constructor, or other block of code.
Initializers are executed whenever an instance of a class is created, regard-
less of which constructor is used to create the instance.

Initializer blocks are similar to variable initializers used to initialize vari-
ables. The difference is that with an initializer block, you can code more than
one statement. For example, here’s a class that gets the value for a class field
from the user when the class is initialized:

class PrimeClass
{

private Scanner sc = new Scanner(System.in);

public int x;

{
System.out.print(

“Enter the starting value for x: “);
x = sc.nextInt();

}

}

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 263

Using Initializers264

You can almost always achieve the same effect using other coding techniques
that are usually more direct. For example, you could prompt the user for the
value in the constructor. Or, you could call a method in the field initializer,
like this:

class PrimeClass
{

private Scanner sc = new Scanner(System.in);

public int x = getX();

private int getX()
{

System.out.print(“Enter the starting value for
x: “);

return sc.nextInt();
}

}

Either way, the effect is the same.

Here are a few other tidbits of information concerning initializers:

✦ If a class contains more than one initializer, the initializers are executed
in the order in which they appear in the program.

✦ Initializers are executed before any class constructors.

✦ A special kind of initializer block called a static initializer lets you initial-
ize static fields. For more information, refer to the next chapter.

✦ Initializers are sometimes used with anonymous classes, as I describe in
Book III, Chapter 6.

20_58961x bk03ch02.qxd 3/29/05 3:40 PM Page 264

Chapter 3: Working with Statics

In This Chapter
� Adding static fields to a class

� Creating static methods

� Creating classes that can be instantiated

� Using static initializers

A static method is a method that isn’t associated with an instance of a
class. (Unless you jumped straight to this chapter, you already knew

that.) Instead, the method belongs to the class itself. As a result, you can
call the method without first creating a class instance. In this chapter, you
find out everything you need to know about creating and using static fields
and methods.

Understanding Static Fields and Methods
According to my handy Webster’s dictionary, the word static has several
different meanings. Most of them relate to the idea of being stationary or
unchanging. For example, a static display is a display that doesn’t move.
Static electricity is an electrical charge that doesn’t flow. A static design is a
design that doesn’t change.

The term static as used by Java doesn’t mean unchanging. For example, you
can create a static field, and then assign values to it as a program executes.
Thus, the value of the static field can change.

To further confuse things, the word static can also mean interference, as in
radio static that prevents you from hearing music clearly on the radio. But
in Java, the term static doesn’t have anything to do with interference or bad
reception.

So what does the term static mean in Java? It’s used to describe a special
type of field or method that isn’t associated with a particular instance of a
class. Instead, static fields and methods are associated with the class itself.
That means you don’t have to create an instance of the class to access a
static field or methods. Instead, you access a static field or method by speci-
fying the class name, not a variable that references an object.

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 265

Working with Static Fields266

Static fields and methods have many common uses. Here are but a few:

✦ To provide constants or other values that aren’t related to class
instances. For example, a Billing class might have a constant named
SALES_TAX_RATE that provides the state sales tax rate.

✦ To keep a count of how many instances of a class have been created.
For example, a Ball class used in a game might have a static field that
counts how many balls currently exist. This count doesn’t belong to any
one instance of the Ball class.

✦ In a business application, to keep track of a reference or serial
number that’s assigned to each new object instance. For example, an
Invoice class might maintain a static field that holds the invoice
number that is assigned to the next Invoice object created from the
class.

✦ To provide an alternative way to create instances of the class. An
excellent example of this is the NumberFormat class, which has static
methods such as getCurrencyInstance and getNumberInstance
that return object instances to format numbers in specific ways. One
reason you might want to use this technique is to create classes that
can have only one object instance. This is called a singleton class, and is
described more in the sidebar “The Singleton Pattern,” which appears
later in this chapter.

✦ To provide utility functions that aren’t associated with an object at all.
A good example in the Java API library is the Math class, which pro-
vides a bunch of static methods to do math calculations. An example
you might code yourself would be a DataValidation class with static
methods that validate input data or a database class with static methods
that perform database operations.

Working with Static Fields
A static field is a field that’s declared with the static keyword, like this:

private static int ballCount;

Note that the position of the static and visibility keywords (private and
public, as well as protected, which I describe in the next chapter) are
interchangeable. As a result, the following statement works as well:

static private int ballCount;

As a convention, most programmers tend to put the visibility keyword first.

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 266

Book III
Chapter 3

W
orking w

ith
Statics

Using Static Methods 267

Note that you can’t use the static keyword within a class method. Thus,
the following code won’t compile:

static private void someMethod()
{

static int x;
}

In other words, fields can be static, but local variables can’t.

You can provide an initial value for a static field:

private static String district = “Northwest”;

Static fields are created and initialized when the class is first loaded. That
happens when a static member of the class is referred to or when an
instance of the class is created, whichever comes first.

Another way to initialize a static field is to use a static initializer, which I
cover later in this chapter, in the section “Using Static Initializers.”

Using Static Methods
A static method is a method declared with the static keyword. Like static
fields, static methods are associated with the class itself, not with any partic-
ular object created from the class. As a result, you don’t have to create an
object from a class before you can use static methods defined by the class.

The best-known static method is main, which is called by the Java runtime
to start an application. The main method must be static, which means that
applications are by default run in a static context.

One of the basic rules of working with static methods is that you can’t
access a non-static method or field from a static method. That’s because
the static method doesn’t have an instance of the class to use to reference
instance methods or fields. For example, the following code won’t compile:

public class TestClass
{

private int x = 5; // an instance field

public static void main(String[] args)
{

int y = x; // error: won’t compile
}

}

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 267

Counting Instances268

Here, the main method is static, so it can’t access the instance variable x.

Note: However, you can access static methods and fields from an instance
method. For example, the following code works fine:

public class Invoice
{

private static double taxRate = 0.75;

private double salesTotal;

public double getTax()
{

return salesTotal * taxRate;
}

}

Here, the instance method named salesTotal has no trouble accessing
the static field taxRate.

Counting Instances
One common use for static variables is to keep track of how many instances
of a class have been created. To illustrate how you can do this, consider the
program in Listing 3-1. This program includes two classes. The CountTest
class is a simple class that keeps track of how many times its constructor
has been called. Then, the CountTestApp class uses a for loop to create
ten instances of the class, displaying the number of instances that have been
created after creating each instance.

Note that the instance count in this application is reset to zero each time the
application is run. As a result, it doesn’t keep track of how many instances of
the CountTest class have ever been created, only how many have been
created during a particular execution of the program.

LISTING 3-1:THE COUNTTEST APPLICATION

public class CountTestApp ➞ 1
{

public static void main(String[] args)
{

printCount();
for (int i = 0; i < 10; i++)
{

CountTest c1 = new CountTest(); ➞ 8
printCount(); ➞ 9

}
}

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 268

Book III
Chapter 3

W
orking w

ith
Statics

Counting Instances 269

private static void printCount()
{

System.out.println(“There are now “ ➞ 15
+ CountTest.getInstanceCount()
+ “ instances of the CountTest class.”);

}
}

class CountTest ➞ 21
{

private static int instanceCount = 0; ➞ 23

public CountTest() ➞ 25
{

instanceCount++;
}

public static int getInstanceCount() ➞ 29
{

return instanceCount;
}

}

The following paragraphs describe some of the highlights of this program:

➞ 1 The start of the CountTestApp class, which tests the CountTest
class.

➞ 8 Creates an instance of the CountTest class. Because this code is
contained in a for loop, a total of 10 instances are created.

➞ 9 Calls the printCount methods, which prints the number of
CountTest objects that have been created so far.

➞15 This line prints a message indicating how many CountTest objects
have been created so far. It calls the static getInstanceCount
method of the CountTest class to get the instance count.

➞21 The start of the CountTest class.

➞23 The static instanceCount variable, which stores the instance
count.

➞25 The constructor for the CountTest class. Notice that the
instanceCount variable is incremented within the constructor.
That way, each time a new instance of the class is created, the
instance count is incremented.

➞29 The static getInstanceCount method, which simply returns the
value of the static instanceCount field.

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 269

Counting Instances270

The Singleton Pattern
A singleton is a class that you can use to create only one instance. When you try to create an instance,
the class first checks to see if an instance already exists. If so, the existing instance is used. If not, a
new instance is created.

You can’t achieve this effect by using Java constructors, because a class instance has already been
created by the time the constructor is executed. (That’s why you can use the this keyword from
within a constructor.) As a result, the normal way to implement a singleton class is to declare all the
constructors for the class as private. That way, the constructors aren’t available to other classes.
Then, you provide a static method that returns an instance. This method either creates a new
instance or returns an existing instance.

Here’s a barebones example of a singleton class:

class SingletonClass
{

private static SingletonClass instance;

private SingletonClass()
{
}

public static SingletonClass getInstance()
{

if (instance == null)
instance = new SingletonClass();

return instance;
}

}

Here, the SingletonClasscontains a private instance variable that maintains a reference to
an instance of the class. Then, a default constructor is declared with private visibility to prevent the
constructor from being used outside of the class. Finally, the static getInstancemethod calls the con-
structor to create an instance if the instancevariable is null. Then, it returns the instance to the caller.

Here’s a bit of code that calls the getInstancemethod twice, and then compares the result-
ing objects:

SingletonClass s1 = SingletonClass.getInstance();
SingletonClass s2 = SingletonClass.getInstance();
if (s1 == s2)

System.out.println(“The objects are the same”);
else

System.out.println(“The objects are not the same”);

When this code is run, the first call to getInstance creates a new instance of the
SingletonClass class. The second call to getInstance simply returns a reference to the
instance that was created in the first call. As a result, the comparison in the if statement is true,
and the first message is printed to the console.

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 270

Book III
Chapter 3

W
orking w

ith
Statics

Using Static Initializers 271

Preventing Instances
Sometimes, you want to create a class that can’t be instantiated at all. Then,
the class consists entirely of static fields and methods. A good example in
the Java API is the Math class. Its methods provide utility-type functions
that aren’t really associated with a particular object. You may occasionally
find the need to create similar classes yourself. For example, you might
create a class with static methods for validating input data. Or, you might
create a database access class that has static methods to retrieve data from
a database. You don’t need to create instances of either of these classes.

You can use a simple trick to prevent anyone from instantiating a class. To
create a class instance, you have to have at least one public constructor. If
you don’t provide a constructor in your class, Java automatically inserts a
default constructor, which happens to be public.

All you have to do to prevent a class instance from being created, then, is to
provide a single private constructor, like this:

public class Validation
{

private Validation() {} // prevents instances

// static methods and fields go here
}

Now, because the constructor is private, the class can’t be instantiated.

Incidentally, the Math class uses this technique to prevent you from creating
instances from it. Here’s an actual snippet of code from the Math class:

public final class Math {

/**
* Don’t let anyone instantiate this class.
*/
private Math() {}

I figure if this trick is good enough for the folks who wrote the Math class,
it’s good enough for me.

Using Static Initializers
In the last chapter, you discover initializer blocks that you can use to initial-
ize instance variables. Initializer blocks aren’t executed until an instance of a
class is created, so you can’t count on them to initialize static fields. After
all, you might access a static field before you create an instance of a class.

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 271

Using Static Initializers272

Java provides a feature called a static initializer that’s designed specifically
to let you initialize static fields. The general form of a static initializer is this:

static
{

statements...
}

As you can see, a static initializer is similar to an initializer block, but begins
with the word static. Like an initializer block, you code static initializers in
the class body but outside of any other block, such as the body of a method
or constructor.

The first time you access a static member such as a static field or a static
method, any static initializers in the class are executed provided you haven’t
already created an instance of the class. That’s because the static initializers
are also executed the first time you create an instance. In that case, the
static initializers are executed before the constructor is executed.

If a class has more than one static initializer, they’re executed in the order in
which they appear in the program.

Here’s an example of a class that contains a static initializer:

class StaticInit
{

public static int x;

static
{

x = 32;
}

// other class members such as constructors and
// methods go here...
}

This example is pretty trivial. In fact, you can achieve the same effect just by
assigning the value 32 to the variable when it is declared. However, suppose
you had to perform a complicated calculation to determine the value of x, or
suppose its value comes from a database? In that case, a static initializer can
be very useful.

21_58961X bk03ch03.qxd 3/29/05 3:40 PM Page 272

Chapter 4: Using Subclasses
and Inheritance

In This Chapter
� Explaining inheritance

� Creating subclasses

� Using protected access

� Creating final classes

� Demystifying polymorphism

� Creating custom exception classes

As you find out in Book III, Chapter 1, a Java class can be based on
another class. Then, the class becomes like a child to the parent class:

It inherits all the characteristics of the parent class, good and bad. All the
fields and methods of the parent class are passed on to the child class. The
child class can use these fields or methods as is, or it can override them to
provide its own versions. In addition, the child class can add fields or meth-
ods of its own.

In this chapter, you discover how this magic works, along with the basics of
creating and using Java classes that inherit other classes. You also find out a
few fancy tricks that help you get the most out of inheritance.

Introducing Inheritance
The word inheritance conjures up several different non-computer meanings:

✦ Children inherit certain characteristics from the parents. For example,
two of my three children have red hair. Hopefully, they won’t be half
bald by the time they’re 30.

✦ Children can also inherit behavior from their parents. As they say, the
apple doesn’t fall far from the tree.

✦ When someone dies, their heirs get their stuff. Some of it is good stuff,
but some of it may not be. My kids are going to have a great time rum-
maging through my garage deciding who gets what.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 273

Introducing Inheritance274

✦ You can inherit rights as well as possessions. For example, you may be a
citizen of a country by virtue of being born to parents who are citizens
of that country.

In Java, inheritance refers to a feature of object-oriented programming that lets
you create classes that are derived from other classes. A class that’s based on
another class is said to inherit the other class. The class that is inherited is
called the parent class, the base class, or the superclass. The class that does the
inheriting is called the child class, the derived class, or the subclass.

The terms subclass and superclass seem to be the preferred term among Java
gurus. So if you want to look like you know what you’re talking about, use
these terms. Also, be aware that the term subclass can be used as a verb. For
example, when you create a subclass that inherits a base class, you are sub-
classing the base class.

You need to know a few important things about inheritance:

✦ A derived class automatically takes on all the behavior and attributes of its
base class. Thus, if you need to create several different classes to describe
types that aren’t identical but have many features in common, you can
create a base class that defines all the common features. Then, you
can create several derived classes that inherit the common features.

✦ A derived class can add features to the base class it inherits by defining
its own methods and fields. This is one way a derived class distinguishes
itself from its base class.

✦ A derived class can also change the behavior provided by the base
class. For example, a base class may provide that all classes derived
from it have a method named play, but each class is free to provide its
own implementation of the play method. In this case, all classes that
extend the base class provide their own implementation of the play
method.

✦ Inheritance is best used to implement is-a-type-of relationships. For
example: Solitaire is a type of game; a truck is a type of vehicle; an
invoice is a type of transaction. In each case, a particular kind of object
is a specific type of a more general category of objects.

The following sections provide some examples that help illustrate these points.

Plains, trains, and automobiles
Inheritance is often explained in terms of real-world objects such as cars and
motorcycles, birds and reptiles, or other familiar real-world objects. For
example, consider various types of vehicles. Cars and motorcycles are two

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 274

Book III
Chapter 4

Using Subclasses
and Inheritance

Introducing Inheritance 275

distinct types of vehicles. If you’re writing software that represented vehi-
cles, you could start by creating a class called Vehicle that would describe
the features that are common to all types of vehicles, such as wheels, a
driver, the ability to carry passengers, and the ability to perform actions
such as driving, stopping, turning, or crashing.

A motorcycle is a type of vehicle that further refines the Vehicle class.
The Motorcycle class would inherit the Vehicle class, so it would have
wheels, a driver, possibly passengers, and the ability to drive, stop, turn,
or crash. In addition, it would have features that differentiate it from other
types of vehicles. For example, it has two wheels and uses handle bars for
steering control.

A car is also a type of vehicle. The Car class would inherit the Vehicle
class, so it too would have wheels, a driver, possibly some passengers, and
the ability to drive, stop, turn, or crash. Plus it would have some features of
its own, such as having four wheels and a steering wheel, seat belts and air
bags, and an optional automatic transmission.

Playing games
Because you’ll unlikely ever actually write a program that simulates cars,
motorcycles, or other vehicles, take a look at a more common example:
games. Suppose you want to develop a series of board games such as Life,
Sorry, or Monopoly. Most board games have certain features in common:

✦ They have a playing board that has locations that players can occupy.

✦ They have players that are represented by objects.

✦ The game is played by each player taking a turn, one after the other.
Once the game starts, it keeps going until someone wins. (If you don’t
believe me, ask the kids who tried to stop a game of Jumanji before
someone won.)

Each specific type of game has these basic characteristics, but adds features
of its own. For example, Life adds features such as money, insurance policies,
spouses and children, and a fancy spinner in the middle of the board. Sorry
has cards you draw to determine each move and safety zones within which
other players can’t attack you. And Monopoly has Chance and Community
Chest cards, properties, houses, hotels, and money.

If you were designing classes for these games, you might create a generic
BoardGame class that defines the basic features common to all board
games, and then use it as the base class for classes that represent specific
board games, such as LifeGame, SorryGame, and MonopolyGame.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 275

Introducing Inheritance276

A businesslike example
If vehicles or games don’t make it clear, here’s an example from the world of
business. Suppose you’re designing a payroll system and you’re working on
the classes that represent the employees. You realize that the payroll basically
includes two types of employees: salaried employees and hourly employees.
So you decide to create two classes, sensibly named SalariedEmployee
and HourlyEmployee.

You quickly discover that most of the work done by these two classes is
identical. Both types of employees have names, addresses, Social Security
numbers, totals for how much they’ve been paid for the year and how much
tax has been withheld, and so on.

However, they have important differences. The most obvious is that the
salaried employees have an annual salary and the hourly employees have an
hourly pay rate. But there are other differences as well. For example, hourly
employees have a schedule that changes week to week. And salaried employ-
ees may have a benefit plan that isn’t offered to hourly employees.

So, you decide to create three classes instead of just two. A class named
Employee handles all the features that are common to both types of
employees. Then, this class is the base class for the SalariedEmployee
and HourlyEmployee classes. These classes provide the additional fea-
tures that distinguish salaried employees from hourly employees.

Inheritance hierarchies
One of the most important aspects of inheritance is that a class that’s derived
from a base class can in turn be used as the base class for another derived
class. Thus, you can use inheritance to form a hierarchy of classes.

For example, you’ve already seen how an Employee class can be used as a
base class to create two types of subclasses: a SalariedEmployee class
for salaried employees and an HourlyEmployee class for hourly employ-
ees. Suppose that salaried employees fall into two categories: management
and sales. Then, you could use the SalariedEmployee class as the base
class for two more classes, named Manager and SalesPerson.

Thus, a Manager is a type of SalariedEmployee. And because a
SalariedEmployee is a type of Employee, a Manager is also a type
of Employee.

All classes ultimately derive from a Java class named Object. Any class that
doesn’t specifically state what class it is derived from is assumed to derive
from the Object class. This class provides some of the basic features that
are common to all Java classes, such as the toString method. For more
information, see Book III, Chapter 5.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 276

Book III
Chapter 4

Using Subclasses
and Inheritance

Creating Subclasses 277

Creating Subclasses
The basic procedure for creating a subclass is simple. You just use the
extends keyword on the declaration for the subclass. The basic format
of a class declaration for a class that inherits a base class is this:

public class ClassName extends BaseClass
{

// class body goes here
}

For example, suppose you have a class named Ball that defines a basic
ball, and you want to create a subclass named BouncingBall that adds
the ability to bounce.

public class BouncingBall extends Ball
{

// methods and fields that add the ability to bounce
// to a basic Ball object:

public void bounce()
{

// the bounce method
}

}

The Delegation Pattern
Inheritance is one of the great features of
object-oriented programming languages, such
as Java. However, it isn’t the answer to every
programming problem. And, quite frankly, many
Java programmers use it too much. In many
cases, simply including an instance of one class
in another class rather than using inheritance is
easier. This technique is sometimes called the
Delegation Design pattern.

For example, suppose you need to create a
class named EmployeeCollection that
represents a group of employees. One way to
create this class would be to extend one of the
collection classes supplied by the Java API,
such as the ArrayList class. Then, your
EmployeeCollection class would be a
specialized version of the ArrayList class,

and would have all the methods that are avail-
able to the ArrayList class.

However, a simpler alternative would be to declare
a class field of type ArrayList within your
EmployeeCollection class. Then, you
could provide methods that use this ArrayList
object to add or retrieve employees from the
collection.

Why is this technique called the delegation?
Because rather than write code that imple-
ments the functions of the collection, you dele-
gate that task to an ArrayList object,
because ArrayList objects already know
how to perform these functions. (For more infor-
mation about the ArrayList class, see Book
IV, Chapter 3.)

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 277

Overriding Methods278

Here, I’m creating a class named BouncingBall that extends the Ball
class. (Extends is Java’s word for inherits.)

The subclass automatically has all the methods and fields of the class it
extends. Thus, if the Ball class has fields named size and weight, the
BouncingBall class has those fields too. Likewise, if the Ball class has a
method named throw, the BouncingBall class gets that method too.

You need to know some important details to use inheritance properly:

✦ A subclass inherits all the members from its base class. However, con-
structors are not considered to be members. As a result, a subclass does
not inherit constructors from its base class.

✦ The visibility (public or private) of any members inherited from the
base class is the same in the subclass. That means that you can’t access
methods or fields that are declared in the base class as private from
the subclass.

✦ You can override a method by declaring a new member with the same sig-
nature in the subclass. For more information, see the next section.

✦ A special type of visibility is called protected that hides fields and
methods from other classes but makes them available to subclasses. For
more information, see “Protecting Your Members” later in this chapter.

✦ You can also add additional methods or fields, private or protected,
to a subclass. For example, the BouncingBall class shown previously
in this section adds a public method named bounce.

Overriding Methods
If a subclass declares a method that has the same signature as a public
method of the base class, the subclass version of the method overrides the
base class version of the method. This technique lets you modify the behav-
ior of a base class to suit the needs of the subclass.

For example, suppose you have a base class named Game that has a method
named play. The base class, which doesn’t represent any particular game,
implements this method:

public class Game
{

public void play()
{
}

}

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 278

Book III
Chapter 4

Using Subclasses
and Inheritance

Protecting Your Members 279

Then, you declare a class named Chess that extends the Game class, but
provides an implementation for the play method:

public class Chess extends Game
{

public void play()
{

System.out.println(“I give up. You win.”);
}

}

Here, when you call the play method of a Chess object, the game announces
that it gives up. (I was going to provide a complete implementation of an
actual chess game program for this example, but it would have made this
chapter about 600 pages long. So I opted for the simpler version here.)

Note that to override a method, three conditions have to be met:

✦ The class must extend the class that defines the method you want to
override.

✦ The method must be declared in the base class with public access.
You can’t override a private method.

✦ The method in the subclass must have the same signature as the method
in the base class. In other words, the name of the method and the param-
eter types must be the same.

Protecting Your Members
You’re already familiar with the public and private keywords, used to
indicate whether class members are visible outside of the class or not. When
you inherit a class, all the public members of the superclass are available to
the subclass, but the private members aren’t. They do become a part of the
derived class, but you can’t access them directly in the derived class.

Java provides a third visibility option that’s useful when you create subclasses:
protected. A member with protected visibility is available to subclasses,
but not to other classes. For example, consider this example:

public class Ball
{

private double weight;

protected double getWeight()
{

return this.weight;
}

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 279

Using this and super in Your Subclasses280

protected void setWeight(double weight)
{

this.weight = weight;
}

}

public class BaseBall extends Ball
{

public BaseBall()
{

setWeight(5.125);
}

}

Here, the getWeight and setWeight methods are declared with protect
access, which means they’re visible in the subclass BaseBall. However,
these methods aren’t visible to classes that don’t extend Ball.

Using this and super in Your Subclasses
You already know about the this keyword: It provides a way to refer to the
current object instance. It’s often used to distinguish between a local vari-
able or a parameter and a class field with the same name. For example:

public class Ball
{

private int velocity;

public void setVelocity(int velocity)
{

this.velocity = velocity;
}

}

Here, the this keyword indicates that the velocity variable referred to on
the left side of the assignment statement is the class field named velocity,
not the parameter with the same name.

But what if you need to refer to a field or method that belongs to a base
class? To do that, you use the super keyword. It works similar to this, but
refers to the instance of the base class rather than the instance of the cur-
rent class.

For example, consider these two classes:

public class Ball
{

public void hit()

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 280

Book III
Chapter 4

Using Subclasses
and Inheritance

Inheritance and Constructors 281

{
System.out.println(“You hit it a mile!”);

}
}

class BaseBall extends Ball
{

public void hit()
{

System.out.println(“You tore the cover off! “);
super.hit();

}
}

Here, the hit method in the BaseBall class calls the hit method of its
base class object. Thus, if you call the hit method of a BaseBall object,
the following two lines are displayed on the console:

You tore the cover off!
You hit it a mile!

You can also use the super keyword in the constructor of a subclass to
explicitly call a constructor of the superclass. For more information, see the
next section.

Inheritance and Constructors
When you create an instance of a subclass, Java automatically calls the default
constructor of the base class before it executes the subclass constructor. For
example, consider the following classes:

public class Ball
{

public Ball()
{

System.out.println(
“Hello from the Ball constructor”);

}
}

public class BaseBall extends Ball
{

public BaseBall()
{

System.out.println(
“Hello from the BaseBall constructor”);

}
}

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 281

Inheritance and Constructors282

If you create an instance of the BaseBall class, the following two lines are
displayed on the console:

Hello from the Ball constructor
Hello from the BaseBall constructor

If you want, you can explicitly call a base class constructor from a subclass
by using the super keyword. Because Java automatically calls the default
constructor for you, the only reason to do this is to call a constructor of the
base class that uses a parameter. For example, here’s a version of the Ball
and BaseBall classes in which the BaseBall constructor calls a Ball
constructor that uses a parameter:

public class Ball
{

private double weight;

public Ball(double weight)
{

this.weight = weight;
}

}

public class BaseBall extends Ball
{

public BaseBall()
{

super(5.125);
}

}

Here, the BaseBall constructor calls the Ball constructor to supply a
default weight for the ball.

You need to obey a few rules and regulations when working with superclass
constructors:

✦ If you use super to call the superclass constructor, you must do so in
the very first statement in the constructor.

✦ If you don’t explicitly call super, the compiler inserts a call to the
default constructor of the base class. In that case, the base class must
have a default constructor. If the base class doesn’t have a default con-
structor, the compiler refuses to compile the program.

✦ If the superclass is itself a subclass, the constructor for its superclass is
called in the same way. This continues all the way up the inheritance
hierarchy, until you get to the Object class, which has no superclass.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 282

Book III
Chapter 4

Using Subclasses
and Inheritance

Using final 283

Using final
Java has a final keyword that serves three purposes. When you use final
with a variable, it creates a constant whose value can’t be changed once it
has been initialized. Constants are covered in Book II, Chapter 2, so I won’t
describe this use of the final keyword more here. The other two uses of
the final keyword are to create final methods and final classes. I describe
these two uses of final in the following sections.

Final methods
A final method is a method that can’t be overridden by a subclass. To create a
final method, you simply add the keyword final to the method declaration.
For example:

public class SpaceShip
{

public final int getVelocity()
{

return this.velocity;
}

}

Here, the method getVelocity is declared as final. Thus, any class that
uses the SpaceShip class as a base class can’t override the getVelocity
method. If it tries, the compiler issues an error message.

Here are some additional details about final methods:

✦ You might think that a subclass won’t need to override a method, but
there’s no reason to be sure. Predicting how other people might use
your class is difficult. As a result, you should usually avoid using final
methods unless you have a compelling reason to.

✦ Final methods execute more efficiently than non-final methods. That’s
because the compiler knows at compile time that a call to a final
method won’t be overridden by some other method. The performance
gain isn’t huge, but for applications where performance is crucial, it can
be noticeable.

✦ Private methods are automatically considered to be final. That’s because
you can’t override a method you can’t see.

Final classes
A final class is a class that can’t be used as a base class. To declare a class as
final, just add the final keyword to the class declaration:

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 283

Casting Up and Down284

public final class BaseBall
{

// members for the BaseBall class go here
}

Then, no one can use the BaseBall class as the base class for another
class.

When you declare a class to be final, all of its methods are considered to be
final too. That makes sense when you think about it. Because you can’t use
a final class as the base class for another class, no class can possibly be in a
position to override any of the methods in the final class. Thus, all the meth-
ods of a final class are final methods.

Casting Up and Down
An object of a derived type can be treated as if it were an object of its base
type. For example, if the BaseBall class extends the Ball class, a
BaseBall object can be treated as if it were a Ball object. This is called
upcasting, and Java does it automatically, so you don’t have to code a cast-
ing operator. Thus, the following code is legal:

Ball b = new BaseBall();

Here, an object of type BaseBall is created. Then, a reference to this object
is assigned to the variable b, whose type is Ball, not BaseBall.

Now suppose you have a method in a ball game application named hit
that’s declared like this:

public void hit(Ball b)

In other words, this method accepts a Ball type as a parameter. When you
call this method, you can pass it either a Ball object or a BaseBall object,
because BaseBall is a subclass of Ball. So the following code works:

BaseBall b1 = new BaseBall();
hit(b1);
Ball b2 = b1;
hit(b2);

Automatic casting doesn’t work the other way, however. Thus, you can’t use
a Ball object where a BaseBall object is called for. For example, suppose
your program has a method declared like this:

public void toss(BaseBall b)

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 284

Book III
Chapter 4

Using Subclasses
and Inheritance

Casting Up and Down 285

Then, the following code does not compile:

Ball b = new BaseBall();
toss(b); // error: won’t compile

However, you can explicitly cast the b variable to a BaseBall object, like this:

Ball b = new BaseBall();
toss((BaseBall) b);

Note that the second statement throws an exception of type ClassCast
Exception if the object referenced by the b variable isn’t a BaseBall
object. So, the following code don’t work:

Ball b = new SoftBall();
toss((BaseBall) b); // error: b isn’t a Softball

What if you want to call a method that’s defined by a subclass from an object
that’s referenced by a variable of the superclass? For example, suppose the
SoftBall class has a method named riseBall that isn’t defined by the
Ball class. How can you call it from a Ball variable? One way to do that is
to create a variable of the subclass, and then use an assignment statement to
cast the object:

Ball b = new SoftBall();
SoftBall s = (SoftBall)b; // cast the Ball to a

// SoftBall
s.riseBall();

But there’s a better way: Java lets you cast the Ball object to a SoftBall
and call the riseBall method in the same statement. All you need is an
extra set of parentheses:

Ball b = new SoftBall();
((SoftBall) b).riseBall();

Here, the expression ((SoftBall) b) returns the object referenced by the b
variable, cast as a SoftBall. You can then call any method of the SoftBall
class using the dot operator. (This operator throws a ClassCastException
if b is not a SoftBall object.)

As a general rule, you should declare method parameters with types as far up
in the class hierarchy as possible. For example, rather than create separate
toss methods that accept BaseBall and SoftBall objects, create a single
toss method that accepts a Ball object. If necessary, the toss method can
determine which type of ball it’s throwing by using the instanceof operator,
which is described in the next section.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 285

Determining an Object’s Type286

Determining an Object’s Type
As described in the previous section, a variable of one type can possibly hold
a reference to an object of another type. For example, if SalariedEmployee
is a subclass of the Employee class, the following statement is perfectly legal:

Employee emp = new SalariedEmployee();

Here, the type of the emp variable is Employee, but the object it refers to is
a SalariedEmployee.

Suppose you have a method named getEmployee whose return type is
Employee, but that actually returns either a SalariedEmployee or an
HourlyEmployee object:

Employee emp = getEmployee();

In many cases, you don’t need to worry about which type of employee
this method returns. But sometimes you do. For example, suppose the
SalariedEmployee class extends the Employee class by adding a
method named getFormattedSalary, which returns the employee’s
salary formatted as currency. Similarly, the HourlyEmployee class extends
the Employee class with a getFormattedRate method that returns the
employee’s hourly pay rate formatted as currency. Then, you’d need to know
which type of employee a particular object is to know whether you should
call the getFormattedSalary method or the getFormattedRate
method to get the employee’s pay.

To tell what type of object has been assigned to the emp variable, you can
use the instanceof operator, which is designed specifically for this pur-
pose. Here’s the previous code rewritten with the instanceof operator:

Employee emp = getEmployee();
String msg;
if (emp instanceof SalariedEmployee)
{

msg = “The employee’s salary is “;
msg += ((SalariedEmployee) emp).getFormattedSalary();

}
else
{

msg = “The employee’s hourly rate is “;
msg += ((HourlyEmployee) emp).getFormattedRate();

}
System.out.println(msg);

Here, the instanceof operator is used in an if statement to determine
the type of the object returned by the getEmployee method. Then, the
emp can be cast without fear of CastClassException.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 286

Book III
Chapter 4

Using Subclasses
and Inheritance

Poly What? 287

Poly What?
The term polymorphism refers to the ability of Java to use base class vari-
ables to refer to subclass objects, keep track of which subclass an object
belongs to, and use overridden methods of the subclass even though the
subclass isn’t known when the program is compiled.

This sounds like a mouthful, but it’s not that hard to understand when you
see an example. Suppose you’re developing an application that can play the
venerable game of Tic-Tac-Toe. You start out by creating a class named
Player that represents one of the players. This class has a public method
named move that returns an int to indicate which square of the board the
player wants to mark:

class Player
{

public int move()
{

for (int i = 0; i < 9; i++)
{

System.out.println(“\nThe basic player
says:”);

System.out.println(
“I’ll take the first open square!”);

return firstOpenSquare();
}
return -1;

}

private int firstOpenSquare()
{

int square = 0;
// code to find the first open square goes here
return square;

}
}

This basic version of the Player class uses a simple strategy to determine
what its next move should be: It chooses the first open square on the board.
This strategy stokes your ego by letting you think you can beat the computer
every time. (To keep the illustration simple, I omitted the code that actually
chooses the move.)

Now, you need to create a subclass of the Player class that uses a more
intelligent method to choose its next move:

class BetterPlayer extends Player
{

public int move()
{

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 287

Poly What?288

System.out.println(“\nThe better player says:”);
System.out.println(

“I’m looking for a good move...”);
return findBestMove();

}

private int findBestMove()
{

int square;
// code to find the best move goes here
return square;

}
}

As you can see, this version of the Player class overrides the move method
and uses a better algorithm to pick its move. (Again, to keep the illustration
simple, I don’t show the code that actually chooses the move.)

The next thing to do is write a short class that uses these two Player
classes to actually play a game. This class contains a method named
playTheGame that accepts two Player objects. It calls the move method
of the first player, and then calls the move method of the second player:

public class TicTacToeApp
{

public static void main(String[] args)
{

Player p1 = new Player();
Player p2 = new BetterPlayer();
playTheGame(p1, p2);

}

public static void playTheGame(Player p1, Player p2)
{

p1.move();
p2.move();

}
}

Notice that the playTheGame method doesn’t know which of the two players
is the basic player and which is the better player. It simply calls the move
method for each Player object.

When you run this program, the following output is displayed on the console:

Basic player says:
I’ll take the first open square!

Better player says:
I’m looking for a good move...

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 288

Book III
Chapter 4

Using Subclasses
and Inheritance

Creating Custom Exceptions 289

When the move method for p1 is called, the move method of the Player
class is executed. But when the move method for p2 is called, the move
method of the BetterPlayer class is called.

Java knows to call the move method of the BetterPlayer subclass because
it uses a technique called late binding. Late binding simply means that when the
compiler can’t tell for sure what type of object a variable references, it doesn’t
hard-wire the method calls when the program is compiled. Instead, it waits
until the program is executing to determine exactly which method to call.

Creating Custom Exceptions
The last topic I want to cover in this chapter is how to use inheritance to
create your own custom exceptions. I covered most of the details of working
with exceptions in Book II, Chapter 8. However, I hadn’t explored inheritance,
so I couldn’t discuss custom exception classes in that chapter. So I promised
that I’d get to it in this minibook. The following sections deliver on that long
awaited promise.

The Throwable hierarchy
As you know, you use the try/catch statement to catch exceptions, and
the throw statement to throw exceptions. Each type of exception that can
be caught or thrown is represented by a different exception class. What you
might not have realized is that those exception classes use a fairly complex
inheritance chain, as shown in Figure 4-1.

specific
RuntimeException

classes

specific
Exception

classes

RuntimeException

Exception

Throwable

specific
Error

classes

Exception

Figure 4-1:
The
hierarchy of
exception
classes.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 289

Creating Custom Exceptions290

The following paragraphs describe each of the classes in this hierarchy:

✦ Throwable: The root of the exception hierarchy is the Throwable
class. This class represents any object that can be thrown with a throw
statement and caught with a catch clause.

✦ Error: This subclass of Throwable represents serious error conditions
that reasonable programs can’t recover from. The subclasses of this
class represent the specific types of errors that can occur. For example,
if the Virtual Machine runs out of memory, a VirtualMachineError
is thrown. You don’t have to worry about catching these errors in your
programs.

✦ Exception: This subclass of Throwable represents an error condi-
tion that most programs should try to recover from. Thus, Exception
is effectively the top of the hierarchy for the types of exceptions you
catch with try/catch statements.

With the exception (sorry) of RuntimeException, the subclasses of
Exception represent specific types of checked exceptions that must
be either caught or thrown. Note that some of these subclasses have sub-
classes of their own. For example, exception class named IOException
has more than 25 subclasses representing different kinds of I/O exceptions
that can occur.

✦ RuntimeException: This subclass of Exception represents
unchecked exceptions. You don’t have to catch or throw unchecked excep-
tions, but you can if you want to. Subclasses of RuntimeException
include NullPointerException and ArithmeticException.

If your application needs to throw a custom exception, you can create an
exception class that inherits any of the classes in this hierarchy. Usually,
however, you start with the Exception class to create a custom checked
exception. The next section explains how to do that.

Creating an exception class
To create a custom exception class, you just define a class that extends one of
the classes in the Java exception hierarchy. Usually, you extend Exception
to create a custom checked exception.

For example, suppose you’re developing a class that retrieves product data
from a file or database, and you want methods that encounter I/O errors
to throw a custom exception rather than the generic IOException that’s
provided in the Java API. You can do that by creating a class that extends the
Exception class:

public class ProductDataException extends Exception
{
}

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 290

Book III
Chapter 4

Using Subclasses
and Inheritance

Creating Custom Exceptions 291

Unfortunately, constructors aren’t considered to be class members, so they
aren’t inherited when you extend a class. As a result, the ProductData
Exception has only a default constructor. The Exception class itself,
and most other exception classes, have a constructor that lets you pass a
String message that’s stored with the exception and can be retrieved via
the getMessage method. Thus, you want to add this constructor to your
class. That means you want to add an explicit default constructor too. So
the ProductDataException class now looks like this:

public class ProductDataException extends Exception
{

public ProductDataException
{
}

public ProductDataException(String message)
{

super(message);
}

}

Although possible, adding additional fields or methods to a custom exception
class is unusual.

Throwing a custom exception
As for any exception, you use a throw statement to throw a custom excep-
tion. You usually code this throw statement in the midst of a catch clause
that catches some other more generic exception. For example, here’s a
method that retrieves product data from a file and throws a ProductData
Exception if an IOException occurs:

public class ProductDDB
{

public static Product getProduct(String code)
throws ProductDataException

{
try
{

Product p;
// code that gets the product from a file
// and might throw an IOException
p = new Product();
return p;

}
catch (IOException e)
{

throw new ProductDataException(
“An IO error occurred.”);

}
}

}

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 291

Creating Custom Exceptions292

Here’s some code that calls the getProduct method and catches the
exception:

try
{

Product p = ProductDB.getProduct(productCode);
}
catch (ProductDataException e)
{

System.out.println(e.getMessage());
}

Here, the message is simply displayed on the console if a ProductData
Exception is thrown. In an actual program, you want to log the error,
inform the user, and figure out how to gracefully continue the program even
though this data exception has occurred.

22_58961x bk03ch04.qxd 3/29/05 3:41 PM Page 292

Chapter 5: Using Abstract
Classes and Interfaces

In This Chapter
� Abstract methods and classes

� Basic interfaces

� Using interfaces as types

� Adding constants to an interface

� Inheriting interfaces

� Working with callbacks

In this chapter, you find out how to use two similar but subtly distinct fea-
tures: abstract classes and interfaces. Both let you declare the signatures

of the methods and fields that a class implements separately from the class
itself. Abstract classes accomplish this by way of inheritance. Interfaces do
it without using inheritance, but the effect is similar.

Using Abstract Classes
Java lets you declare that a method or an entire class is abstract, which
means that the method has no body. An abstract method is just a prototype
for a method: a return type, a name, a list of parameters, and (optionally) a
throws clause.

To create an abstract method, you specify the modifier abstract and
replace the method body with a semicolon:

public abstract int hit(int batSpeed);

Here, the method named hit is declared as an abstract method that returns
an int value and accepts an int parameter.

A class that contains at least one abstract method is called an abstract class,
and must be declared with the abstract modifier on the class declaration.
For example:

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 293

Using Abstract Classes294

public abstract class Ball
{

public abstract int hit(int batSpeed);
}

If you omit the abstract modifier from the class declaration, the Java
compiler coughs up an error message to remind you that the class must be
declared abstract.

An abstract class can’t be instantiated. Thus, given the preceding declara-
tion, the following line doesn’t compile:

Ball b = new Ball(); // error: Ball is abstract

The Abstract Factory Pattern
One common use for abstract classes is to provide a way to obtain an instance of one of several
subclasses when you don’t know which subclass you need in advance. To do this, you can create
an Abstract Factory class that has one or more methods that return subclasses of the abstract class.

For example, suppose you want to create a Ball object, but you want to let the user choose
whether to create a SoftBall or a BaseBall. To use the Abstract Factory pattern, you create
a class (I call it BallFactory) that has a method named getBallInstance. This method
accepts a String parameter that’s set to “BaseBall” if you want a BaseBall object or
“SoftBall” if you want a SoftBall object.

Here’s the factory class:

class BallFactoryInstance
{

public static Ball getBall(String t)
{

if (s.equalsIgnoreCase(“BaseBall”))
return new BaseBall();

if (s.equalsIgnoreCase(“SoftBall”))
return new SoftBall();

return null;
}

}

Then, assuming the String variable userChoice has been set according to the user’s choice, you
can create the selected type of ball object like this:

Ball b = BallFactory.getBallInstance(userChoice);

In an actual application, using an enum variable is better rather than a String variable to indicate
the type of object to be returned.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 294

Book III
Chapter 5

Using Abstract
Classes and
Interfaces

Using Abstract Classes 295

The problem here isn’t with declaring the variable b as a Ball. It’s using
the new keyword with the Ball class in an attempt to create a Ball object.
Because Ball is an abstract class, you can use it to create an object instance.

You can create a subclass from an abstract class like this:

public class BaseBall extends Ball
{

public int hit(int batSpeed)
{

// code that implements the hit method goes here
}

}

When you subclass an abstract class, the subclass must provide an implemen-
tation for each abstract method in the abstract class. In other words, it must
override each abstract method with a non-abstract method. (If it doesn’t, the
subclass is also abstract, so it too cannot be instantiated.)

Abstract classes are useful when you want to create a generic type that is used
as the superclass for two or more subclasses, but the superclass itself doesn’t
represent an actual object. For example, if all employees are either salaried
or hourly, creating an abstract Employee class makes sense, and then use
it as the base class for the SalariedEmployee and HourlyEmployee
subclasses.

Here are a few additional points to ponder concerning abstract classes:

✦ Not all the methods in an abstract class have to be abstract. A class can
provide an implementation for some of its methods but not others. In
fact, you can declare a class that doesn’t have any abstract methods as
abstract. In that case, the class can’t be instantiated.

✦ A private method can’t be abstract. That only makes sense, because a
subclass can’t override a private method, and abstract methods must be
overridden.

✦ Although you can’t create an instance of an abstract class, you can declare
a variable using an abstract class as its type. Then, use the variable to refer
to an instance of any of the subclasses of the abstract class.

✦ A class can’t specify both abstract and final. That would cause one
of those logical paradoxes that result in the complete annihilation of the
entire universe. Well, hopefully the effect would be localized. But the
point is that because an abstract class can only be used if you sub-
class it, and a final class can’t be subclassed, letting you specify both
abstract and final for the same class doesn’t make sense.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 295

Using Interfaces296

✦ Abstract classes are used extensively in the Java API. Many of the abstract
classes have names that begin with Abstract, such as AbstractBorder,
AbstractCollection, and AbstractMap. But most of the abstract
classes don’t. For example, the InputStream class (used by System.in)
is abstract.

Using Interfaces
An interface is similar to an abstract class. However, it can only include
abstract methods and final fields (constants), and it can’t be used as a base
class. Instead, a class implements an interface by providing an implementa-
tion for each method declared by the interface.

Interfaces have two advantages over inheritance:

✦ Interfaces are easier to work with than inheritance, because you don’t have
to worry about providing any implementation details in the interface.

✦ A class can extend only one other class, but it can implement as many
interfaces as you need.

The following sections describe the details of creating and using interfaces.

Creating a basic interface
Here’s a basic interface that defines a single method, named Playable, that
includes a single method named play:

public interface Playable
{

void play();
}

This interface declares that any class that implements the Playable inter-
face must provide an implementation for a method named play that accepts
no parameters and doesn’t return a value.

This interface has a few interesting details:

✦ The interface itself is declared as public so that it can be used by other
classes. Like a public class, a public interface must be declared in a
file with the same name. Thus, this interface must be in a file named
Playable.java.

✦ The name of the interface (Playable) is an adjective. Most interfaces
are named using adjectives rather than nouns because they describe
some additional capability or quality of the classes that implement the
interface. Thus, classes that implement the Playable interface repre-
sent objects that can be played.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 296

Book III
Chapter 5

Using Abstract
Classes and
Interfaces

Using Interfaces 297

In case you haven’t been to English class in a while, an adjective is a
word that modifies a noun. You can convert many verbs to adjectives
by adding –able to the end of the word. For example: playable, readable,
drivable, and stoppable. This type of adjective is commonly used for
interface names.

✦ Another common way to name interfaces is to combine an adjective with
a noun to indicate that the interface adds some capability to a particular
type of object. For example, you can call an interface that provides meth-
ods unique to card games CardGame. This interface might have methods
such as deal, shuffle, and getHand.

✦ All the methods in an interface are assumed to be public and abstract.
If you want, you can code the public and abstract keywords on
interface methods. However, that’s considered bad form, because it
might indicate that you think the default is private and not abstract.

Implementing an interface
To implement an interface, a class must do two things:

✦ It must specify an implements clause on its class declaration.

✦ It must provide an implementation for every method declared by the
interface.

For example, here’s a class that implements the Playable interface:

public class TicTacToe implements Playable
{

// additional fields and methods go here

public void play()
{

// code that plays the game goes here
}

// additional fields and methods go here

}

Here, the declaration for the TicTacToe class specifies implements
Playable. Then, the body of the class includes an implementation of the
play method.

A class can implement more than one interface:

public class Hearts implements Playable, CardGame
{

// must implement methods of the Playable
// and CardGame interfaces

}

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 297

Using Interfaces298

Here, the Hearts class implements two interfaces: Playable and CardGame.

A class can possibly inherit a superclass and implement one or more inter-
faces. For example:

public class Poker extends Game
implements Playable, CardGame

{
// inherits all members of the Game class
// must implement methods of the Playable
// and CardGame interfaces

}

Using an interface as a type
In Java, an interface is a kind of type, just like a class. As a result, you can use
an interface as the type for a variable, parameter, or method return value.

Consider this snippet of code:

Playable game = getGame();
game.play();

Here, I assume that the getGame method returns an object that implements
the Playable interface. This object is assigned to a variable of type
Playable in the first statement. Then, the second statement calls the
object’s play method.

For another, slightly more complex example, suppose you have an interface
named Dealable that defines a method named deal that accepts the
number of cards to deal as a parameter:

public interface Dealable
{

void deal(int cards);
}

Now, suppose you have a method called startGame that accepts two
parameters: a Dealable object and a String that indicates what game to
play. This method might look something like this:

private void startGame(Dealable deck, String game)
{

if (game.equals(“Poker”))
deck.deal(5);

else if (game.equals(“Hearts”))
deck.deal(13);

else if (game.equals(“Gin”))
deck.deal(10);

}

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 298

Book III
Chapter 5

Using Abstract
Classes and
Interfaces

More Things You Can Do with Interfaces 299

Assuming you also have a class named CardDeck that implements the
Dealable interface, you might use a statement like this example to start a
game of Hearts:

Dealable d = new CardDeck();
startGame(d, “Hearts”);

Notice that the variable d is declared as a Dealable. You could just as
easily declare it as a CardDeck:

CardDeck d = new CardDeck();
startGame(d, “Hearts”);

Because the CardDeck class implements the Dealable interface, it can be
passed as a parameter to the startGame method.

More Things You Can Do with Interfaces
There’s more to interfaces than just creating abstract methods. The follow-
ing sections describe some additional interesting things you can do with
interfaces. Read on. . . .

Adding fields to an interface
Besides abstract methods, an interface can also include final fields — that is,
constants. Interface fields are used to provide constant values that are related
to the interface. For example:

public interface GolfClub
{

int DRIVER = 1;
int SPOON = 2;
int NIBLICK = 3;
int MASHIE = 4;

}

Here, any class that implements the GolfClub interface has these four
fields constants available.

Note that interface fields are automatically assumed to be static, final,
and public. You can include these keywords when you create interface
constants, but you don’t have to.

Extending interfaces
You can extend interfaces by using the extends keyword. An interface
that extends an existing interface is called a subinterface, and the interface
being extended is called the superinterface.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 299

More Things You Can Do with Interfaces300

When you use the extends keyword with interfaces, all the fields and meth-
ods of the superinterface are effectively copied into the subinterface. Thus,
the subinterface consists of a combination of its fields and methods and the
fields and methods of the subinterface.

Here’s an example:

public interface ThrowableBall
{

void throwBall();
void catchBall();

}

public interface KickableBall
{

void kickBall();
void catchBall();

}

public interface PlayableBall
extends ThrowableBall, KickableBall

{
void dropBall();

}

Here, three interfaces are declared. The first, named ThrowableBall,
defines two methods: throwBall and catchBall. The second, named
KickableBall, also defines two methods: kickBall and catchBall.
The third, named PlayableBall, extends ThrowableBall and
KickableBall, and adds a method of its own, named dropBall.

Thus, any class that implements the PlayableBall interface must provide
an implementation for four methods: throwBall, catchBall, kickBall,
and dropBall. Note that because the catchBall methods defined by the
ThrowableBall and KickableBall interfaces have the same signature,
only one version of the catchBall method is included in the PlayableBall
interface.

Using interfaces for callbacks
In the theater, a callback is when you show up for an initial audition, they like
what they see, so they want you to come back so they can have another look.

In Java, a callback is sort of like that. It’s a programming technique in which
an object lets another object know that the second object should call one of
the first object’s methods whenever a certain event happens. The first object
is called an event listener, because it waits patiently until the other object
calls it. The second object is called the event source, because it’s the source
of events that result in calls to the listener.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 300

Book III
Chapter 5

Using Abstract
Classes and
Interfaces

More Things You Can Do with Interfaces 301

Okay, my theater analogy was a bit of a stretch. Callbacks in Java aren’t
really that much like callbacks when you’re auditioning for a big part. A call-
back is more like when you need to get a hold of someone on the phone,
and you call them when you know they aren’t there and leave your phone
number on their voicemail so they can call you back.

Callbacks are handled in Java using a set of interfaces designed for this pur-
pose. The most common use of callbacks is in graphical applications built
with Swing, where you create event listeners that handle user-interface
events, such as mouse clicks.

You find out all about Swing in Book VI. For now, I look at callbacks using the
Timer class, which is part of the javax.Swing package. This class imple-
ments a basic timer that generates events at regular intervals and lets you
set up a listener object to handle these events. The listener object must
implement the ActionListener interface, which defines a method named
actionPerformed that’s called for each timer event.

The Timer class constructor accepts two parameters:

✦ The first parameter is an int value that represents how often the timer
events occur.

The Marker Interface Pattern
A marker interface is an interface that doesn’t
have any members. Its sole purpose in life is to
identify a class as belonging to a set of classes
that possess some capability or have some
characteristic in common.

The best-known example of a marker interface
is the Java API Cloneable interface. It marks
classes that can be cloned. The Object class,
which all classes ultimately inherit, provides a
method named clone that can be used to
create a copy of the object. However, you’re only
allowed to call the clonemethod if the object
implements the Cloneable interface. If you try
to call clone for an object that doesn’t imple-
ment Cloneable, CloneNotSupported
Exception is thrown. (For more information

about the clone method, refer to Book III,
Chapter 6.)

Here’s the actual code for the Cloneable
interface:

public interface Cloneable {
}

In some cases, you might find a use for marker
interfaces in your own application. For example,
if you’re working on a series of classes for cre-
ating games, you might create a marker inter-
face named Winnable to distinguish games
that have a winner from games that you just
play for enjoyment.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 301

More Things You Can Do with Interfaces302

✦ The second parameter is an object that implements the Action
Listener interface. This object’s actionPerformed method is
called when each timer event occurs.

The ActionListener interface is defined in the java.awt.event pack-
age. It includes the following code:

public interface ActionListener extends EventListener {

/**
* Invoked when an action occurs.
*/
public void actionPerformed(ActionEvent e);

}

As you can see, the ActionListener interface consists of a single method
named actionPerformed. It receives a parameter of type ActionEvent,
but you don’t make use of this parameter here. (But you do use the Action
Event class in Book VI.)

The Timer class has about 20 methods, but I talk about only one of them
here: start, which sets the timer in motion. This method doesn’t require
any parameters and doesn’t return a value.

Listing 5-1 shows a program that uses the Timer class to alternately display
the messages Tick. . . and Tock. . . on the console at one-second
intervals. The JOptionPane class is used to display a dialog box; the pro-
gram runs until the user clicks the OK button in this box. Figure 5-1 shows
the Tick Tock program in action.

LISTING 5-1:THE TICK TOCK PROGRAM

import java.awt.event.*; ➞ 1
import javax.swing.*; ➞ 2

public class TickTock
{

public static void main(String[] args)
{

// create a timer that calls the Ticker class
// at one second intervals
Timer t = new Timer(1000, new Ticker()); ➞ 10
t.start(); ➞ 11

// display a message box to prevent the
// program from ending immediately
JOptionPane.showMessageDialog(null, ➞ 15

“Click OK to exit program”);

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 302

Book III
Chapter 5

Using Abstract
Classes and
Interfaces

More Things You Can Do with Interfaces 303

}
}

class Ticker implements ActionListener ➞ 20
{

private boolean tick = true; ➞ 22

public void actionPerformed(ActionEvent event) ➞ 24
{

if (tick)
{

System.out.println(“Tick...”); ➞ 28
}
else
{

System.out.println(“Tock...”); ➞ 32
}
tick = !tick; ➞ 34

}
}

The following paragraphs describe the important details of this program’s
operation:

➞ 1 The ActionListener interface is part of the java.awt.event
package, so this import statement is required.

➞ 2 The Timer class is part of the javax.swing package, so this
import statement is required.

➞10 This statement creates a new Timer object. The timer’s interval is set
to 1,000 milliseconds — which is equivalent to one second. A new
instance of the Ticker class is passed as the second parameter.
The timer calls this object’s actionPerformed method at each
timer tick — in other words, once per second.

Figure 5-1:
The Tick
Tock
application
in action.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 303

More Things You Can Do with Interfaces304

➞11 This statement calls the start method to kick the timer into action.

➞15 The JOptionPane class is used to display a dialog box that tells the
user to click the OK button to stop the application. You might think I
included this dialog box to give the user a way to end the program. But
in reality, I used it to give the timer some time to run. If you just end the
main method after starting the timer, the application ends, which kills
the timer. By using JOptionPane here, the application continues to
run as long as the dialog box is displayed. (For more information about
JOptionPane, see Book II, Chapter 2.)

➞20 The declaration of the Ticker class, which implements the Action
Listener interface.

➞22 A private boolean class field that’s used to keep track of whether the
Ticker displays Tick. . . or Tock. . . Each time the
actionPerformed method is called, this field is toggled.

➞24 The actionPerformed method, which is called at each timer
interval.

➞28 Prints Tick. . . on the console if tick is true.

➞32 Prints Tock. . . on the console if tick is false.

➞34 Toggles the value of the tick variable. In other words, if tick is
true, it’s set to false. If tick is false, it’s set to true.

23_58961X bk03ch05.qxd 3/29/05 3:42 PM Page 304

Chapter 6: Using the Object
and Class Classes

In This Chapter
� Using the toString method

� Implementing the equals method

� Trying out the clone method

� Understanding the Class class

In this chapter, you find out how to use two classes of the Java API that
are important to object-oriented programming:

✦ The Object class, which every other class inherits — including all the
classes in the Java API and any class you create yourself

✦ The Class class, which is used to get information about an object’s type

If I could, I’d plant a huge Technical Stuff icon on this entire chapter. All this
stuff is a bit on the technical side, and many Java programmers get by for
years without understanding or using it. Still, I recommend you read this
chapter carefully. Even if it all doesn’t sink in, it may help explain why some
things in Java don’t work quite the way you think they should, and the infor-
mation in this chapter may someday help you program your way out of a
difficult corner.

The Mother of All Classes: Object
Object is the mother of all classes. In Java, every class ultimately inherits
the Object class. This class provides a set of methods that are available to
every Java object.

Every object is an Object
Any class that doesn’t have an extends clause implicitly inherits Object.
Thus, you never have to code a class like this:

public class Product extends Object...

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 305

The Mother of All Classes: Object306

If a subclass has an extends clause that specifies a superclass other than
Object, the class still inherits Object. That’s because the inheritance hier-
archy eventually gets to a superclass that doesn’t have an extends clause,
and that superclass inherits Object and passes it down to all its subclasses.

For example, suppose you have these classes:

public class Manager extends SalariedEmployee...

public class SalariedEmployee extends Employee...

public class Employee extends Person...

public class Person...

Here, the Manager class inherits the Object class indirectly because it
inherits SalariedEmployee, which inherits Employee, which inherits
Person, and Person inherits Object.

In Java, creating a class that doesn’t inherit Object is not possible.

Using Object as a type
If you don’t know or care about the type of an object referenced by a variable,
you can specify its type as Object. For example, the following is perfectly
legal:

Object emp = new Employee();

However, you can’t do anything useful with the emp variable, because the
compiler doesn’t know it’s an Employee. For example, if the Employee
class has a method named setLastName, the following code doesn’t work:

Object emp = new Employee();
emp.setLastName(“Smith”); // error: won’t compile

Because emp is an Object, not an Employee, the compiler doesn’t know
about the setLastName method.

Note that you could still cast the object to an Employee:

Object emp = new Employee();
((Employee)emp).setLastName(“Smith”); // this works

But what’s the point? You may as well make emp an Employee in the first
place.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 306

Book III
Chapter 6

Using the Object
and Class Classes

The Mother of All Classes: Object 307

Declaring a variable, parameter, or return type as Object, however, in certain
situations does make perfect sense. For example, the Java API provides a set of
classes designed to maintain collections of objects. One of the most commonly
used of these classes is the ArrayList class. It has a method named add
that accepts an Object as a parameter. This method adds the specified object
to the collection. Because the parameter type is Object, you can use the
ArrayList class to create collections of any type of object. (For more infor-
mation about the ArrayList class and other collection classes, see Book IV.)

Methods of the Object class
Table 6-1 lists all the methods of the Object class. Ordinarily, I wouldn’t list
all the methods of a class — I’d just list the ones that I think are most useful.
However, because Object is such an important player in the game of
object-oriented programming, I thought showing you all its capabilities is
best, even though some of them are a bit obscure.

I warned you, this entire chapter should have a Technical Stuff icon.

Table 6-1 Methods of the Object Class
Method What It Does

protected Object clone() Returns a copy of this object.

boolean equals(Object obj) Indicates whether this object is equal to the
obj object.

protected void finalize() Called by the garbage collector when the
object is destroyed.

Class getClass() Returns a Class object that represents this
object’s runtime class.

int hashCode() Returns this object’s hash code.

void notify() Used with threaded applications to wake up a
thread that’s waiting on this object.

void notifyAll() Used with threaded applications to wake up all
threads that are waiting on this object.

String toString() Returns a String representation of this object.

void wait() Causes this object’s thread to wait until another
thread calls notify or notifyAll.

void wait(Long timeout) A variation of the basic waitmethod.

void wait(Long timeout, Yet another variation of the waitmethod.
int nanos)

Note: Almost half of these methods (notify, notifyAll, and the three
wait methods) are related to threading. You find complete information
about those five methods in Book V, Chapter 1. Here’s the rundown on the
remaining six methods:

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 307

The Mother of All Classes: Object308

✦ clone: This method is commonly used to make copies of objects, and
overriding it in your own classes is not uncommon. I explain this method
in detail later in this chapter, in the section “The clone Method.”

✦ equals: This method is commonly used to compare objects. Any class
that represents an object that can be compared with another object
should override this method. Turn to the section “The equals Method”
later in this chapter, for more info.

✦ finalize: This method is called when the garbage collector realizes
that an object is no longer being used and can be discarded. The intent
of this method was to allow you to create objects that clean up after
themselves by closing open files and performing other clean-up tasks
before being discarded. But because of the way the Java garbage collec-
tor works, there’s no guarantee that the finalize method actually
ever is called. As a result, this method isn’t commonly used.

✦ getClass: This method is sometimes used in conjunction with the
Class class, which I described later in this chapter in the section
“The Class Class.”

✦ hashCode: Every Java object has a hash code, which is an int repre-
sentation of the class that’s useful for certain operations. This method
isn’t terribly important until you start to work with hash tables, which is
a pretty advanced technique best left to people with pocket protectors
and tape holding their glasses together.

✦ toString: This method is one of the most commonly used methods in
Java. I describe it in the section “The toString Method” later in this chapter.

Primitives aren’t objects
I need to note that primitive types, such as int and double, are not objects.
As a result, they do not inherit the Object class and don’t have access to the
methods listed in the previous section.

As a result, the following code won’t work:

int x = 50;
String s = x.toString(); // error: won’t compile

If you really want to convert an int to a string in this way, you can use a
wrapper class such as Integer to create an object from the value, and then
call its toString method:

String s = new Integer(x).toString(); // OK

Each of the wrapper classes also defines a static toString method you can
use like this:

String s = Integer.toString(x);

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 308

Book III
Chapter 6

Using the Object
and Class Classes

The toString Method 309

Sometimes using the compiler shortcut that lets you use primitive types in
string concatenation expressions is easier:

String s = “” + x;

Here, the int variable x is concatenated with an empty string.

The point of all this is that primitive types aren’t objects, so they don’t inherit
anything from Object. If you want to treat a primitive value as an object, you
can use the primitive type’s wrapper class as I describe in Book II, Chapter 2.

The toString Method
The toString method returns a String representation of an object. By default,
the toString method returns the name of the object’s class plus its hash
code. In the sections that follow, I show you how to use the toString method
and how to override it in your own classes to create more useful strings.

Using toString
Here’s a simple program that puts the toString method to work:

public class TestToString
{

public static void main(String[] args)
{

Employee emp = new Employee(“Martinez”,
“Anthony”);

System.out.println(emp.toString());
}

}

class Employee
{

private String lastName;
private String firstName;

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;

}
}

Here, this code creates a new Employee object, and then the result of its
toString method is printed to the console. When you run this program,
the following line is printed on the console:

Employee@82ba41

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 309

The toString Method310

Note: The hash code — in this case, 82ba41 — may be different on your
system.

It turns out that the explicit call to toString isn’t really necessary in this
example. I could have just as easily written the second line of the main
method like this:

System.out.println(emp);

That’s because the println method automatically calls the toString
method of any object you pass it.

Overriding toString
The default implementation of toString isn’t very useful in most situa-
tions. For example, you don’t really learn much about an Employee object
by seeing its hash code. Wouldn’t it be better if the toString method
returned some actual data from the object, such as the employee’s name?

To do that, you must override the toString method in your classes. In fact,
one of the basic guidelines of object-oriented programming in Java is to
always override toString. Here’s a simple program with an Employee
class that overrides toString:

public class TestToString
{

public static void main(String[] args)
{

Employee emp = new Employee(“Martinez”,
“Anthony”);

System.out.println(emp.toString());
}

}

class Employee
{

private String lastName;
private String firstName;

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;

}

public String toString()
{

return “Employee[“
+ this.firstName + “ “
+ this.lastName + “]”;

}
}

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 310

Book III
Chapter 6

Using the Object
and Class Classes

The equals Method 311

When you run this program, the following line is displayed on the console:

Employee[Anthony Martinez]

Note that the output consists of the class name followed by some data from
the object in brackets. This convention is common in Java programming.

The only problem with the preceding example is that the class name is hard-
coded into the toString method. You can use the getClass method to
retrieve the actual class name at runtime:

public String toString()
{

return this.getClass().getName() + “[“
+ this.firstName + “ “
+ this.lastName + “]”;

}

Here, the getClass method returns a Class object that represents the
class of the current object. Then, the Class object’s getName method is
used to get the actual class name. (You discover more about the Class
object later in this chapter.)

The equals Method
Testing objects to see if they are equal is one of the basic tasks of any object-
oriented programming language. Unfortunately, Java isn’t very good at it. For
example, consider this program:

public class TestEquality1
{

public static void main(String[] args)
{

Employee emp1 = new Employee(
“Martinez”, “Anthony”);

Employee emp2 = new Employee(
“Martinez”, “Anthony”);

if (emp1 == emp2)
System.out.println(

“These employees are the same.”);
else

System.out.println(
“These are different employees.”);

}
}

class Employee
{

private String lastName;

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 311

The equals Method312

private String firstName;

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;

}
}

Here, the main method creates two Employee objects with identical data,
and then compares them. Alas, the comparison returns false. Even though
the Employee objects have identical data, they’re not considered to be equal.
That’s because the equality operator (==) compares the object references, not
the data contained by the objects. Thus, the comparison returns true only if
both emp1 and emp2 refer to the same instance of the Employee class.

If you want to create objects that are considered to be equal if they contain
identical data, you have to do two things:

1. Compare them with the equals method rather than the equality
operator.

2. Override the equals method in your class to compare objects based on
their data.

The following sections describe both of these steps.

Using equals
To test objects using the equals method rather than the equality operator,
you simply rewrite the comparison expression like this:

if (emp1.equals(emp2))
System.out.println(“These employees are the same.”);

else
System.out.println(“These are different
employees.”);

Here, the equals method of emp1 is used to compare emp1 with emp2.

By default, the equals operator returns the same result as the equality
operator. So just replacing == with the equals method doesn’t have any effect
unless you also override the equals method, as explained in the next section.

Which object’s equals method you use shouldn’t matter. Thus, this if
statement returns the same result:

if (emp2.equals(emp1))
System.out.println(“These employees are the same.”);

else
System.out.println(“These are different employees.”);

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 312

Book III
Chapter 6

Using the Object
and Class Classes

The equals Method 313

Note that I said it shouldn’t matter. Whenever you override the equals
method, you’re supposed to make sure that comparisons work in both direc-
tions. However, sloppy programming sometimes results in equals methods
where a equals b but b doesn’t equal a. So be on your toes.

Overriding the equals method
You can override the equals method so that objects can be compared
based on their values. At the surface, you might think this is easy to do.
For example, you might be tempted to write the equals method for the
Employee class like this:

// warning -- there are several errors in this code!
public boolean equals(Employee emp)
{

if (this.getLastName().equals(emp.getLastName())
&& this.getFirstName().equals(emp.getFirstName())

)
return true;

else
return false;

}

The basic problem with this code — and the challenge of coding a good
equals method — is that the parameter passed to the equals method
must be an Object, not an Employee. That means that the equals
method must be prepared to deal with anything that comes its way. For
example, someone might try to compare an Employee object with a
Banana object. Or with a null. The equals method must be prepared to
deal with all possibilities.

Specifically, the Java API documentation says that whenever you override the
equals method, you must ensure that the equals method meets five spe-
cific conditions. Here they are, quoted right out of the API documentation:

✦ It is reflexive. For any non-null reference value x, x.equals(x) should
return true.

✦ It is symmetric. For any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

✦ It is transitive. For any non-null reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then
x.equals(z) should return true.

✦ It is consistent. For any non-null reference values x and y, multiple
invocations of x.equals(y) consistently return true or consistently
return false, provided no information used in equals comparisons on
the objects is modified.

✦ For any non-null reference value x, x.equals(null) should return
false.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 313

The equals Method314

Sound confusing? Fortunately, it’s not as complicated as it seems at first. You
can safely ignore the transitive rule, because if you get the other rules right,
this one happens automatically. And the consistency rule basically means
that you return consistent results. As long as you don’t throw a call to
Math.random into the comparison, that shouldn’t be a problem.

Here’s a general formula for creating a good equals method (assume the
parameter is named obj):

1. Test the reflexive rule.

Use a statement like this:

if (this == obj)
return true;

In other words, if someone is silly enough to see if an object is equal to
itself, it returns true.

2. Test the non-null rule.

Use a statement like this:

if (this == null)
return false;

Null isn’t equal to anything.

3. Test that obj is of the same type as this.

You can use the getClass method to do that, like this:

if (this.getClass() != obj.getClass())
return false;

The two objects can’t possibly be the same if they aren’t of the same
type. (It may not be apparent at first, but this test is required to fulfill
the symmetry rule — that if x equals y, then y must also equal x.)

4. Cast obj to a variable of your class. Then, compare the fields you
want to base the return value on and return the result.

Here’s an example:

Employee emp = (Employee) obj;
return this.lastName.equals(emp.getLastName())

&& this.firstname.equals(emp.getFirstName());

Notice that the field comparisons for the String values use the equals
method rather than ==. This is because you can’t trust == to compare
strings. If you need to compare primitive types, you can use ==. But you
should use equals to compare strings and any other reference types.

Putting it all together, Listing 6-1 shows a program that compares two
Employee objects using a properly constructed equals method.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 314

Book III
Chapter 6

Using the Object
and Class Classes

The equals Method 315

LISTING 6-1: COMPARING OBJECTS

public class TestEquality2
{

public static void main(String[] args)
{

Employee emp1 = new Employee(➞ 5
“Martinez”, “Anthony”);

Employee emp2 = new Employee(➞ 7
“Martinez”, “Anthony”);

if (emp1.equals(emp2)) ➞ 9
System.out.println(

“These employees are the same.”);
else

System.out.println(
“These are different employees.”);

}
}

class Employee ➞ 18
{

private String lastName;
private String firstName;

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;

}

public String getLastName()
{

return this.lastName;
}

public String getFirstName()
{

return this.firstName;
}

public boolean equals(Object obj) ➞ 39
{

// an object must equal itself
if (this == obj) ➞ 42

return true;

// no object equals null
if (this == null) ➞ 46

return false;

continued

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 315

The clone Method316

LISTING 6-1 (CONTINUED)

// objects of different types are never equal
if (this.getClass() != obj.getClass()) ➞ 50

return false;

// cast to an Employee, then compare the fields
Employee emp = (Employee) obj; ➞ 54
return this.lastName.equals(emp.getLastName()) ➞ 55

&& this.firstName.equals(emp.getFirstName());
}

}

Following are some noteworthy points in this listing:

➞ 5 Creates an Employee object with the name Anthony Martinez.

➞ 7 Creates another Employee object with the name Anthony Martinez.

➞ 9 Compares the two Employee objects using the equals method.

➞18 The Employee class.

➞39 The overridden equals method.

➞42 Returns true if the same object instances are being compared. This
meets the first equality test, that an object must always be equal to
itself.

➞46 Returns false if the object being compared is null. This meets the
last equality test, that nothing is equal to null.

➞50 Returns false if the object being compared isn’t of the correct type.
This helps ensure the symmetry test, that if x equals y, then y must
equal x.

➞54 Having slid through the other tests, you can now assume that you’re
comparing two different Employee objects. So the next step is to
cast the other object to an Employee.

➞55 Having cast the other object to an Employee, the two fields
(lastName and firstName) are compared and the result of the
compound comparison is returned.

The clone Method
Cloning refers to the process of making an exact duplicate of an object.
Unfortunately, this process turns out to be a pretty difficult task in an object-
oriented language such as Java. You’d think cloning would be as easy as this:

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 316

Book III
Chapter 6

Using the Object
and Class Classes

The clone Method 317

Employee emp1 = new Employee(“Stewart”, “Martha”);
Employee emp2 = emp1;

However, this code doesn’t make a copy of the Employee object at all.
Instead, you now have two variables that refer to the same object, which usu-
ally isn’t what you want. For example, suppose you execute these statements:

emp1.setLastName(“Washington”);
emp2.setLastName(“Graham”);
String lastName = emp1.getLastName();

After these statements execute, does lastName return Washington or
Graham? The correct answer is Graham, because both emp1 and emp2 refer
to the same Employee object.

In contrast, a clone is an altogether new object that has the same values as the
original object. You can often manually create a clone using code like this:

Employee emp1 = new Employee(“Stewart”, “Martha”);
Employee emp2 = new Employee();
emp2.setLastName(emp1.getLastName());
emp2.setFirstName(emp1.getFirstName());
emp2.setSalary(emp1.getSalary());

Here, a new Employee object is created and its fields are set to the same
values as the original object.

Java provides a more elegant way to create object copies — the clone
method, which is available to all classes because it’s inherited from the
Object class. However, as you discover in the following sections, the
clone method can be difficult to create and use. For this reason, you want
to implement it only for those classes that you think can really benefit from
cloning.

Implementing the clone method
The clone method is defined by the Object class, so it’s available to all
Java classes. However, clone is declared with protected access in the
Object class. As a result, the clone method for a given class is available
only within that class. If you want other objects to be able to clone your
object, you must override the clone method and give it public access.

Note that the clone method defined by the Object class returns an Object
type. That makes perfect sense, because the Object class doesn’t know
the type of the class that you’ll be overriding the clone method in. An incon-
venient side-effect of this is that whenever you call the clone method for a
class that overrides clone, you must cast the result to the desired object
type.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 317

The clone Method318

Listing 6-2 gives a simple example of a program that clones Employee
objects. In a nutshell, this program overrides the clone method for the
Employee class. It creates an employee, and then clones it. Then, it changes
the name of the original Employee object and prints out both objects to the
console.

LISTING 6-2: A CLONING EXAMPLE

public class CloneTest
{

public static void main(String[] args)
{

Employee emp1 = new Employee(➞ 5
“Martinez”, “Anthony”);

emp1.setSalary(40000.0); ➞ 7
Employee emp2 = (Employee)emp1.clone(); ➞ 8
emp1.setLastName(“Smith”); ➞ 9
System.out.println(emp1); ➞ 10
System.out.println(emp2); ➞ 11

}
}

class Employee ➞ 15
{

private String lastName;
private String firstName;
private Double salary;

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;

}

public String getLastName()
{

return this.lastName;
}

public void setLastName(String lastName)
{

this.lastName = lastName;
}

public String getFirstName()
{

return this.firstName;
}

public void setFirstName(String firstName)

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 318

Book III
Chapter 6

Using the Object
and Class Classes

The clone Method 319

{
this.firstName = firstName;

}

public Double getSalary()
{

return this.salary;
}

public void setSalary(Double salary)
{

this.salary = salary;
}

public Object clone() ➞ 57
{

Employee emp;
emp = new Employee(➞ 60

this.lastName, this.firstName);
emp.setSalary(this.salary); ➞ 62
return emp; ➞ 63

}

public String toString()
{

return this.getClass().getName() + “[“
+ this.firstName + “ “
+ this.lastName + “, “
+ this.salary + “]”;

}
}

When you run this program, the following lines appear on the console:

Employee[Anthony Smith, 40000.0]
Employee[Anthony Martinez, 40000.0]

As you can see, the name of the second Employee object was successfully
changed without affecting the name of the first Employee object.

The following paragraphs draw your attention to some of the highlights of
this program:

➞ 5 Creates the first Employee object for an employee named Anthony
Martinez.

➞ 7 Sets Mr. Martinez’ salary.

➞ 8 Creates a clone of the Employee object for Mr. Martinez. Notice that
the return value must be cast to an Employee. That’s because the
return value of the clone method is Object.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 319

The clone Method320

➞ 9 Changes the last name for the second Employee object.

➞10 Prints the first Employee object.

➞11 Prints the second Employee object.

➞15 The Employee class. This class defines private fields to store the
last name, first name, and salary, as well as getter and setter methods
for each field.

➞57 This method overrides the clone method. Notice that its return type
is Object, not Employee.

➞60 Creates a new Employee object using the last name and first name
from the current object.

➞62 Sets the new employee’s salary to the current object’s salary.

➞63 Returns the cloned Employee object.

Using clone to create a shallow copy
In the previous example, the clone method manually creates a copy of the
original object and returns it. In many cases, this is the easiest way to create
a clone. However, what if your class has a hundred or more fields that need
to be duplicated? Then, the chance of accidentally forgetting to copy one of
the fields is high. And, if you later add a field to the class, you may forget to
modify the clone method to include the new field.

Fortunately, you can solve this problem by using the clone method of the
Object class directly in your own clone method. The clone method of
the Object class can automatically create a copy of your object that con-
tains duplicates of all the fields that are primitive types (such as int and
double) as well as copies of immutable reference types — most notably,
strings. So, if all the fields in your class are either primitives or strings, you
can use the clone method provided by the Object class to clone your
class.

This type of clone is known as a shallow copy for reasons I explain in the
next section.

To call the clone method from your own clone method, just specify
super.clone(). Before you can do that, however, you must do two things:

✦ Declare that the class supports the Cloneable interface. The
Cloneable interface is a tagging interface that doesn’t provide any
methods. It simply marks a class as being appropriate for cloning.

✦ Enclose the call to super.clone() in a try/catch statement that
catches the exception CloneNotSupportedException. This exception
is thrown if you try to call clone on a class that doesn’t implement the

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 320

Book III
Chapter 6

Using the Object
and Class Classes

The clone Method 321

Cloneable interface. Provided you implement Cloneable, this excep-
tion won’t ever happen. But because CloneNotSupportedException
is a checked exception, you must catch it.

Here’s an example of an Employee class with a clone method that uses
super.clone() to clone itself:

class Employee implements Cloneable
{

// Fields and methods omitted...

public Object clone()
{

Employee emp;
try
{

emp = (Employee) super.clone();
}
catch (CloneNotSupportedException e)
{

return null; // will never happen
}
return emp;

}
}

Notice that this method doesn’t have to be aware of any of the fields declared
in the Employee class. However, this clone method works only for classes
whose fields are all either primitive types or immutable objects such as
strings.

Creating deep copies
It’s not uncommon for some fields in a class to actually be other objects. For
example, the Employee class might have a field of type Address that’s
used to store each employee’s address:

class Employee
{

public Address address;

// other fields and methods omitted
}

If that’s the case, the super.clone() method won’t make a complete copy
of the object. The clone won’t get a clone of the address field. Instead, it has
a reference to the same address object as the original.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 321

The clone Method322

To solve this problem, you must do a deep copy of the Employee object.
A deep copy is a clone in which any subobjects within the main object are
also cloned. To accomplish this feat, the clone method override first calls
super.clone() to create a shallow copy of the object. Then, it calls the
clone method of each of the subobjects contained by the main object to
create clones of those objects. (Of course, for a deep copy to work, those
objects must also support the clone methods.)

Listing 6-3 shows an example. Here, an Employee class contains a public
field named address, which holds an instance of the Address class. As
you can see, the clone method of the Employee class creates a shallow
copy of the Employee object, and then sets the copy’s address field to a
clone of the original object’s address field. To make this example work, the
Address class also overrides the clone method. Its clone method calls
super.clone() to create a shallow copy of the Address object.

LISTING 6-3: CREATING A DEEP COPY

public class CloneTest2
{

public static void main(String[] args)
{

Employee emp1 = new Employee(➞ 5
“Martinez”, “Anthony”);

emp1.setSalary(40000.0);
emp1.address = new Address(➞ 8

“1300 N. First Street”,
“Fresno”, “CA”, “93702”);

Employee emp2 = (Employee)emp1.clone(); ➞ 11

System.out.println(➞ 13
“**** after cloning ****\n”);

printEmployee(emp1);
printEmployee(emp2);

emp2.setLastName(“Smith”); ➞ 18
emp2.address = new Address(➞ 19

“2503 N. 6th Street”,
“Fresno”, “CA”, “93722”);

System.out.println(➞ 23
“**** after changing emp2 ****\n”);

printEmployee(emp1);
printEmployee(emp2);

}

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 322

Book III
Chapter 6

Using the Object
and Class Classes

The clone Method 323

private static void printEmployee(Employee e) ➞ 30
{

System.out.println(e.getFirstName()
+ “ “ + e.getLastName());

System.out.println(e.address.getAddress());
System.out.println(“Salary: “ + e.getSalary());
System.out.println();

}
}

class Employee implements Cloneable ➞ 40
{

private String lastName;
private String firstName;
private Double salary;

public Address address; ➞ 46

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;
this.address = new Address();

}

public String getLastName()
{

return this.lastName;
}

public void setLastName(String lastName)
{

this.lastName = lastName;
}

public String getFirstName()
{

return this.firstName;
}

public void setFirstName(String firstName)
{

this.firstName = firstName;
}

public Double getSalary()
{

return this.salary;
}

continued

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 323

The clone Method324

LISTING 6-3 (CONTINUED)

public void setSalary(Double salary)
{

this.salary = salary;
}

public Object clone() ➞ 85
{

Employee emp;
try
{

emp = (Employee) super.clone(); ➞ 90
emp.address = (Address)address.clone(); ➞ 91

}
catch (CloneNotSupportedException e) ➞ 93
{

return null; // will never happen
}
return emp; ➞ 97

}

public String toString()
{

return this.getClass().getName() + “[“
+ this.firstName + “ “
+ this.lastName + “, “
+ this.salary + “]”;

}
}

class Address implements Cloneable ➞ 109
{

private String street;
private String city;
private String state;
private String zipCode;

public Address()
{

this.street = “”;
this.city = “”;
this.state = “”;
this.zipCode = “”;

}

public Address(String street, String city,
String state, String zipCode)

{
this.street = street;
this.city = city;

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 324

Book III
Chapter 6

Using the Object
and Class Classes

The clone Method 325

this.state = state;
this.zipCode = zipCode;

}

public Object clone() ➞ 133
{

try
{

return super.clone(); ➞ 137
}
catch (CloneNotSupportedException e)
{

return null; // will never happen
}

}

public String getAddress()
{

return this.street + “\n”
+ this.city + “, “
+ this.state + “ “
+ this.zipCode;

}
}

The main method in the CloneTest2 class creates an Employee object
and sets its name, salary, and address. Then, it creates a clone of this
object and prints the data contained in both objects. Next, it changes the
last name and address of the second employee and prints the data again.
Here’s the output that’s produced when this program is run:

**** after cloning ****

Anthony Martinez
1300 N. First Street
Fresno, CA 93702
Salary: 40000.0

Anthony Martinez
1300 N. First Street
Fresno, CA 93702
Salary: 40000.0

**** after changing emp2 ****

Anthony Martinez
1300 N. First Street
Fresno, CA 93702
Salary: 40000.0

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 325

The clone Method326

Anthony Smith
2503 N. 6th Street
Fresno, CA 93722
Salary: 40000.0

As you can see, the two Employee objects have identical data after they are
cloned. But they have different data after the fields for the second employee
have been changed. Thus, you can safely change the data in one of the objects
without affecting the other object.

The following paragraphs describe some of the highlights of this program:

➞ 5 Creates an employee named Anthony Martinez.

➞ 8 Sets the employee’s address.

➞ 11 Clones the employee.

➞ 13 Prints the two Employee objects after cloning. They should have
identical data.

➞ 18 Changes the second employee’s name.

➞ 19 Changes the second employee’s address.

➞ 23 Prints the two Employee objects after changing the data for the
second employee. The objects should now have different data.

➞ 30 A utility method that prints the data for an Employee object.

➞ 40 The Employee class. Notice that this class implements Cloneable.

➞ 46 The address field, which holds an object of type Address.

➞ 85 The clone method in the Employee class.

➞ 90 Creates a shallow copy of the Employee object.

➞ 91 Creates a shallow copy of the Address object and assigns it to the
address field of the cloned Employee object.

➞ 93 Catches CloneNotSupportedException, which won’t ever
happen because the class implements Cloneable. The compiler
requires the try/catch statement here because
CloneNotSupportedException is a checked exception.

➞ 97 Returns the cloned Employee object.

➞109 The Address class, which also implements Cloneable.

➞133 The clone method of the Address class.

➞137 Returns a shallow copy of the Address object.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 326

Book III
Chapter 6

Using the Object
and Class Classes

The Class Class 327

The Class Class
Okay class, it’s time for one last class before finishing this chapter: the
Class class. This might get confusing, so put your thinking cap on. Every
class used by a Java application is represented in memory by an object of
type Class. For example, if your program uses Employee objects, there’s
also a Class object for the Employee class. This Class object has infor-
mation not about specific employees, but about the Employee class itself.

You’ve already seen how you can get a Class object by using the getClass
method. This method is defined by the Object class, so it’s available to every
object. For example:

Employee emp = new Employee();
Class c = emp.getClass();

Note that you have to initialize a variable with an object instance before
you can call its getClass method. That’s because the getClass method
returns a Class object that corresponds to the type of object the variable
refers to, not the type the variable is declared as.

For example, suppose an HourlyEmployee class extends the Employee
class. Then consider these statements:

HourlyEmployee emp = new Employee();
Class c = emp.getClass();

Here, c refers to a Class object for the HourlyEmployee class, not the
Employee class.

The Class class has more than 50 methods, but only two of them are
worthy of your attention:

✦ getName(): Returns a String representing the name of the class

✦ getSuperclass(): Returns another Class object representing this
Class object’s superclass

If you’re interested in the other capabilities of the Class class, you can
always check it out in the Java API documentation.

One of the most common uses of the getClass method is to tell if two
objects are of the same type by comparing their Class objects. This works
because Java guarantees that the Class object has only one instance for
each different class used by the application. So, even if your application
instantiates 1,000 Employee objects, there is only one Class object for the
Employee class.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 327

The Class Class328

As a result, the following code can determine if two objects are both objects
of the same type:

Object o1 = new Employee();
Object o2 = new Employee();
if (o1.getClass() == o2.getClass())

System.out.println(“They’re the same.”);
else

System.out.println(“They are not the same.”);

In this case, the type of both objects is Employee, so the comparison is true.

To find out if an object is of a particular type, use the object’s getClass
method to get the corresponding Class object. Then, use the getName
method to get the class name, and use a string comparison to check the
class name. For example:

if (emp.getClass().getName().equals(“Employee”))
System.out.println(“This is an employee object.”);

If all the strung-out method calls give you a headache, you can break it apart:

Class c = emp.getClass();
String s = c.getName();
if (s.equals(“Employee”))

System.out.println(“This is an employee object.”);

The result is the same.

24_58961X bk03ch06.qxd 3/29/05 3:43 PM Page 328

Chapter 7: Using Inner Classes

In This Chapter
� Using inner classes

� Creating static inner classes

� Implementing anonymous classes

In this chapter, you find out how to use three advanced types of classes:
inner classes, static inner classes, and anonymous inner classes. All three

are useful in certain circumstances. In particular, inner classes and anony-
mous inner classes are commonly used with graphical applications created
with Swing. For more information about Swing, refer to Book VI. In this chap-
ter, I just concentrate on the mechanics of creating these types of classes.

Once again, this chapter could have a Technical Stuff icon pasted next to
every other paragraph. The usefulness of some of the information I present
in this chapter may seem questionable. But trust me, you need to know this
stuff when you start writing Swing applications. If you want to skip this
chapter for now, that’s okay. You can always come back to it when you’re
learning Swing and you need to know how inner classes and anonymous
inner classes work.

Declaring Inner Classes
An inner class is a class that’s declared inside of another class. Thus, the
basic structure for creating an inner class is as follows:

class outerClassName
{

private class innerClassName
{

// body of inner class
}

}

The class that contains the inner class is called an outer class. You can use a
visibility modifier with the inner class to specify whether the class should
be public, protected, or private. This visibility determines whether
other classes can see the inner class.

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 329

Declaring Inner Classes330

Understanding inner classes
At the surface, an inner class is simply a class that’s contained inside
another class. However, there’s more to it than that. Here are some key
points about inner classes:

✦ An inner class automatically has access to all the fields and methods of
the outer class — even private fields and methods. Thus, an inner class
has more access to its outer class than a subclass has to its superclass.
(A subclass can access public and protected members of its superclass,
but not private members.)

✦ An inner class carries with it a reference to the current instance of the
outer class that enables it to access instance data for the outer class.

✦ Because of the outer class instance reference, you can’t create or refer
to an inner class from a static method of the outer class. You can, how-
ever, create a static inner class, as I describe in the section “Using Static
Inner Classes” later in this chapter.

✦ One of the main reasons for creating an inner class is to create a class
that’s only of interest to the outer class. As a result, you usually declare
inner classes to be private so other classes can’t access them.

✦ Occasionally, code in an inner class needs to refer to the instance of its
outer class. To do that, you list the name of the outer class followed by
the dot operator and this. For example, if the outer class is named
MyOuterClass, you would use MyOuterClass.this to refer to the
instance of the outer class.

An example
Book III, Chapter 5 introduces an application that uses the Timer class in
the Swing package (javax.swing.Timer) that displays the lines
Tick... and Tock... on the console at a one second interval. It uses a
class named Ticker that implements the ActionListener interface to
handle the Timer object’s clock events.

In this chapter, you see a total of three different versions of this application.
You may want to quickly review Book III, Chapter 5 if you’re unclear on how
this application uses the Timer class to display the Tick... and Tock...
messages, or why the JOptionPane dialog box is required.

Listing 7-1 shows a version of this application that implements the Ticker
class as an inner class.

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 330

Book III
Chapter 7

Using Inner Classes

Declaring Inner Classes 331

LISTING 7-1:TICK TOCK WITH AN INNER CLASS

import java.awt.event.*;
import javax.swing.*;

public class TickTockInner
{

private String tickMessage = “Tick...”; ➞ 6
private String tockMessage = “Tock...”; ➞ 7

public static void main(String[] args)
{

TickTockInner t = new TickTockInner(); ➞ 11
t.go(); ➞ 12

}

private void go() ➞ 15
{

// create a timer that calls the Ticker class
// at one second intervals
Timer t = new Timer(1000, new Ticker()); ➞ 19
t.start();

// display a message box to prevent the
// program from ending immediately
JOptionPane.showMessageDialog(null, ➞ 24

“Click OK to exit program”);
System.exit(0); ➞ 26

}

class Ticker implements ActionListener ➞ 29
{

private boolean tick = true;

public void actionPerformed(ActionEvent event) ➞ 33
{

if (tick)
{

System.out.println(tickMessage); ➞ 37
}
else
{

System.out.println(tockMessage); ➞ 41
}
tick = !tick;

}
}

}

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 331

Declaring Inner Classes332

The following paragraphs describe some of the highlights of this program:

➞ 6 The String variables named tickMessage and tockMessage
(line 7) contain the messages to be printed on the console. Note that
these variables are defined as fields of the outer class. As you’ll see,
the inner class Ticker is able to directly access these fields.

➞11 Because an inner class can only be used by an instantiated object,
you can’t use it directly from the static main method. As a result, the
main method in this program simply creates an instance of the appli-
cation class (TickTockInner).

➞12 This line executes the go method of the new instance of the
TickTockInner class.

The technique used in lines 11 and 12 is a fairly common programming
technique that lets an application quickly get out of a static context
and into an object-oriented mode.

➞15 The go method, called from line 12.

➞19 This line creates an instance of the Timer class with the timer inter-
val set to 1,000 milliseconds (1 second) and the ActionListener
set to a new instance of the inner class named Ticker.

➞24 Here, the JOptionPane class is used to display a dialog box. This
dialog box is necessary to give the timer a chance to run. The appli-
cation ends when the user clicks OK.

➞26 This line calls the exit method of the System class, which immedi-
ately shuts down the Java Virtual Machine. This method call isn’t
strictly required here, but if you leave it out, the timer continues to

The Observer Pattern
Event listeners in Java are part of a Java model
called the Delegation Event Model. The Delega-
tion Event Model is an implementation of a more
general design pattern called the Observer pat-
tern. This pattern is useful when you need to
create objects that interact with each other
when a change in the status of one of the
objects occurs. The object whose changes are
being monitored is called the observable object,
and the object that monitors those changes is
called the observer object. The observer object

registers itself with the observable object, which
then notifies the observer object when its status
changes.

You discover more about how Java implements
this pattern for event handling in Book VI. But if
you’re interested, you may want to investigate
the Observer and Observable inter-
faces that are a part of the Java API. They pro-
vide a standard way to create simple
implementations of the Observer pattern.

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 332

Book III
Chapter 7

Using Inner Classes

Using Static Inner Classes 333

run for a few seconds after you click OK before the JVM figures out
that it should kill the timer.

➞29 This line is the declaration for the inner class named Ticker. Note
that this class implements the ActionListener interface.

➞33 The actionPerformed method is called by the Timer object every
1,000 milliseconds.

➞37 In this line and in line 41, the inner class directly accesses a field of
the outer class.

Using Static Inner Classes
A static inner class is similar to an inner class, but doesn’t require an
instance of the outer class. Its basic form is the following:

class outerClassName
{

private static class innerClassName
{

// body of inner class
}

}

Like a static method, a static inner class can’t access any non-static fields or
methods in its outer class. It can, however, access static fields or methods.

Listing 7-2 shows a version of the Tick Tock application that uses a static
inner class rather than a regular inner class.

LISTING 7-2:TICK TOCK WITH A STATIC INNER CLASS

import java.awt.event.*;
import javax.swing.*;

public class TickTockStatic
{

private static String tickMessage = “Tick...”; ➞ 6
private static String tockMessage = “Tock...”; ➞ 7

public static void main(String[] args)
{

TickTockStatic t = new TickTockStatic();
t.go();

}

continued

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 333

Using Anonymous Inner Classes334

LISTING 7-2 (CONTINUED)

private void go()
{

// create a timer that calls the Ticker class
// at one second intervals
Timer t = new Timer(1000, new Ticker());
t.start();

// display a message box to prevent the
// program from ending immediately
JOptionPane.showMessageDialog(null,

“Click OK to exit program”);
System.exit(0);

}

static class Ticker implements ActionListener ➞ 29
{

private boolean tick = true;

public void actionPerformed(ActionEvent event)
{

if (tick)
{

System.out.println(tickMessage);
}
else
{

System.out.println(tockMessage);
}
tick = !tick;

}
}

}

This version of the application and the Listing 7-1 version have only three
differences:

➞ 6 The tickMessage field is declared as static. This is necessary so
that the static class can access it.

➞ 7 The tockMessage field is also declared as static.

➞29 The Ticker class is declared as static.

Using Anonymous Inner Classes
Anonymous inner classes (usually just called anonymous classes) are proba-
bly the strangest feature of the Java programming language. The first time
you see an anonymous class, you’ll almost certainly think that someone

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 334

Book III
Chapter 7

Using Inner Classes

Using Anonymous Inner Classes 335

made a mistake, and that the code can’t possibly compile. But compile it
does, and it even works. And once you get the hang of working with anony-
mous classes, you’ll wonder how you got by without them.

An anonymous class is a class that’s defined on the spot, right at the point
where you want to instantiate it. Because you code the body of the class
right where you need it, you don’t have to give it a name. That’s why it’s
called an anonymous class.

Creating an anonymous class
The basic form for declaring and instantiating an anonymous class is this:

new ClassOrInterface() { class-body }

As you can see, you specify the new keyword followed by the name of a class
or interface that specifies the type of the object created from the anonymous
class. This class or interface name is followed by parentheses, which may
include a parameter list that’s passed to the constructor of the anonymous
class. Then, you code a class body enclosed in braces. This class body can
include anything a regular class body can include: fields, methods, even
other classes or interfaces.

Here’s an example of a simple anonymous class:

public class AnonClass
{

public static void main(String[] args)
{

Ball b = new Ball()
{

public void hit()
{

System.out.println(“You hit it!”);
}

};
b.hit();

}

interface Ball
{

void hit();
}

}

In this example, I created an interface named Ball that has a single method
named hit. Then, back in the main method, I declared a variable of type
Ball and used an anonymous class to create an object. The body of the
anonymous class consists of an implementation of the hit method that

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 335

Using Anonymous Inner Classes336

simply displays the message You hit it! on the console. After the anony-
mous class is instantiated and assigned to the b variable, the next statement
calls the hit method.

When you run this program, the single line You hit it! is displayed on
the console.

Here are some things to ponder when you work with anonymous classes:

✦ You can’t create a constructor for an anonymous class. Because the
anonymous class doesn’t have a name, what would you call the con-
structor, anyway?

✦ If you list parameters in the parentheses following the class name, Java
looks for a constructor in that class that matches the parameters you
supply. If it finds one, that constructor is called with the parameters. If
not, a compiler error is generated.

✦ You can’t pass parameters if the anonymous class is based on an inter-
face. That only makes sense, because interfaces don’t have constructors
so Java wouldn’t have anything to pass the parameters to.

✦ An assignment statement can use an anonymous class as shown in this
example. In that case, the anonymous class body is followed by a semi-
colon that marks the end of the assignment statement. Note that this
semicolon is part of the assignment statement, not the anonymous class.
(In the next section, you see an example of an anonymous class that’s
passed as a method parameter. In that example, the body isn’t followed
by a semicolon.)

✦ An anonymous class is a special type of inner class. So, like any inner class,
it automatically has access to the fields and methods of its outer class.

✦ An anonymous class can’t be static.

Tick Tock with an anonymous class
Listing 7-3 shows a more complex example of an anonymous class: a version
of the Tick Tock application that uses an anonymous class as the action lis-
tener for the timer.

LISTING 7-3:TICK TOCK WITH AN ANONYMOUS CLASS

import java.awt.event.*;
import javax.swing.*;

public class TickTockAnonymous
{

private String tickMessage = “Tick...”;
private String tockMessage = “Tock...”;

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 336

Book III
Chapter 7

Using Inner Classes

Using Anonymous Inner Classes 337

public static void main(String[] args) ➞ 9
{

TickTockAnonymous t = new TickTockAnonymous();
t.go();

}

private void go()
{

// create a timer that calls the Ticker class
// at one second intervals
Timer t = new Timer(1000, ➞ 19

new ActionListener() ➞ 20
{ ➞ 21

private boolean tick = true;

public void actionPerformed(➞ 24
ActionEvent event)

{
if (tick)
{

System.out.println(tickMessage);
}
else
{

System.out.println(tockMessage);
}
tick = !tick;

}
}); ➞ 37

t.start();

// display a message box to prevent the
// program from ending immediately
JOptionPane.showMessageDialog(null,

“Click OK to exit program”);
System.exit(0);

}
}

By now, you’ve seen enough versions of this program that you should under-
stand how it works. The following paragraphs explain how this version uses
an anonymous class as the ActionListener parameter supplied to the
Timer constructor:

➞ 9 Anonymous classes won’t work in a static context, so the main
method creates an instance of the TickTockAnonymous class and
executes the go method.

➞19 In the go method, an instance of the Timer class is created.

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 337

Using Anonymous Inner Classes338

➞20 The second parameter of the TimerClass constructor is an object
that implements the ActionListener interface. This object is cre-
ated here via an anonymous class. ActionListener is specified as
the type for this class.

➞21 This left brace marks the beginning of the body of the anonymous
class.

➞24 The actionPerformed method is called every 1,000 milliseconds
by the timer. Note that this method can freely access fields defined in
the outer class.

➞37 The right brace on this line marks the end of the body of the anony-
mous class. Then, the right parenthesis marks the end of the parameter
list for the Timer constructor. The left parenthesis that’s paired with
this right parenthesis is on line 19. Finally, the semicolon marks the
end of the assignment statement that started on line 19.

25_58961X bk03ch07.qxd 3/29/05 3:44 PM Page 338

Chapter 8: Packaging and
Documenting Your Classes

In This Chapter
� Creating packages for your classes

� Archiving your packages in JAR files

� Documenting your classes with JavaDocs

Now that you know just about everything to know about creating
classes, this chapter shows you what to do with the classes you create.

Specifically, I show you how to organize your classes into neat packages.
Packages enable you to keep your classes separate from classes in the Java
API, allow you to reuse your classes in other applications, and even let you
distribute your classes to others, assuming other people might be interested
in your classes.

If that’s the case, you probably won’t want to just send those people all your
separate class files. Instead, you want to bundle them into a single file called
a JAR file. That’s covered in this chapter too.

Finally, you find out how to use a feature called JavaDocs that lets you add
documentation comments to your classes. With JavaDocs, you can build pro-
fessional looking documentation pages automatically. Your friends will think
you’re a real Java guru when you post your JavaDoc pages to your Web site.

Working with Packages
A package is a group of classes that belong together. Without packages, the
entire universe of Java classes would be a huge unorganized mess. Imagine
the thousands of classes that are available in the Java API combined with
millions of Java classes created by Java programmers throughout the world,
all thrown into one big pot. Packages let you organize this pot into smaller,
manageable collections of related classes.

Importing classes and packages
When you use import statements at the beginning of a Java source file, you
make classes from the packages mentioned in the import statements avail-
able throughout the file. (I covered import statements in Book II, Chapter 1,
but it doesn’t hurt to repeat it here.)

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 339

Working with Packages340

An import statement can import all the classes in a package by using an
asterisk wildcard:

import java.util.*;

Here, all the classes in the java.util package are imported.

Alternatively, you can import classes one at a time:

import java.util.ArrayList;

Here, just the ArrayList class is imported.

Note: You don’t have to use an import statement to use a class from a
package. But if you don’t use an import statement, you must fully qualify
any references to the class. For example, you can use the ArrayList class
without importing java.util:

java.util.ArrayList = new java.util.ArrayList();

Because fully qualified names are a pain to always spell out, you should
always use import statements to import the packages or individual classes
your application uses.

You never have to explicitly import two packages:

✦ java.lang: This package contains classes that are so commonly used
that the Java compiler makes them available to every program. Examples
of the classes in this package are String, Exception, and the various
wrapper classes, such as Integer and Boolean.

✦ The default package: This package contains classes that aren’t specifi-
cally put in some other package. All the programs I show in this book up
to this point rely on the default package.

For simple program development and experimentation, using the default
package is acceptable. However, if you start work on a serious Java applica-
tion, create a separate package for it and place all the application’s classes
there. You find out how to do that in the next section.

Creating your own packages
Creating your own packages to hold your classes is easy. Well, relatively easy
anyway. You must go through a few steps:

1. Pick a name for your package.

You can use any name you wish, but I recommend you follow the estab-
lished convention of using your Internet domain name (if you have one),

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 340

Book III
Chapter 8

Packaging and
Docum

enting Your
Classes

Working with Packages 341

only backwards. I own a domain called LoweWriter.com, so I use the
name com.lowewriter for all my packages. (Using your domain name
backwards ensures that your package names are unique.)

Notice that package names are all lowercase letters. That’s not an
absolute requirement, but it’s a Java convention that you ought to stick
to. If you start using capital letters in your package names, you’ll be
branded a rebel for sure.

You can add additional levels beyond the domain name if you want. For
example, I put my utility classes in a package named
com.lowewriter.util.

If you don’t have a domain all to yourself, try using your e-mail address
backwards. For example, if your e-mail address is SomeBody@Some
Company.com, use com.somecompany.somebody for your package
names. That way, they are still unique. (If you ever want to distribute
your Java packages, though, you should register a domain name.
Nothing says “Amateur” like a package name that starts with com.aol.)

2. Choose a directory on your hard drive to be the root of your class
library.

You need a place on your hard drive to store your classes. I suggest you
create a directory such as c:\javaclasses.

This folder becomes the root directory for your Java packages.

3. Create subdirectories within the package root directory for your pack-
age name.

For example, for the package named com.lowewriter.util, create
a directory named com in the c:\javaclasses directory (assuming
that’s the name of your root). Then, in the com directory, create a direc-
tory named lowewriter. Then, in lowewriter, create a directory
named util. Thus, the complete path to the directory that contains the
classes for the com.lowewriter.util package is c:\javaclasses\
com\lowewriter\util.

4. Add the root directory for your package to the ClassPath environment
variable.

The exact procedure for doing this depends on your operating system.
In Windows XP, you can set the ClassPath by double-clicking System from
the Control Panel. Click the Advanced tab, and then click Environment
Variables.

Be careful not to disturb any directories already listed in the ClassPath.
To add your root directory to the ClassPath, add a semicolon followed
by the path to your root directory to the end of the ClassPath value. For
example, suppose your ClassPath is already set to this:

.;c:\util\classes

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 341

Working with Packages342

Then, you modify it to look like this:

.;c:\util\classes;c:\javaclasses

Here, I added ;c:\javaclasses to the end of the ClassPath value.

5. Save the files for any classes you want to be in a particular package in
the directory for that package.

For example, save the files for a class that belongs to the com.
lowewriter.util package in c:\javaclasses\com\
lowewriter\util.

6. Add a package statement to the beginning of each source file that
belongs in a package.

The package statement simply provides the name for the package that
any class in the file is placed in. For example:

package com.lowewriter.util;

The package statement must be the first non-comment statement in
the file.

An example
Suppose you’ve developed a utility class named Console that has a bunch of
handy static methods for getting user input from the console. For example,
this class has a static method named askYorN that gets a Y or N from the
user and returns a boolean value to indicate which value the user entered. You
decide to make this class available in a package named com.lowewriter.
util so you and other like-minded programmers can use it in their programs.

Here’s the source file for the Console class:

package com.lowewriter.util;

import java.util.Scanner;

public class Console
{

static Scanner sc = new Scanner(System.in);

public static boolean askYorN(String prompt)
{

while (true)
{

String answer;
System.out.print(“\n” + prompt + “ (Y or N)

“);
answer = sc.next();
if (answer.equalsIgnoreCase(“Y”))

return true;

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 342

Book III
Chapter 8

Packaging and
Docum

enting Your
Classes

Putting Your Classes in a JAR File 343

else if (answer.equalsIgnoreCase(“N”))
return false;

}
}

}

Okay, so far this class has just the one method (askYorN), but one of these
days you’ll add a bunch of other useful methods to it. In the meantime, you
want to get it set up in a package so you can start using it right away.

So you create a directory named c:\javaclasses\com\lowewriter\
util (as described in the preceding section) and save the source file to this
directory. Then, you compile the program so the Console.class file is
stored in that directory too. And you add c:\javaclasses to your
ClassPath environment variable.

Now, you can use the following program to test that your package is alive
and well:

import com.lowewriter.util.*;

public class PackageTest
{

public static void main(String[] args)
{

while (Console.askYorN(“Keep going?”))
{

System.out.println(“D’oh!”);
}

}
}

Here, the import statement imports all the classes in the com.
lowewriter.util package. Then, the while loop in the main method
repeatedly asks the user if he or she wants to keep going.

Putting Your Classes in a JAR File
A JAR file is a single file that can contain more than one class in a compressed
format that the Java Runtime Environment can access quickly. (JAR stands
for Java archive.) A JAR file can have just a few classes in it, or thousands. In
fact, the entire Java API is stored in a single JAR file named rt.java. (The
rt stands for runtime.) It’s a pretty big file at over 35MB, but that’s not bad
considering that it contains more than 12,000 classes.

JAR files are created by the jar utility, which you find in the Java bin direc-
tory along with the other Java command line tools, such as java and javac.
JAR files are similar in format to Zip files, a compressed format made popular

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 343

Putting Your Classes in a JAR File344

by the PKZIP program. The main difference is that JAR files contain a special
file, called the manifest file, that contains information about the files in the
archive. This manifest is automatically created by the jar utility, but you can
supply a manifest of your own to provide additional information about the
archived files.

JAR files are the normal way to distribute finished Java applications. After
finishing your application, you run the jar command from a command
prompt to prepare the JAR file. Then, another user can copy the JAR file to
his or her computer. The user can then run the application directly from the
JAR file.

JAR files are also used to distribute class libraries. You can add a JAR file to
the ClassPath environment variable. Then, the classes in the JAR file are
automatically available to any Java program that imports the package that
contains the classes.

jar command-line options
The jar command is an old-fashioned Unix-like command, complete with
arcane command-line options that you have to get right if you expect to coax
jar into doing something useful.

The basic format of the jar command is this:

jar options jar-file [manifest-file] class-files...

The options specify the basic action you want jar to perform and provide
additional information about how you want the command to work. Table 8-1
lists the options.

Table 8-1 Options for the jar Command
Option Description

c Creates a new jar file.

u Updates an existing jar file.

x Extracts files from an existing jar file.

t Lists the contents of a jar file.

f Indicates that the jar file is specified as an argument. You almost
always want to use this option.

v Verbose output. This option tells the jar command to display extra
information while it works.

0 Doesn’t compress files when it adds them to the archive. This option
isn’t used much.

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 344

Book III
Chapter 8

Packaging and
Docum

enting Your
Classes

Putting Your Classes in a JAR File 345

Option Description

m Specifies that a manifest file is provided. It’s listed as the next argument
following the jar file.

M Specifies that a manifest file should not be added to the archive. This
option is rarely used.

Note that you must specify at least the c, u, x, or t options to tell jar what
action you want to perform.

Archiving a package
The most common use for the jar utility is to create an archive of an entire
package. The procedure for doing that varies slightly depending on what
operating system you’re using. However, the jar command itself is the same
regardless of your operating system. Here’s the procedure for archiving a
package on a PC running Windows XP:

1. Open a command window.

The easiest way to do that is to choose Start➪Run, type cmd in the Open
text box, and click OK.

2. Use a cd command to navigate to your package root.

For example, if your packages are stored in c:\javaclasses, use this
command:

cd \javaclasses

3. Use a jar command that specifies the options cf, the name of the jar
file, and the path to the class files you want to archive.

For example, to create an archive named utils.jar that contains all the
class files in the com.lowewriter.util package, use this command:

jar cf utils.jar com\lowewriter\util*.class

4. To verify that the jar file was created correctly, use the jar com-
mand that specifies the options tf and the name of the jar file.

For example, if the jar file is named utils.jar, use this command:

jar tf utils.jar

This lists the contents of the jar file so you can see what classes were
added. Here’s some typical output from this command:

META-INF/
META-INF/MANIFEST.MF
com/lowewriter/util/Console.class
com/lowewriter/util/Random.class

As you can see, the utils.jar file contains the two classes in my
com.lowewriter.util package, Console and Random.

26_58961X bk03ch08.qxd 3/29/05 3:44 PM Page 345

Putting Your Classes in a JAR File346

5. That’s all!

You’re done. You can leave the jar file where it is, or you can give it to
your friends so they can use the classes it contains.

Adding a jar to your classpath
To use the classes in an archive, you must add the jar file to your ClassPath
environment variable. I describe the procedure for modifying the ClassPath
variable in Windows XP earlier in this chapter, in the section “Creating your
own packages.” So I won’t repeat the details here.

To add an archive to the ClassPath variable, just add the complete path to
the archive, making sure to separate it from any other paths already in the
ClassPath with a semicolon. For example:

.;c:\javaclasses\utils.jar;c:\javaclasses

Here, I added the path c:\javaclasses\utils.jar to my ClassPath
variable.

The first path in a ClassPath variable is always a single dot (.), which allows
Java to find classes in the current directory.

Also, be aware that Java searches the various paths and archive files in the
ClassPath variable in the order in which you list them. Thus, in the previous
example, Java searches for classes first in the current directory, then in the
utils archive, and finally in the c:\javaclasses directory.

Running a program directly from an archive
With just a little work, you can set up an archive so that a Java program can
be run directly from it. All you have to do is create a manifest file before you
create the archive. Then, when you run the jar utility to create the archive,
you include the manifest file on the jar command line.

A manifest file is a simple text file that contains information about the files in
the archive. Although it can contain many lines of information, it needs just
one line to make an executable jar file:

Main-Class: ClassName

The ClassName is the fully qualified name of the class that contains the main
method that is executed to start the application. It isn’t required, but it’s typ-
ical to use the extension .mf for manifest files.

For example, suppose you have an application whose main class is
GuessingGame, and all the class files for the application are in the package

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 346

Book III
Chapter 8

Packaging and
Docum

enting Your
Classes

Using JavaDoc to Document Your Classes 347

com.lowewriter.game. First, create a manifest file named game.mf in
the com\lowewriter\game directory. This file contains the following line:

Main-Class: com.lowewriter.game.GuessingGame

Then, run the jar command with the options cfm, the name of the archive
to create, the name of the manifest file, and the path for the class files. For
example:

jar cfm game.jar com\lowewriter\game\game.mf com\lowewriter\game*.class

Now, you can run the application directly from a command prompt by using
the java command with the -jar switch and the name of the archive file.
For example:

java –jar game.jar

This command starts the JRE and executes the main method of the class
specified by the manifest file in the game.jar archive file.

If your operating system is configured properly, you can also run the applica-
tion by double-clicking an icon for the jar file.

Using JavaDoc to Document Your Classes
One last step remains before you can go public with your hot new class library
or application: preparing the documentation for its classes. Fortunately, Java
provides a tool called JavaDoc that can automatically create fancy HTML-
based documentation based on comments in your source files. All you have to
do is add a comment for each public class, field, and method, run the source
files through the javadoc command and, voila! you have professional-looking
Web-based documentation for your classes.

The following sections show you how to add JavaDoc comments to your
source files, how to run the source files through the javadoc command,
and how to view the resulting documentation pages.

Adding JavaDoc comments
The basic rule for creating JavaDoc comments is that they begin with /**
and end with */. You can place JavaDoc comments in any of three different
locations in a source file:

✦ Immediately before the declaration of a public class

✦ Immediately before the declaration of a public field

✦ Immediately before the declaration of a public method or constructor

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 347

Using JavaDoc to Document Your Classes348

A JavaDoc comment can include text that describes the class, field, or
method. Each subsequent line of a multi-line JavaDoc comment usually
begins with an asterisk. JavaDoc ignores this asterisk and any white space
between it and the first word on the line.

The text in a JavaDoc comment can include HTML markup if you want to
apply fancy formatting. You should avoid using heading tags (<h1> and so
on), because JavaDoc creates those and your heading tags just confuse
things. But you can use tags for boldface and italics (and <i>) or to
format code examples (use the <pre> tag).

In addition, you can include special doc tags that provide specific information
used by JavaDoc to format the documentation pages. Table 8-2 summarizes
the most commonly used tags.

Table 8-2 Commonly Used JavaDoc Tags
Tag Explanation

@author Provides information about the author, typically the author’s name,
e-mail address, Web site information, and so on.

@version The version number.

@since Used to indicate the version with which this class, field, or method
was added.

@param Provides the name and description of a method or constructor
parameter.

@return Provides a description of a method’s return value.

@throws Indicates exceptions that are thrown by a method or constructor.

@deprecated Indicates that the class, field, or method is deprecated and
shouldn’t be used.

To give you an idea of how JavaDoc comments are typically used, Listing 8-1
shows an Employee class with JavaDoc comments included.

LISTING 8-1: AN EMPLOYEE CLASS WITH JAVADOC COMMENTS

package com.lowewriter.payroll;

/** Represents an employee.
* @author Doug Lowe
* @author www.LoweWriter.com
* @version 1.5
* @since 1.0
*/
public class Employee

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 348

Book III
Chapter 8

Packaging and
Docum

enting Your
Classes

Using JavaDoc to Document Your Classes 349

{
private String lastName;
private String firstName;
private Double salary;

/** Represents the employee’s address.
*/

public Address address;

/** Creates an employee with the specified name.
* @param lastName The employee’s last name.
* @param firstName The employee’s first name.
*/

public Employee(String lastName, String firstName)
{

this.lastName = lastName;
this.firstName = firstName;
this.address = new Address();

}

/** Gets the employee’s last name.
* @return A string representing the employee’s last
* name.
*/

public String getLastName()
{

return this.lastName;
}

/** Sets the employee’s last name.
* @param lastName A String containing the employee’s
* last name.
* @return No return value.
*/

public void setLastName(String lastName)
{

this.lastName = lastName;
}

/** Gets the employee’s first name.
* @return A string representing the employee’s first
* name.
*/

public String getFirstName()
{

return this.firstName;
}

continued

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 349

Using JavaDoc to Document Your Classes350

LISTING 8-1 (CONTINUED)

/** Sets the employee’s first name.
* @param firstName A String containing the employee’s
* first name.
* @return No return value.
*/

public void setFirstName(String firstName)
{

this.firstName = firstName;
}

/** Gets the employee’s salary.
* @return A double representing the employee’s salary.
*/

public double getSalary()
{

return this.salary;
}

/** Sets the employee’s salary.
* @param lastName A double containing the employee’s
* salary.
* @return No return value.
*/

public void setSalary(double salary)
{

this.salary = salary;
}

}

Using the javadoc command
The javadoc command has a few dozen options you can set, making it a
complicated command to use. However, you can ignore all these options to
create a basic set of documentation pages. Just specify the complete path to
all the Java files you want to create documentation for, like this:

javadoc com\lowewriter\payroll*.java

The javadoc command creates the documentation pages in the current
directory, so you may want to switch to the directory where you want the
pages to reside first.

For more complete information about using this command, refer to the
javadoc documentation at the Sun Web site. You can find it at:

java.sun.com/j2se/1.5.0/docs/guide/javadoc/index.html

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 350

Book III
Chapter 8

Packaging and
Docum

enting Your
Classes

Using JavaDoc to Document Your Classes 351

Viewing JavaDoc pages
After you run the javadoc command, you can access the documentation
pages by starting with the index.html page. To quickly display this page,
just type index.html at the command prompt after you run the javadoc
command. Or, you can start your browser, navigate to the directory where
you created the documentation pages, and open the index.html page.
Either way, Figure 8-1 shows an index page that lists two classes.

If you think this page looks familiar, that’s because the documentation for
the Java API was created using JavaDocs. So you should already know how
to find your way around these pages.

To look at the documentation for a class, click the class name link. A page
with complete documentation for the class comes up. For example, Figure 8-2
shows part of the documentation page for the Employee class. JavaDocs
generated this page from the source file shown in Listing 8-1.

Figure 8-1:
A JavaDocs
index page.

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 351

Using JavaDoc to Document Your Classes352

Figure 8-2:
Documen-
tation for the
Employee
class.

26_58961X bk03ch08.qxd 3/29/05 3:45 PM Page 352

Book IV

Strings, Arrays, and
Collections

27_58961X pt04.qxd 3/29/05 3:45 PM Page 353

Contents at a Glance
Chapter 1: Working with Strings..355

Chapter 2: Using Arrays ..371

Chapter 3: Using the ArrayList Class ..397

Chapter 4: Using the LinkedList Class ..409

Chapter 5: Creating Generic Collection Classes ..419

27_58961X pt04.qxd 3/29/05 3:45 PM Page 354

Chapter 1: Working with Strings

In This Chapter
� Quickly reviewing what you already know about strings

� Examining string class methods

� Working with substrings

� Splitting up strings

� Using the StringBuilder and StringBuffer classes

� Using the CharSequence interface

Strings are one of the most common types of objects in Java. Throughout
this book are various techniques for working with strings. You’ve seen

how to create string variables, how to concatenate strings, and how to com-
pare strings. But so far, I’ve only scratched the surface of what you can do
with strings. In this chapter, I dive deeper into what Java can do with string.

I start with a brief review of what I covered so far about strings, so you don’t
have to go flipping back through the book to find basic information. Then,
I look at the String class itself and some of the methods it provides for
working with strings. Finally, you examine two almost identical classes named
StringBuilder and StringBuffer that offer features not found in the
basic String class.

Reviewing Strings
To save you the hassle of flipping back through this book, the following
paragraphs summarize what is presented in earlier chapters about strings:

✦ Strings are reference types, not value types, such as int or boolean.
As a result, a string variable holds a reference to an object created from
the String class, not the value of the string itself.

✦ Even though strings aren’t primitive types, the Java compiler has some
features designed to let you work with strings almost as if they were. For
example, Java lets you assign string literals to string variables, like this:

String line1 = “Oh what a beautiful morning!”;

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 355

Reviewing Strings356

✦ Strings can include escape sequences that consist of a slash followed by
another character. The most common escape sequences are \n for new
line and \t for tab. If you want to include a slash in a string, you must
use the escape sequence \\.

✦ Strings and characters are different. String literals are marked by quotation
marks; character literals are marked by apostrophes. Thus, “a” is a string
literal that happens to be one character long. In contrast, ‘a’ is a charac-
ter literal.

✦ You can combine, or concatenate, strings by using the + operator,
like this:

String line2 = line1 + “\nOh what a beautiful
day!”;

✦ You can also use the += operator with strings, like this:

line2 += = “\nI’ve got a beautiful feeling”;

✦ When used in a concatenation expression, Java automatically converts
primitive types to strings. Thus, Java allows the following:

int empCount = 50;
String msg = “Number of employees: “ + empCount;

The Immutable Pattern
Many applications can benefit from classes
that describe immutable objects. An immutable
object is an object that, once created, can
never be changed. The String class is
the most commonly known example of an
immutable object. After you create a String
object, you can’t change it.

As an example, suppose you’re designing a
game where the playing surface has fixed
obstacles, such as trees. You can create the
Tree class using the Immutable pattern. The
constructor for the Tree class could accept
parameters that define the size, type, and loca-
tion of the tree. But once you create the tree,
you can’t move it.

Follow these three simple rules when creating
an immutable object:

1. Provide one or more constructors that
accept parameters to set the initial state of
the object.

2. Do not allow any methods to modify any
instance variables in the object. Set instance
variables with constructors, and then leave
them alone.

3. Any method that modifies the object should
do so by creating a new object with the
modified values. This method then returns
the new object as its return value.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 356

Book IV
Chapter 1

W
orking w

ith
Strings

Using the String Class 357

✦ The various primitive wrapper classes (such as integer and double)
have parse methods that can convert string values to numeric types.
For example:

String s = “50”;
int i = Integer.parseInt(s);

✦ You can’t compare strings using the equality operator (==). Instead, you
should use the equals method. For example:

if (lastName.equals(“Lowe”))
System.out.println(“This is me!”);

✦ The String class also has an equalsIgnoreCase method that com-
pares strings without considering case. For example:

if (lastName.equalsIgnoreCase(“lowe”))
System.out.println(“This is me again!”);

Using the String Class
The String class is the class used to create string objects. It has a whole
gaggle of methods that are designed to let you find out information about the
string that’s represented by the String class. Table 1-1 lists the most useful
of these methods.

Table 1-1 String Class Methods
Method Description

char charAt(int) Returns the character at the specified posi-
tion in the string.

int compareTo(String) Compares this string to another string based
on alphabetical order. Returns –1 if this
string comes before the other string, 0 if the
strings are the same, and 1 if this string
comes after the other string.

int compareToIgnoreCase Similar to compareTo but ignores case.
(String)

boolean contains Returns true if this string contains the
(CharSequence) parameter value. The parameter can be

a String, StringBuilder, or
StringBuffer.

boolean endsWith(String) Returns true if this string ends with the
parameter string.

(continued)

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 357

Using the String Class358

Table 1-1 (continued)
Method Description

boolean equals(String) Returns true if this string has the same
value as the parameter string.

boolean equalsIgnoreCase Similar to equals but ignores case.
(String)

int indexOf(char) Returns the index of the first occurrence of
the char parameter in this string. Returns
–1 if the character isn’t in the string.

int indexOf(String) Returns the index of the first occurrence of
the String parameter in this string.
Returns –1 if the string isn’t in this string.

int indexOf Similar to indexOf, but starts the search
(String, int start) at the specified position in the string.

int lastIndexOf(char) Returns the index of the last occurrence of
the char parameter in this string. Returns
–1 if the character isn’t in the string.

int lastIndexOf(String) Returns the index of the last occurrence of
the String parameter in this string.
Returns –1 if the string isn’t in this string.

int lastIndexOf(String, int) Similar to lastIndexOf, but starts the
search at the specified position in the string.

int length() Returns the length of this string.

String replace(char, char) Returns a new string that’s based on the
original string, but with every occurrence of
the first parameter replaced by the second
parameter.

String replaceAll(String old, Returns a new string that’s based on the
String new) original string, but with every occurrence of

the first string replaced by the second
parameter. Note that the first parameter can
be a regular expression.

String replaceFirst(String Returns a new string that’s based on the
old, String new) original string, but with the first occurrence

of the first string replaced by the second
parameter. Note that the first parameter can
be a regular expression.

String[] split(String) Splits the string into an array of strings, using
the string parameter as a pattern to deter-
mine where to split the strings.

boolean startsWith(String) Returns true if this string starts with the
parameter string.

boolean startsWith Returns true if this string contains the
(String, int) parameter string at the position indicated by

the int parameter.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 358

Book IV
Chapter 1

W
orking w

ith
Strings

Using the String Class 359

Method Description

String substring(int) Extracts a substring from this string begin-
ning at the position indicated by the int
parameter and continuing to the end of the
string.

String substring(int, int) Extracts a substring from this string begin-
ning at the position indicated by the first
parameter and ending at the position one
character before the value of the second
parameter.

char[] toCharArray() Converts the string to an array of individual
characters.

String toLowerCase() Converts the string to lowercase.

String toString() Returns the string as a String. (Pretty
pointless if you ask me, but all classes must
have a toStringmethod.)

String toUpperCase() Converts the string to uppercase.

String trim() Returns a copy of the string but with all lead-
ing and trailing white space removed.

String valueOf(primitiveType) Returns a string representation of any primi-
tive type.

The most important thing to remember about the String class is that in
spite of the fact that it has a bazillion methods, none of those methods
lets you alter the string in any way. That’s because a String object is
immutable, which means it can’t be changed.

Although you can’t change a string after you create it, you can use methods
of the String class to create new strings that are variations of the original
string. The following sections describe some of the more interesting things
you can do with these methods.

Finding the length of a string
One of the most basic string operations is determining the length of a string.
You do that with the length method. For example:

String s = “A wonderful day for a neighbor.”;
int len = s.length();

Here, len is assigned a value of 30 because the string s consists of 30
characters.

Getting the length of a string isn’t usually very useful by itself. But the length
method often plays an important role in other string manipulations, as you
see throughout the following sections.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 359

Using the String Class360

Making simple string modifications
Several of the methods of the String class return modified versions of the
original string. For example, toLowerCase converts a string to all lower-
case letters:

String s = “Umpa Lumpa”;
s = s.toLowerCase();

Here, s is set to the string umpa lumpa. The toUpperCase method works
the same, but converts strings to all uppercase letters.

The trim method removes white space characters (spaces, tabs, newlines,
and so on) from the start and end of a word. For example:

String s = “ Umpa Lumpa “;
s = s.trim();

Here, the spaces before and after Umpa Lumpa are removed. Thus, the
resulting string is 10 characters long.

Bear in mind that because strings are immutable, these methods don’t actu-
ally change the String object. Instead, they create a new String with the
modified value. A common mistake — especially for programmers who are
new to Java but experienced with other languages — is to forget to assign
the return value from one of these methods. For example, the following
statement has no effect on s:

s.trim();

Here, the trim method trims the string, but then the program discards
the result. The remedy is to assign the result of this expression back to s,
like this:

s = s.trim();

Extracting characters from a string
You can use the charAt method to extract a character from a specific posi-
tion in a string. When you do, keep in mind that the index number for the first
character in a string is 0, not 1. Also, you should check the length of the string
before extracting a character. If you specify an index value that’s beyond the
end of the string, the exception StringIndexOutOfBoundsException is
thrown. (Fortunately, this is an unchecked exception, so you don’t have to
enclose the charAt method in a try/catch statement.)

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 360

Book IV
Chapter 1

W
orking w

ith
Strings

Using the String Class 361

Here’s an example of a program that uses the charAt method to count the
number of vowels in a string entered by the user:

import java.util.Scanner;

public class CountVowels
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(“Enter a string: “);
String s = sc.nextLine();

int vowelCount = 0;

for (int i = 0; i < s.length(); i++)
{

char c = s.charAt(i);
if ((c == ‘A’) || (c == ‘a’)

|| (c == ‘E’) || (c == ‘e’)
|| (c == ‘I’) || (c == ‘i’)
|| (c == ‘O’) || (c == ‘o’)
|| (c == ‘U’) || (c == ‘u’))
vowelCount++;

}
System.out.println(“That string contains “

+ vowelCount + “ vowels.”);
}

}

Here, the for loop checks the length of the string to make sure the index
variable i doesn’t exceed the string length. Then, each character is extracted
and checked with an if statement to see if it is a vowel. The condition expres-
sion in this if statement is a little complicated because it must check for five
different vowels, both upper- and lowercase.

Extracting substrings from a string
The substring method lets you extract a portion of a string. This method
has two forms. The first accepts a single integer parameter. It returns the sub-
string that starts at the position indicated by this parameter and extending
to the rest of the string. (Remember that string positions start with 0, not 1.)
For example:

String s = “Baseball”;
String b = s.substring(4); // “ball”

Here, b is assigned the string ball.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 361

Using the String Class362

The second version of the substring method accepts two parameters to
indicate the start and end of the substring you want to extract. Note that the
substring actually ends at the character that’s immediately before the position
indicated by the second parameter. So to extract the characters at positions
2 through 5, specify 1 as the start position and 6 as the ending position. For
example:

String s = “Baseball”;
String b = s.substring(2, 6); // “seba”

Here, b is assigned the string seba.

The following program uses substrings to replace all the vowels in a string
entered by the user with asterisks:

import java.util.Scanner;

public class MarkVowels
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(“Enter a string: “);
String s = sc.nextLine();
String originalString = s;

int vowelCount = 0;

for (int i = 0; i < s.length(); i++)
{

char c = s.charAt(i);
if ((c == ‘A’) || (c == ‘a’)

|| (c == ‘E’) || (c == ‘e’)
|| (c == ‘I’) || (c == ‘i’)
|| (c == ‘O’) || (c == ‘o’)
|| (c == ‘U’) || (c == ‘u’))

{
String front = s.substring(0, i);
String back = s.substring(i+1);
s = front + “*” + back;

}
}
System.out.println();
System.out.println(originalString);
System.out.println(s);

}
}

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 362

Book IV
Chapter 1

W
orking w

ith
Strings

Using the String Class 363

This program uses a for loop and the charAt method to extract each char-
acter from the string. Then, if the character is a vowel, a string named front
is created that consists of all the characters that appear before the vowel. A
second string named back is then created with all the characters that appear
after the vowel. Finally, the s string is replaced with a new string that’s con-
structed from the front string, an asterisk, and the back string.

Here’s some sample console output from this program so you can see how it
works:

Enter a string: Where have all the vowels gone?

Where have all the vowels gone?
Wh*r* h*v* *ll th* v*w*ls g*n*?

Splitting up a string
The split command is especially useful for splitting a string into separate
strings based on a delimiter character. For example, suppose you have a
string with the parts of an address separated by colons, like this:

1500 N. Third Street:Fresno:CA:93722

With the split method, you can easily separate this string into four strings.
In the process, the colons are discarded.

Unfortunately, the use of the split method requires that you use an array,
and arrays are covered in the next chapter. I’m going to plow ahead with this
section anyway on the chance that you already know a few basic things about
arrays. If not, you can always come back to this section after you read the
next chapter.

The split method carves a string into an array of strings separated by the
delimiter character passed via a string parameter. Here’s a routine that splits
an address into separate strings, and then prints out all the strings:

String address =
“1500 N. Third Street:Fresno:CA:93722”;

String[] parts = address.split(“:”);

for (int i = 0; i < parts.length; i++)
System.out.println(parts[i]);

If you run this code, the following lines are displayed on the console:

1500 N. Third Street
Fresno
CA
93722

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 363

Using the String Class364

The string passed to the split method is actually a special type of string
used for pattern recognition, called a regular expression. You discover regu-
lar expressions in Book V. For now, here are a few regular expressions that
might be useful when you use the split method:

Regular Expression Explanation

\\t A tab character

\\n A newline character

\\| A vertical bar

\\s Any white space character

\\s+ One or more occurrences of any white space
character

The last regular expression in this table, \\s+, is especially useful for break-
ing a string into separate words. For example, the following program accepts
a string from the user, breaks it into separate words, and then displays the
words on separate lines:

import java.util.Scanner;

public class CountWords
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(“Enter a string: “);
String s = sc.nextLine();

String[] word = s.split(“\\s+”);

for (String w : word)
System.out.println(w);

}
}

Here’s a sample of the console output for a typical execution of this program:

Enter a string: This string has several words
This
string
has
several
words

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 364

Book IV
Chapter 1

W
orking w

ith
Strings

Using the StringBuilder and StringBuffer Classes 365

Notice that some of the words in the string entered by the user are preceded
by more than one space character. The \\s+ pattern used by the split
method treats any consecutive white space character as a single delimiter
when splitting the words.

Replacing parts of a string
You can use the replaceFirst or replaceAll methods to replace a
part of a string that matches a pattern you supply with some other text.
For example, here’s the main method of a program that gets a line of text
from the user, and then replaces all occurrences of the string cat with dog:

public static void main(String[] args)
{

Scanner sc = new Scanner(System.in);
System.out.print(“Enter a string: “);
String s = sc.nextLine();

s = s.replaceAll(“cat”, “dog”);

System.out.println(s);
}

And here’s the console for a typical execution of this program:

Enter a string: I love cats. Cats are the best.
I love dogs. Cats are the best.

As with the split methods, the first parameter of replace methods can
be a regular expression that provides a complex matching string. For more
information, see Book V.

Once again, don’t forget that strings are immutable. As a result, the replace
methods don’t actually modify the String object itself. Instead, they return
a new String object with the modified value.

Using the StringBuilder and StringBuffer Classes
The String class is powerful, but it’s not very efficient for programs that
require heavy-duty string manipulation. Because String objects are
immutable, any method of the String class that modifies the string in any
way must create a new String object and copy the modified contents of
the original string object to the new string. That’s not so bad if it happens
only occasionally, but it can be inefficient in programs that do it a lot.

Even string concatenation is inherently inefficient. For example, consider
these statements:

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 365

Using the StringBuilder and StringBuffer Classes366

int count = 5;
String msg = “There are “;
String msg += count;
String msg += “ apples in the basket.”;

These four statements actually create five String objects:

✦ “There are “: Created for the literal in the second statement. The
msg variable is assigned a reference to this string.

✦ “5”: Created to hold the result of count.toString(). The toString
method is implicitly called by the third statement so count is concate-
nated with msg.

✦ “There are 5”: Created as a result of the concatenation in the third
statement. A reference to this object is assigned to msg.

✦ “apples in the basket.”: Created to hold the literal in the fourth
statement.

✦ “There are 5 apples in the basket.”: Created to hold the
result of the concatenation in the fourth statement. A reference to this
object is assigned to msg.

For programs that do only occasional string concatenation and simple string
manipulations, these inefficiencies aren’t a big deal. For programs that do
extensive string manipulation, however, Java offers two alternatives to the
String class: the StringBuilder and StringBuffer classes.

The StringBuilder and StringBuffer classes are mirror images of
each other. Both have the same methods and perform the same string
manipulations. The only difference is that the StringBuffer class is safe
to use in applications that work with multiple threads. StringBuilder is
not safe for threaded applications, but is more efficient than StringBuffer.
As a result, you should use the StringBuilder class unless your applica-
tion uses threads. (Find out how to work with threads in Book V.)

Note: The StringBuilder class was introduced in Java version 1.5. If
you’re using an older Java compiler, you have to use StringBuffer
instead.

Creating a StringBuilder object
You can’t assign string literals directly to a StringBuilder object as you can
with a String object. However, the StringBuilder class has a construc-
tor that accepts a String as a parameter. So, to create a StringBuilder
object, you use a statement such as this:

StringBuilder sb = new StringBuilder(“Today is the
day!”);

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 366

Book IV
Chapter 1

W
orking w

ith
Strings

Using the StringBuilder and StringBuffer Classes 367

Internally, a StringBuilder object maintains a fixed area of memory
where it stores a string value. This area of memory is called the buffer. The
string held in this buffer doesn’t have to use the entire buffer. As a result, a
StringBuilder object has both a length and a capacity. The length repre-
sents the current length of the string maintained by the StringBuilder,
and the capacity represents the size of the buffer itself. Note that the length
can’t exceed the capacity.

When you create a StringBuilder object, the capacity is initially set to
the length of the string plus 16. The StringBuilder class automatically
increases its capacity whenever necessary, so you don’t have to worry about
exceeding the capacity.

Using StringBuilder methods
Table 1-2 lists the most useful methods of the StringBuilder class. Note
that the StringBuffer class uses the same methods. So if you have to use
StringBuffer instead of StringBuilder, just change the class name
and use the same methods.

Table 1-2 StringBuilder Methods
Method Description

append(primitiveType) Appends the string representation of the primitive
type to the end of the string.

append(Object) Calls the object’s toStringmethod and
appends the result to the end of the string.

append(CharSequence) Appends the string to the end of the
StringBuilder’s string value. The param-
eter can be a String, StringBuilder, or
StringBuffer.

int capacity() Returns the capacity of this StringBuilder.

char charAt(int) Returns the character at the specified position in
the string.

delete(int, int) Deletes characters starting with the first int
and ending with the character before the second
int.

deleteCharAt(int) Deletes the character at the specified position.

ensureCapacity(int) Ensures the capacity of String-Builder is
at least equal to the int value. The capacity is
increased if necessary.

int indexOf(String) Returns the index of the first occurrence of the
specified string. If the string doesn’t appear,
returns –1.

(continued)

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 367

Using the StringBuilder and StringBuffer Classes368

Table 1-2 (continued)
Method Description

int indexOf(String, int) Returns the index of the first occurrence of the
specified string, starting the search at the speci-
fied index position. If the string doesn’t appear,
returns –1.

insert(int, primitiveType) Inserts the string representation of the primitive
type at the point specified by the int argument.

insert(int, Object) Calls the toStringmethod of the Object
parameter, and then inserts the resulting string at
the point specified by the int argument.

insert(int, CharSequence) Inserts the string at the point specified by the
int argument. The second parameter can
be a String, StringBuilder, or
StringBuffer.

int lastIndexOf(String) Returns the index of the last occurrence of the
specified string. If the string doesn’t appear,
returns –1.

int lastIndexOf(String, Returns the index of the last occurrence of the
int) specified string, starting the search at the speci-

fied index position. If the string doesn’t appear,
returns –1.

int length() Returns the length of this string.

replace(int, int, String) Replaces the substring indicated by the first two
parameters with the string provided by the third
parameter.

reverse() Reverses the order of characters.

setCharAt(int, char) Sets the character at the specified position to the
specified character.

setLength(int) Sets the length of the string. If less than the cur-
rent length, the string is truncated. If greater than
the current length, new characters are hexadeci-
mal zeros.

String substring(int) Extracts a substring beginning at the position
indicated by the int parameter and continuing
to the end of the string.

String substring(int, int) Extracts a substring beginning at the position
indicated by the first parameter and ending at the
position one character before the value of the
second parameter.

String toString() Returns the current value as a String.

String trimToSize() Reduces the capacity of the StringBuffer
to match the size of the string.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 368

Book IV
Chapter 1

W
orking w

ith
Strings

Using the CharSequence Interface 369

A StringBuilder example
To illustrate how the StringBuilder class works, here’s a StringBuilder
version of the MarkVowel program from earlier in this chapter:

import java.util.Scanner;

public class StringBuilderApp
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(“Enter a string: “);
String s = sc.nextLine();

StringBuilder sb = new StringBuilder(s);

int vowelCount = 0;

for (int i = 0; i < s.length(); i++)
{

char c = s.charAt(i);
if ((c == ‘A’) || (c == ‘a’)

|| (c == ‘E’) || (c == ‘e’)
|| (c == ‘I’) || (c == ‘i’)
|| (c == ‘O’) || (c == ‘o’)
|| (c == ‘U’) || (c == ‘u’))

{
sb.setCharAt(i, ‘*’);

}
}
System.out.println();
System.out.println(s);
System.out.println(sb.toString());

}
}

This program uses the setCharAt method to directly replace any vowels it
finds with asterisks. That’s much more efficient that concatenating substrings
the way the String version of this program worked.

Using the CharSequence Interface
The Java API includes a useful interface called CharSequence. All three of
the classes in this chapter (String, StringBuilder, and StringBuffer)
implement this interface. This method exists primarily to let you use String,
StringBuilder, and StringBuffer interchangeably.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 369

Using the CharSequence Interface370

Toward that end, several of the methods of the String, StringBuilder,
and StringBuffer classes use CharSequence as a parameter type.
For those methods, you can pass a String, StringBuilder, or
StringBuffer object. Note that a string literal is treated as a String
object, so you can use a string literal anywhere a CharSequence is
called for.

In case you’re interested, the CharSequence interface defines four
methods:

✦ char charAt(int): Returns the character at the specified position.

✦ int length(): Returns the length of the sequence.

✦ subSequence(int start, int end): Returns the substring indi-
cated by the start and end parameters.

✦ toString(): Returns a String representation of the sequence.

If you’re inclined to use CharSequence as a parameter type for a method
so the method works with a String, StringBuilder, or StringBuffer
object, be advised that you can use only these four methods.

28_58961X bk04ch01.qxd 3/29/05 3:46 PM Page 370

Chapter 2: Using Arrays

In This Chapter
� Working with basic one-dimensional arrays

� Using array initializers to set the initial values of an array

� Using for loops with arrays

� Working with two-dimensional arrays

� Using the Arrays class

I could use a raise. . . .

Oh, arrays. Sorry.

Arrays are an important aspect of any programming language, and Java is no
exception. In this chapter, you discover just about everything you need to
know about using arrays. I cover run-of-the-mill one-dimensional arrays,
multi-dimensional arrays, and two classes that are used to work with arrays,
named Array and Arrays.

Understanding Arrays
An array is a set of variables that are referenced using a single variable name
combined with an index number. Each item of an array is called an element.
All the elements in an array must be of the same type. Thus, the array itself
has a type that specifies what kind of elements it can contain. For example, an
int array can contain int values, and a String array can contain strings.

The index number is written after the variable name and enclosed in brack-
ets. So, if the variable name is x, you could access a specific element with an
expression like x[5].

You might think x[5] would refer to the fifth element in the array. But index
numbers start with zero for the first element, so x[5] actually refers to the
sixth element. This little detail is one of the chief causes of problems when
working with arrays — especially if you cut your array-programming teeth in
a language in which arrays are indexed from 1 instead of 0. So get used to
counting from 0 instead of 1.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 371

Creating Arrays372

The real power of arrays comes from the simple fact that you can use a vari-
able or even a complete expression as an array index. So, for example, instead
of coding x[5] to refer to a specific array element, you can code x[i] to refer
to the element indicated by the index variable i. You see plenty of examples of
index variables throughout this chapter.

Here are a few additional tidbits of array information to ponder before you
get into the details of creating and using arrays:

✦ An array is itself an object. You can refer to the array object as a whole
rather than a specific element of the array by using the array’s variable
name without an index. Thus, if x[5] refers to an element of an array,
then x refers to the array itself.

✦ An array has a fixed length that’s set when the array is created. This
length determines the number of elements that can be stored in the
array. The maximum index value you can use with any array is one less
than the array’s length. Thus, if you create an array of 10 elements, you
can use index values from 0 to 9.

✦ You can’t change the length of an array after you create the array.

✦ You can access the length of an array by using the length field of the
array variable. For example, x.length returns the length of the array x.

Creating Arrays
Before you can create an array, you must first declare a variable that refers
to the array. This variable declaration should indicate the type of elements
that are stored by the array followed by a set of empty brackets, like this:

String[] names;

Here, a variable named names is declared. Its type is an array of String
objects.

Just to make sure you’re confused as much as possible, Java also lets you
put the brackets on the variable name rather than the type. For example, the
following two statements both create arrays of int elements:

int[] array1; // an array of int elements
int array2[]; // another array of int elements

Both of these statements have exactly the same effect. Most Java program-
mers prefer to put the brackets on the type rather than the variable name.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 372

Book IV
Chapter 2

Using Arrays

Initializing an Array 373

By itself, that statement doesn’t create an array. It merely declares a variable
that can refer to an array. You can actually create the array in two ways:

✦ Use the new keyword followed by the array type, this time with the
brackets filled in to indicate how many elements the array can hold.
For example:

String[] names;
names = new String[10];

Here, an array of String objects that can hold 10 strings is created.
Each of the strings in this array are initialized to an empty string.

✦ Like any other variable, you can combine the declaration and the creation
into one statement:

String[] names = new String[10];

Here, the array variable is declared and an array is created in one
statement.

If you don’t know how many elements the array needs at compile time, you
can use a variable or an expression for the array length. For example, here’s
a routine from a method that stores player names in an array of strings. It
starts by asking the user how many players are on the team. Then, it creates
an array of the correct size:

System.out.print(“How many players? “);
int count = sc.nextInt(); // sc is a Scanner
String[] players = new String[count];

Initializing an Array
One way to initialize the values in an array is to simply assign them one by one:

String[] days = new Array[7];
Days[0] = “Sunday”;
Days[1] = “Monday”;
Days[2] = “Tuesday”;
Days[3] = “Wednesday”;
Days[4] = “Thursday”;
Days[5] = “Friday”;
Days[6] = “Saturday”;

Java has a shorthand way to create an array and initialize it with constant
values:

String[] days = { “Sunday”, “Monday”, “Tuesday”,
“Wednesday”, “Thursday”,
“Friday”, “Saturday” };

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 373

Using for Loops with Arrays374

Here, each element to be assigned to the array is listed in an array initializer.
Here’s an example of an array initializer for an int array:

int[] primes = { 2, 3, 5, 7, 11, 13, 17 };

Note: The length of an array created with an initializer is determined by the
number of values listed in the initializer.

An alternative way to code an initializer is like this:

int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17 };

To use this type of initializer, you use the new keyword followed by the array
type and a set of empty brackets. Then, you code the initializer.

Using for Loops with Arrays
One of the most common ways to process an array is with a for loop. In
fact, for loops were invented specifically to deal with arrays. For example,
here’s a for loop that creates an array of 100 random numbers, with values
from 1 to 100:

int[] numbers = new int[100];
for (int i = 0; i < 100; i++)

numbers[i] = (int)(Math.random() * 100) + 1;

And here’s a loop that fills an array of player names with strings entered by
the user:

String[] players = new String[count];
for (int i = 0; i < count; i++)
{

System.out.print(“Enter player name: “);
players[i] = sc.nextLine(); // sc is a Scanner

}

For this example, assume count is an int variable that holds the number of
players to enter.

You can also use a for loop to print the contents of an array. For example:

for (int i = 0; i < count; i++)
System.out.println(players[i]);

Here, the elements of a String array named players are printed to the
console.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 374

Book IV
Chapter 2

Using Arrays

Solving Homework Problems with Arrays 375

The previous example assumes that the length of the array was stored in a
variable before the loop was executed. If you don’t have the array length
handy, you can get it from the array’s length property:

for (int i = 0; i < players.length; i++)
System.out.println(players[i]);

Solving Homework Problems with Arrays
Every once in awhile, an array and a for loop or two can help you solve
your kids’ homework problems for them. For example, I once helped my
daughter solve a tough homework assignment for a seventh grade math
class. The problem was stated something like this:

Bobo (these problems always had a character named Bobo in them)
visits the local high school on a Saturday and finds that all the school’s
1,000 lockers are neatly closed. So he starts at one end of the school and
opens them all. Then, he goes back to the start and closes every other
locker (lockers 2, 4, 6, and so on). Then, he goes back to the start and
hits every third locker: If it’s open, he closes it. If it’s closed, he opens it.
Then he hits every fourth locker, every fifth locker, and so on. He keeps
doing this all weekend long, walking the hallways opening and closing
lockers 1,000 times. Then he gets bored and goes home. How many of
the school’s 1,000 lockers are left open, and which ones are they?

Sheesh!

This problem presented a challenge, and being the computer nerd father
that I am, I figured this was the time to teach my daughter about for loops
and arrays. So I wrote a little program that set up an array of 1,000 booleans.
Each represented a locker: true meant open, false meant closed. Then I
wrote a pair of nested for loops to do the calculation.

My first attempt told me that 10,000 of the 1,000 lockers were opened, so I
figured I had made a mistake somewhere. And while I was looking at it, I real-
ized that the lockers were numbered 1 to 1,000, but the elements in my array
were numbered 0 to 999, and that was part of what led to the confusion that
caused my first answer to be ridiculous.

So I decided to create the array with 1,001 elements and ignore the first one.
That way the indexes corresponded nicely to the locker numbers.

After a few hours of work, I came up with the program in Listing 2-1.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 375

Solving Homework Problems with Arrays376

LISTING 2-1:THE CLASSIC LOCKER PROBLEM SOLVED!

public class BoboAndTheLockers
{

public static void main(String[] args)
{

// true = open; false = closed
boolean[] lockers = new boolean[1001]; ➞ 6

// close all the lockers
for (int i = 1; i <= 1000; i++) ➞ 9

lockers[i] = false;

for (int skip = 1; skip <= 1000; skip++) ➞ 12
{

System.out.println(“Bobo is changing every “
+ skip + “ lockers.”);

for (int locker = skip; locker < 1000; ➞ 16
locker += skip)

lockers[locker] = !lockers[locker]; ➞ 18
}

System.out.println(“Bobo is bored”
+ “ now so he’s going home.”);

// count and list the open lockers
String list = “”;
int openCount = 0;
for (int i = 1; i <= 1000; i++) ➞ 27

if (lockers[i])
{

openCount++;
list += i + “ “;

}

System.out.println(“Bobo left “ + openCount
+ “ lockers open.”);

System.out.println(“The open lockers are: “
+ list);

}
}

Here are the highlights of how this program works:

➞ 6 This line sets up an array of booleans with 1,001 elements. I created
one more element than I needed so I could ignore element zero.

➞ 9 This for loop closes all the lockers. This step isn’t really necessary,
because booleans initialize to false. But being explicit about initial-
ization is good.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 376

Book IV
Chapter 2

Using Arrays

Using the Enhanced for Loop 377

➞12 Every iteration of this loop represents one complete trip through the
hallways opening and closing lockers. The skip variable represents
how many lockers Bobo skips on each trip. First he does every locker,
then every second locker, and then every third locker. So this loop
simply counts from 1 to 1,000.

➞16 Every iteration of this loop represents one stop at a locker on a trip
through the hallways. This third expression in the for statement
(on the next line) adds the skip variable to the index variable so that
Bobo can access every nth locker on each trip through the hallways.

➞18 This statement uses the not operator (!) to reverse the setting of each
locker. Thus, if the locker is open (true), it’s set to closed (false).
And vice versa.

➞27 Yet another for loop spins through all the lockers and counts the
ones that are open. It also adds the locker number for each open
locker to the end of a string so all the open lockers can be printed.

This program produces more than 1,000 lines of output. But only the last few
lines are important. Here they are:

Bobo is bored now so he’s going home.
Bobo left 31 lockers open.
The open lockers are: 1 4 9 16 25 36 49 64 81 100 121

144 169 196 225 256 289 324 361 400 441 484 529 576
625 676 729 784 841 900 961

So there’s the answer: 31 lockers are left open. I got an A. (I mean, my daugh-
ter got an A.)

By the way, did you notice that the lockers that were left open were the ones
whose numbers are perfect squares? Or that 31 is the largest number whose
square is less than 1,000? I didn’t either, until my daughter told me after
school the next day.

Using the Enhanced for Loop
Java 1.5 introduces a new type of for loop called an enhanced for loop that’s
designed to simplify loops that process arrays and collections (which I cover
in the next chapter). When used with an array, the enhanced for loop has
this format:

for (type identifier : array)
{

statements...
}

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 377

Using Arrays with Methods378

The type identifies the type of the elements in the array, and the identifier
provides a name for a local variable that is used to access each element.
And array names the array you want to process.

Here’s an example:

String[] days = { “Sunday”, “Monday”, “Tuesday”,
“Wednesday”, “Thursday”,
“Friday”, “Saturday” };

for (String day : days)
{

System.out.println(day);
}

This loop prints the following lines to the console:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

In other words, it prints each of the strings in the array on a separate line.

The enhanced for loop is a new feature for Java 1.5, so you can’t use it if
you’re working with an earlier version. (That’s one of many reasons you
should upgrade as soon as you can.)

Using Arrays with Methods
You can write methods that accept arrays as parameters and return arrays
as return values. You just use an empty set of brackets to indicate that the
parameter type or return type is an array.

For example, here’s a static method that creates and returns a String array
with the names of the days of the week:

public static String[] getDaysOfWeek()
{

String[] days = { “Sunday”, “Monday”, “Tuesday”,
“Wednesday”, “Thursday”,
“Friday”, “Saturday” };

return days;
}

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 378

Book IV
Chapter 2

Using Arrays

Using Two-Dimensional Arrays 379

And here’s a static method that prints the contents of any String array to
the console, one string per line:

public static void printStringArray(String[] strings)
{

for (String s : strings)
System.out.println(s);

}

Finally, here are two lines of code that call these methods:

String[] days = getDaysOfWeek();
printStringArray(days);

The first statement declares a String array, and then calls getDaysOfWeek
to create the array. The second statement passes the array to the
printStringArray method as a parameter.

Using Two-Dimensional Arrays
The elements of an array can be any type of object you want, including
another array. This is called a two-dimensional array or, sometimes, an array
of array.

Two-dimensional arrays are often used to track data in a column and row
format, much the way a spreadsheet works. For example, suppose you’re
working on a program that tracks five years worth of sales (2001 through 2005)
for a company, with the data broken down for each of four sales territories
(North, South, East, and West). You could create 20 separate variables, with
names such as sales2001North, sales2001South, sales2001East,
and so on. But that gets a little tedious.

Alternatively, you could create an array with 20 elements, like this:

double[] sales = new sales[20];

But then, how would you organize the data in this array so you know the
year and sales region for each element?

With a two-dimensional array, you can create an array with an element for
each year. Each of those elements, in turn, is another array with an element
for each region.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 379

Using Two-Dimensional Arrays380

Thinking of a two-dimensional array as a table or spreadsheet is common,
like this:

North South East West

2001 23,853 22,838 36,483 31,352

2002 25,483 22,943 38,274 33,294

2003 24,872 23,049 39,002 36,888

2004 28,492 23,784 42,374 39,573

2005 31,932 23,732 42,943 41,734

Here, each row of the spreadsheet represents a year of sales, and each
column represents one of the four sales regions.

Creating a two-dimensional array
To declare a two-dimensional array for this sales data, you simply list two
sets of empty brackets, like this:

double sales[][];

Here, sales is a two-dimensional array of type double. Or, to put it
another way, sales is an array of double arrays.

To actually create the array, you use the new keyword and provide lengths
for each set of brackets. For example:

sales = new double[5][4];

Here, the first dimension specifies that the sales array has five elements.
This array represents the rows in the table. The second dimension specifies
that each of those elements has an array of type double with four elements.
This array represents the columns in the table.

A key point to grasp here is that one instance is of the first array, but a sepa-
rate instance of the second array for each element is in the first array. Thus,
this statement actually creates five double arrays with four elements each.
Those five arrays are then used as the elements for the first array.

Note that as with a one-dimensional array, you can declare and create a two-
dimensional array in one statement, like this:

double[][] sales = new double[5][4];

Here, the sales array is declared and created all in one statement.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 380

Book IV
Chapter 2

Using Arrays

Using Two-Dimensional Arrays 381

Accessing two-dimensional array elements
To access the elements of a two-dimensional array, you use two indexes. For
example, this statement sets the 2001 sales for the North region:

sales[0][0] = 23853.0;

As you might imagine, accessing the data in a two-dimensional array by
hard-coding each index value can get tedious. So for loops are usually used
instead. For example, the following bit of code uses a for loop to print the
contents of the sales array to the console, separated by tabs. Each year is
printed on a separate line, with the year at the beginning of the line. In addi-
tion, a line of headings for the sales regions is printed before the sales data.
Here’s the code:

NumberFormat cf = NumberFormat.getCurrencyInstance();
System.out.println(“\tNorth\t\tSouth\t\tEast\t\tWest”);
int year = 2001;
for (int y = 0; y < 5; y++)
{

System.out.print(year + “\t”);
for (int region = 0; region < 4; j++)
{

System.out.print(cf.format(sales[y][region]));
System.out.print(“\t”);

}
year++;

System.out.println();

Assuming the sales array has already been initialized, this code produces
the following output on the console:

North South East West
2001 $23,853.00 $22,838.00 $36,483.00 $31,352.00
2002 $25,483.00 $22,943.00 $38,274.00 $33,294.00
2003 $24,872.00 $23,049.00 $39,002.00 $36,888.00
2004 $28,492.00 $23,784.00 $42,374.00 $39,573.00
2005 $31,932.00 $23,732.00 $42,943.00 $41,734.00

The order in which you nest the for loops that access each index in a two-
dimensional array is crucial! The previous example lists the sales for each
year on a separate line, with the sales regions arranged in columns. For
example, you can print a listing with the sales for each region on a separate
line, with the years arranged in columns by reversing the order in which the
for loops that index the arrays are nested:

for (int region = 0; region < 4; region++)
{

for (int y = 0; y < 5; y++)

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 381

Using Two-Dimensional Arrays382

{
System.out.print(cf.format(sales[y][region]));
System.out.print(“ “);

}
System.out.println();

}

Here, the outer loop indexes the region, and the inner loop indexes the year.

$23,853.00 $25,483.00 $24,872.00 $28,492.00 $31,932.00
$22,838.00 $22,943.00 $23,049.00 $23,784.00 $23,732.00
$36,483.00 $38,274.00 $39,002.00 $42,374.00 $42,943.00
$31,352.00 $33,294.00 $36,888.00 $39,573.00 $41,734.00

Initializing a two-dimensional array
The technique for initializing arrays by coding the array element values in
curly braces works for two-dimensional arrays too. You just have to remem-
ber that each element of the main array is actually another array. So, you
have to nest the array initializers.

Here’s an example that initializes the sales array:

double[][] sales =
{ {23853.0, 22838.0, 36483.0, 31352.0}, // 2001
{25483.0, 22943.0, 38274.0, 33294.0}, // 2002
{24872.0, 23049.0, 39002.0, 36888.0}, // 2003
{28492.0, 23784.0, 42374.0, 39573.0}, // 2004
{31932.0, 23732.0, 42943.0, 41734.0} }; // 2005

Here, I added a comment to the end of each line to show the year the line ini-
tializes. Notice that the left brace for the entire initializer is at the beginning
of the second line, and the right brace that closes the entire initializer is at
the end of the last line. Then, the initializer for each year is contained in its
own set of braces.

Using jagged arrays
When you create an array with an expression such as new int[5][3],
you’re specifying that each element of the main array is actually an array of
type int with three elements. However, Java lets you create two-dimensional
arrays in which the length of each element of the main array is different. This
is sometimes called a jagged array, because the array doesn’t form a nice rec-
tangle. Instead, its edges are jagged.

For example, suppose you need to keep track of four teams, each consisting
of two or three people. The teams are as follows:

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 382

Book IV
Chapter 2

Using Arrays

Using Two-Dimensional Arrays 383

Team Members

A Henry Blake, Johnny Mulcahy

B Benjamin Pierce, John McIntyre, Jonathan Tuttle

C Margaret Houlihan, Frank Burns

D Max Klinger, Radar O’Reilly, Igor Straminsky

The following code creates a jagged array for these teams:

String[][] teams
= { {“Henry Blake”, “Johnny Mulcahy”},

{“Benjamin Pierce”, “John McIntyre”,
“Jonathan Tuttle”},

{“Margaret Houlihan”, “Frank Burns”},
{“Max Klinger”, “Radar O’Reilly”,

“Igor Straminsky”} };

Here, each nested array initializer indicates the number of strings for each
subarray. For example, the first subarray has two strings, the second has
three strings, and so on.

You can use nested for loops to access the individual elements in a jagged
array. For each element of the main array, you can use the length property
to determine how many entries are in that element’s subarray. For example:

for (int i = 0; i < teams.length; i++)
{

for (int j = 0; j < teams[i].length; j++)
System.out.println(teams[i][j]);

System.out.println();
}

Notice that the length of each subarray is determined with the expression
teams[i].length. This for loop prints one name on each line, with a
blank line between teams, like this:

John McIntyre
Jonathan Tuttle

Margaret Houlihan
Frank Burns

Max Klinger
Radar O’Reilly
Igor Straminsky

Henry Blake
Johnny Mulcahy

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 383

Using Two-Dimensional Arrays384

Benjamin Pierce
John McIntyre
Jonathan Tuttle

If you don’t want to fuss with keeping track of the indexes yourself, you can
use an enhanced for loop and let Java take care of the indexes. For example:

for (String[] team : teams)
{

for (String player : team)
System.out.println(player);

System.out.println();
}

Here, the first enhanced for statement specifies that the type for the team
variable is String[]. As a result, each cycle of this loop sets team to one
of the subarrays in the main teams array. Then, the second enhanced for
loop accesses the individual strings in each subarray.

Going beyond two dimensions
Java doesn’t limit you to just two-dimensional arrays. Arrays can be nested
within arrays to as many levels as your program needs. To declare an array
with more than two dimensions, you just specify as many sets of empty
brackets as you need. For example:

int[][][] threeD = new int[3][3][3];

Here, a three-dimensional array is created, with each dimension having three
elements. You can think of this array as a cube. Each element requires three
indexes to access.

You can access an element in a multi-dimensional array by specifying as
many indexes as the array needs. For example:

threeD[0][1][2] = 100;

This statement sets element 2 in column 1 of row 0 to 100.

You can nest initializers as deep as necessary, too. For example:

int[][][] threeD =
{ { {1, 2, 3}, { 4, 5, 6}, { 7, 8, 9} },

{ {10, 11, 12}, {13, 14, 15}, {16, 17, 18} },
{ {19, 20, 21}, {22, 23, 24}, {25, 26, 27} } };

Here, a three-dimensional array is initialized with the numbers 1 through 27.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 384

Book IV
Chapter 2

Using Arrays

A Fun but Complicated Example: A Chess Board 385

You can also use multiple nested if statements to process an array with
three or more dimensions. For example, here’s another way to initialize a
three-dimensional array with the numbers 1 to 27:

int[][][] threeD2 = new int[3][3][3];
int value = 1;
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++)

threeD2[i][j][k] = value++;

A Fun but Complicated Example: A Chess Board
Okay, so much for the business examples. Here’s an example that’s more
fun, at least if you think chess is fun. The program in Listing 2-2 uses a two-
dimensional array to represent a chessboard. Its sole purpose is to figure
out the possible moves for a knight (that’s the horse for those of you in Rio
Linda) given its starting position. The user is asked to enter a starting position
(such as f1) and the program responds by displaying the possible squares.
Then, the program prints out a crude but recognizable representation of the
board with the knight’s position indicated with an X and his possible moves
indicated with question marks.

In case you’re not familiar with chess, it’s played on a board that’s 8 x 8, with
alternating light and dark squares. The normal way to identify each square is
to use a letter and a number, where the letter represents the column (called
a file) and the number represents the row (called a rank), as shown in Figure
2-1. The knight has an interesting movement pattern: He moves two squares
in one direction, then makes a 90-degree turn and moves one square to the
left or right. The possible moves for the knight given a starting position of
e4 are shaded dark. As you can see, this knight has eight possible moves:
c3, c5, d6, f6, g5, g3, f2, and d2.

Here’s a sample of what the console looks like if you enter e4 for the knight’s
position:

Welcome to the Knight Move calculator.

Enter knight’s position: e4

The knight is at square e4
From here the knight can move to:
c5
d6
f6
g5

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 385

A Fun but Complicated Example: A Chess Board386

g3
f2
d2
c3
- - - - - - - -
- - - - - - - -
- - - ? - ? - -
- - ? - - - ? -
- - - - X - - -
- - ? - - - ? -
- - - ? - ? - -
- - - - - - - -

Do it again? (Y or N) n

As you can see, the program indicates that the knight’s legal moves from e4
are c5, d6, f6, g5, g3, f2, d2, and c3. And the graphic representation of the
board indicates where the knight is and where he can go.

h8

h7

h6

h5

h4

h3

h2

h1

a8 b8 c8 d8 e8 f8 g8

a7 b7 c7 d7 e7 f7 g7

a6 b6 c6 d6 e6 f6 g6

a5 b5 c5 d5 e5 f5 g5

a4 b4 c4 d4 f4 g4

a3 b3 c3 d3 e3 f3 g3

a2 b2 c2 d2 e2 f2 g2

a1 b1 c1 d1 e1 f1 g1

Figure 2-1:
A classic
chessboard.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 386

Book IV
Chapter 2

Using Arrays

A Fun but Complicated Example: A Chess Board 387

LISTING 2-2: PLAYING CHESS IN A FOR DUMMIES BOOK?

import java.util.Scanner;

public class KnightMoves
{

static Scanner sc = new Scanner(System.in);

// the following static array represents the 8
// possible moves a knight can make
// this is an 8 x 2 array
static int[][] moves = { {-2, +1}, ➞ 10

{-1, +2},
{+1, +2},
{+2, +1},
{+2, -1},
{+1, -2},
{-1, -2},
{-2, -1} };

public static void main(String[] args)
{

System.out.println(“Welcome to the “
+ “Knight Move calculator.\n”);

do
{

showKnightMoves(); ➞ 26
}
while (getYorN(“Do it again?”));

}

public static void showKnightMoves() ➞ 31
{

// The first dimension is the file (a, b, c, etc.)
// The second dimension is the rank (1, 2, 3, etc.)
// Thus, board[3][4] is square d5.
// A value of 0 means the square is empty
// 1 means the knight is in the square
// 2 means the knight could move to the square
int[][] board = new int[8][8]; ➞ 39

String kSquare; // the knight’s position as a square
Pos kPos; // the knight’s position as a Pos

// get the knight’s initial position
do ➞ 45
{

System.out.print(“Enter knight’s position: “);
kSquare = sc.nextLine();
kPos = convertSquareToPos(kSquare);

} while (kPos == null);

board[kPos.x][kPos.y] = 1; ➞ 52
System.out.println(“\nThe knight is at square “

+ convertPosToSquare(kPos));

continued

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 387

A Fun but Complicated Example: A Chess Board388

LISTING 2-2 (CONTINUED)

System.out.println(
“From here the knight can move to:”);

for (int move = 0; move < moves.length; move ++) ➞ 59
{

int x, y;
x = moves[move][0]; // the x for this move
y = moves[move][1]; // the y for this move
Pos p = calculateNewPos(kPos, x, y);
if (p != null)
{

System.out.println(convertPosToSquare(p));
board[p.x][p.y] = 2;

}
}

printBoard(board); ➞ 72

}

// this method converts squares such as a1 or d5 to
// x, y coordinates such as [0][0] or [3][4]
public static Pos convertSquareToPos(String square) ➞ 78
{

int x = -1;
int y = -1;
char rank, file;

file = square.charAt(0);
if (file == ‘a’) x = 0;
if (file == ‘b’) x = 1;
if (file == ‘c’) x = 2;
if (file == ‘d’) x = 3;
if (file == ‘e’) x = 4;
if (file == ‘f’) x = 5;
if (file == ‘g’) x = 6;
if (file == ‘h’) x = 7;

rank = square.charAt(1);
if (rank == ‘1’) y = 0;
if (rank == ‘2’) y = 1;
if (rank == ‘3’) y = 2;
if (rank == ‘4’) y = 3;
if (rank == ‘5’) y = 4;
if (rank == ‘6’) y = 5;
if (rank == ‘7’) y = 6;
if (rank == ‘8’) y = 7;

if (x == -1 || y == -1)
{

return null;
}
else

return new Pos(x, y);
}

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 388

Book IV
Chapter 2

Using Arrays

A Fun but Complicated Example: A Chess Board 389

// this method converts x, y coordinates such as
// [0][0] or [3][4] to squares such as a1 or d5.
public static String convertPosToSquare(Pos p) ➞ 114
{

String file = “”;

if (p.x == 0) file = “a”;
if (p.x == 1) file = “b”;
if (p.x == 2) file = “c”;
if (p.x == 3) file = “d”;
if (p.x == 4) file = “e”;
if (p.x == 5) file = “f”;
if (p.x == 6) file = “g”;
if (p.x == 7) file = “h”;

return file + (p.y + 1);
}

// this method calculates a new Pos given a
// starting Pos, an x move, and a y move
// it returns null if the resulting move would
// be off the board.
public static Pos calculateNewPos(Pos p, int x, int y) ➞ 134
{

// rule out legal moves
if (p.x + x < 0)

return null;
if (p.x + x > 7)

return null;
if (p.y + y < 0)

return null;
if (p.y + y > 7)

return null;

// return new position
return new Pos(p.x + x, p.y + y);

}

public static void printBoard(int[][] b) ➞ 150
{

for (int y = 7; y >= 0; y--)
{

for (int x = 0; x < 8; x++)
{

if (b[x][y] == 1)
System.out.print(“ X “);

else if (b[x][y] == 2)
System.out.print(“ ? “);

else
System.out.print(“ - “);

}
System.out.println();

}
}

public static boolean getYorN(String prompt) ➞ 167

continued

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 389

A Fun but Complicated Example: A Chess Board390

LISTING 2-2 (CONTINUED)

{
while (true)
{

String answer;
System.out.print(“\n” + prompt + “ (Y or N) “);
answer = sc.nextLine();
if (answer.equalsIgnoreCase(“Y”))

return true;
else if (answer.equalsIgnoreCase(“N”))

return false;
}

}
}

// this class represents x, y coordinates on the board
class Pos ➞ 183
{

public int x;
public int y;

public Pos(int x, int y)
{

this.x = x;
this.y = y;

}
}

You have to put your thinking cap on to follow your way through this pro-
gram. It’s a bit on the complicated side. The following paragraphs can help
clear up the more complicated lines:

➞10 This line declares a two-dimensional array that’s used to store the
possible moves for a knight in terms of x and y. For example, the
knight’s move of two squares left and one square up is represented as
{–2, 1}. There are a total of eight possible moves, and each move
has two values (x and y). So, this two-dimensional array has eight
rows and two columns.

➞26 The code that gets the user’s starting position for the knight and
does all the calculations is complicated enough that I didn’t want to
include it in the main method, so I put it in a separate method named
showNightMoves. That way, the do loop in the main method is kept
simple. It just keeps going until the user enters N when getYorN is
called.

➞31 The showNightMoves method begins here.

➞39 The board array represents the chessboard as a two-dimensional
array with eight rows for the ranks and eight columns for the files.
This array holds int values. A value of zero indicates that the square
is empty. The square where the knight resides gets a 1, and any
square the knight can move to gets a 2.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 390

Book IV
Chapter 2

Using Arrays

A Fun but Complicated Example: A Chess Board 391

➞ 45 This do loop prompts the user for a valid square to plant the knight
in. The loop includes a call to the method convertSquareToPos,
which converts the user’s entry (such as e4) to a Pos object. (The
Pos class is defined later in the program; it represents a board posi-
tion as an x, y pair.) This method returns null if the user enters
an incorrect square, such as a9 or x4. So to get the user to enter a
valid square, the loop just repeats if the converSquareToPos
returns null.

➞ 52 The board position entered by the user is set to 1 to indicate the
position of the knight.

➞ 59 A for loop is used to test all the possible moves for the knight to see
if they’re valid from the knight’s current position using the moves
array that was created way back in line 10. In the body of this loop,
the calculateNewPos method is called. This method accepts a
board position and an x and y value to indicate where the knight can
be moved. If the resulting move is legal, it returns a new Pos object
that indicates the position the move leads to. If the move is not legal
(that is, it takes the knight off the board), the calculateNewPos
method returns null.

Assuming calculateNewPos returns a non-null value, the body
of this loop then prints the square (it calls convertPosTosquare
to convert the Pos object to a string, such as c3). Then, it marks the
board position represented by the move with a 2 to indicate that the
knight can move to this square.

➞ 72 After all the moves are calculated, the printBoard method is
called to print the board array.

➞ 78 This is the convertSquareToPos method. It uses a pair of brute-
force if statements to convert a string such as a1 or e4 to a Pos
object representing the same position. I could probably have made
this method a little more elegant by converting the first letter in the
string to a Char and then subtracting the offset of the letter a to
convert the value to a proper integer. But I think the brute-force
method is clearer, and only a few more lines of code.

Note that if the user enters an incorrect square (such as a9 or x2),
null is returned.

➞114 This is the convertPosToSquare method, which does the opposite
of the convertSquareToPos method. It accepts a Pos argument
and returns a string that corresponds to the position. It uses a series
of brute-force if statements to determine the letter that corresponds
to the file, but does a simple addition to calculate the rank. (The Pos
object uses array indexes for the y position, which start with zero.
So 1 is added to get the rank numbers, which start with 1.)

➞134 The calculateNewPos method accepts a starting position, an x
offset, and a y offset. It returns a new position if the move is legal;

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 391

Using the Arrays Class392

otherwise, it returns null. To find illegal moves, it adds the x and y
offsets to the starting x and y position and checks to see if the result
is less than zero or greater than 7. If the move is legal, it creates a new
Pos object whose position is calculated by adding the x and y offsets
to the x and y values of the starting position.

➞150 The printBoard method uses a nested for loop to print the
board. The outer loop prints each rank. Notice that it indexes the
array backwards, starting with 7 and going down to 0. That’s neces-
sary so that the first rank is printed at the bottom of the console
output. An inner for loop is used to print the squares for each rank.
In this loop, an if statement checks the value of the board array
element that corresponds to the square to determine whether it
prints an X, a question mark, or a hyphen.

➞167 The getYorN method simply displays a prompt on-screen and asks
the user to enter Y or N. It returns true if the user enters Y, false
if the user enters N. If the user enters anything else, this method
prompts the user again.

➞183 The Pos class simply defines two public fields, x and y, to keep track
of board positions. It also defines a constructor that accepts the x
and y positions as parameters.

Using the Arrays Class
The final topic for this chapter is the Arrays class, which provides a collec-
tion of static methods that are useful for working with arrays. The Arrays
class is in the java.util package, so you have to use an import statement
for the java.util.Arrays class or the entire java.util.* package to
use this class. Table 2-1 lists the most commonly used methods of the Arrays
class.

Table 2-1 Handy Methods of the Arrays Class
Method Description

static int binarySearch Searches for the specified key value in an
(array, key) array. The return value is the index of the

element that matches the key. Returns –1
if the key couldn’t be found. The array and
the key must be of the same type and can
be any primitive type or an object.

boolean deepEquals(array1, Returns true if the two arrays have the
array2) same element values. This method works

for arrays of two or more dimensions.

boolean equals(array1, Returns true if the two arrays have the
array2) same element values. This method only

checks equality for one-dimensional
arrays.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 392

Book IV
Chapter 2

Using Arrays

Using the Arrays Class 393

Method Description

static void fill(array, Fills the array with the specified value. The
value) value and array must be of the same type

and can be any primitive type or an object.

static void fill(array, Fills the elements indicated by the from
from, to, value) and to int parameters with the specified

value. The value and array must be of the
same type and can be any primitive type or
an object.

static void sort(array) Sorts the array into ascending sequence.

static void sort(array, Sorts the specified elements of the array
from, to) into ascending sequence.

static String toString(array) Formats the array values in a string. Each
element value is enclosed in brackets, and
the element values are separated from
each other with commas.

Filling an array
The fill method can be handy if you want to pre-fill an array with values
other than the default values for the array type. For example, here’s a rou-
tine that creates an array of integers and initializes each element to 100:

int[] startValues = new int[10];
Arrays.fill(startValues, 100);

Although you can code a complicated expression as the second parameter,
the fill method only evaluates this expression once. Then, it assigns the
result of this expression to each element in the array.

For example, you might think you could fill an array of 1,000 integers with
random numbers from 1 to 100 like this:

int[] ran = new int[1000]
Arrays.fill(ran, (int)(Math.random() * 100) + 1);

Unfortunately, this won’t work. What happens is that the expression is evalu-
ated once to get a random number. Then, all 1,000 elements in the array are
set to that random number.

Sorting an array
The sort method is a quick way to sort an array into sequence. For example,
these statements create an array with 100 random numbers, and then sort
the array into sequence so the random numbers are in order:

int[] lotto = new int[6];

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 393

Using the Arrays Class394

for (int i = 0; i < 6; i++)
lotto[i] = (int)(Math.random() * 100) + 1;

Arrays.sort(lotto);

Searching an array
The binarySearch method is an efficient way to locate an item in an array
by its value. For example, suppose you want to find out if your lucky number
is in the lotto array created in the previous example. You could just use a
for loop, like this:

int lucky = 13;
int foundAt = -1;
for (int i = 0; i < lotto.length; i++)

if (lotto[i] == lucky)
foundAt = i;

if (foundAt > -1)
System.out.println(“My number came up!”);

else
System.out.println(“I’m not lucky today.”);

Here, the for loop compares each element in the array with my lucky
number. This works fine for small arrays, but what if the array had 1,000,000
elements instead of 6? In that case, it would take a while to look at each ele-
ment. If the array is sorted into sequence, the binarySearch method can
find your lucky number more efficiently and with less code:

int lucky = 13;
int foundAt = Arrays.binarySearch(lotto, lucky);
if (foundAt > -1)

System.out.println(“My number came up!”);
else

System.out.println(“I’m not lucky today.”);

The binarySearch method uses a technique similar to the strategy for
guessing a number. If I say I’m thinking of a number between 1 and 100, you
don’t start guessing the numbers in sequence starting with 1. Instead, you
guess 50. If I tell you that 50 is low, you guess 75. Then, if I tell you 75 is high,
you guess halfway between 50 and 75. And so on until you find the number.
The binarySearch method uses a similar technique, but it only works if
the array is sorted first.

Comparing arrays
If you use the equality operator (==) to compare array variables, the array
variables are considered equal only if both variables point to the exact same
array instance. To compare two arrays element by element, you should use
the Arrays.equal method instead. For example:

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 394

Book IV
Chapter 2

Using Arrays

Using the Arrays Class 395

if (Arrays.equal(array1, array2))
System.out.println(“The arrays are equal!”);

Here, the two arrays array1 and array2 are compared element by ele-
ment. If both arrays have the same number of elements and each element
has the same value, the equals method returns true. If any of the ele-
ments are not equal, or if one array has more elements than the other, the
equals method returns false.

If the array has more than one dimension, you can use the deepEquals
method instead. It compares any subarrays element by element to determine
if the two arrays are identical.

Converting arrays to strings
The toString method of the Arrays class is handy if you want to quickly
dump the contents of an array to the console to see what it contains. This
method returns a string that shows the array’s elements enclosed in brack-
ets, with the elements separated by commas.

For example, here’s a routine that creates an array, fills it with random num-
bers, and then uses the toString method to print the array elements:

int[] lotto = new int[6];
for (int i = 0; i < 6; i++)

lotto[i] = (int)(Math.random() * 100) + 1;
System.out.println(Arrays.toString(lotto));

Here’s a sample of the console output created by this code:

[4, 90, 65, 84, 99, 81]

Note that the toString method works only for one-dimensional arrays. To
print the contents of a two-dimensional array with the toString method,
use a for loop to call the toString method for each subarray.

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 395

Book IV: Strings, Arrays, and Collections396

29_58961X bk04ch02.qxd 3/29/05 3:47 PM Page 396

Chapter 3: Using the
ArrayList Class

In This Chapter
� Introducing the ArrayList class

� Creating an array list

� Adding elements to an array list

� Deleting or modifying elements from an array list

� A gentle introduction to generics

Some people love to collect things. My wife collects lots of things. Salt
and pepper shakers, nutcrackers, bears, shot glasses, and tin signs to

name but a few.

If I were writing a program to keep track of one of her collections, an array
would be a poor choice for storing the data. That’s because on any given day,
she may come home with a new item she found at an estate sale or an auc-
tion. So if she had 87 tin signs before, and I had created an array big enough
to hold all 87 signs, I’d have to change the array declaration to hold 88 signs.

Java’s collection classes are designed to simplify the programming for appli-
cations that have to keep track of groups of objects. These classes are very
powerful and surprisingly easy to use — at least the basics, anyway. The more
advanced features of collection classes take some serious programming to
get right, but for most applications, a few simple methods are all you need
to use collection classes.

Unfortunately, Java’s collection classes are organized according to a pretty
complicated inheritance hierarchy that can be very confusing for beginners.
Most of the Java books I have on my shelf start by explaining this inheritance
scheme and showing how each of the various collection classes fits into this
scheme, and why.

I’m not going to do that, because I think it’s very confusing for a newcomer to
collections to have to wade through a class hierarchy that doesn’t make sense
until you know some of the details of how the basic classes work. So instead,
I just show you how to use two of the best of these classes. In this chapter,

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 397

The ArrayList Class398

you find out how to use the ArrayList class. Then, in the next chapter,
you find out how to use its first cousin, the LinkedList. Once you know
how to use these two classes, you shouldn’t have any trouble learning how
to use the other collection classes from the API documentation.

Java 1.5 introduced a major new language feature called generics that is specifi-
cally aimed at making collections easier to work with. Because generics are
an integral part of how collections work in Java 1.5, I incorporate the generics
feature into this chapter from the very start. I point out the differences for
using ArrayList without generics along the way, just in case you’re using
an older version of Java or are working with programs that were written
before Java 1.5 became available. For a complete explanation of how the
generics feature works, you can refer to Book IV, Chapter 5.

The ArrayList Class
An array list is the most basic type of Java collection. You can think of an
array list as an array on steroids. It’s similar to an array, but avoids many
of the most common problems of working with arrays. Specifically:

✦ An array list automatically resizes itself whenever necessary. If you
create an array with 100 elements, then fill it up and need to add a 101st
element, you’re out of luck. The best you can do is create a new array
with 101 elements, copy the 100 elements from the old array to the new
one, and then put the new data in the 101st element. With an array list,
there’s never a limit to how many elements you can create. You can keep
adding elements as long as you want.

✦ An array list lets you insert elements into the middle of the collection.
With an array, inserting elements is pretty hard to do. Suppose you have
an array that can hold 100 elements, but only the first 50 have data. If you
need to insert a new element after the 25th item, you must first make a
copy of elements 26 through 50 to make room for the new element. With
an array list, you just say you want to insert the new element after the
25th item and the array list takes care of shuffling things around.

✦ An array list lets you delete items. If you delete an item from an array,
the deleted element becomes null but the empty slot that was occupied
by the item stays in the array. When you delete an item from an array
list, any subsequent items in the array are automatically moved forward
one position to fill in the spot that was occupied by the deleted item.

✦ The ArrayList class actually uses an array internally to store the
data you add to the array list. The ArrayList class takes care of man-
aging the size of this array. When you add an item to the array list and
the underlying array is full, the ArrayList class automatically creates
a new array with a larger capacity and copies the existing items to the
new array before it adds the new item.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 398

Book IV
Chapter 3

Using the
ArrayList Class

The ArrayList Class 399

The ArrayList class has several constructors and a ton of methods. For
your reference, Table 3-1 lists the constructors and methods of the
ArrayList class.

Table 3-1 The ArrayList Class
Constructor Explanation

ArrayList() Creates an array list with an initial capacity
of 10 elements.

ArrayList(int capacity) Creates an array list with the specified ini-
tial capacity.

ArrayList(Collection c) Creates an array list and copies all the ele-
ments from the specified collection into the
new array list.

Method Explanation

add(Object element) Adds the specified object to the array list.
If you specified a type when you created
the array list, the object must be of the cor-
rect type.

add(int index, Object element) Adds the specified object to the array list
at the specified index position. If you spec-
ified a type when you created the array list,
the object must be of the correct type.

addAll(Collection c) Adds all of the elements of the specified
collection to this array list.

addAll(int index, Collection c) Adds all the elements of the specified
collection to this array list at the specified
index position.

clear() Deletes all elements from the array list.

clone() Returns a shallow copy of the array list.
The elements contained in the copy are the
same object instances as the elements in
the original.

contains(Object elem) Returns a boolean that indicates whether or
not the specified object is in the array list.

containsAll(Collection c) Returns a boolean that indicates whether
or not this array list contains all the objects
that are in the specified collection.

ensureCapacity(int minCapacity) Increases the array list’s capacity to the
specified value. (If the capacity is already
greater than the specified value, this
method does nothing.)

get(int index) Returns the object at the specified position
in the list.

(continued)

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 399

The ArrayList Class400

Table 3-1 (continued)
Method Explanation

indexOf(Object elem) Returns the index position of the first occur-
rence of the specified object in the array
list. If the object isn’t in the list, returns –1.

isEmpty() Returns a boolean value that indicates
whether or not the array list is empty.

iterator() Returns an iterator for the array list.

lastIndexOf(Object elem) Returns the index position of the last occur-
rence of the specified object in the array
list. If the object isn’t in the list, returns –1.

remove(int index) Removes the object at the specified index.
Returns the element that was removed.

remove(Object elem) Removes an object from the list. Note that
more than one element refers to the object;
this method removes only one of them.
Returns a boolean that indicates whether
or not the object was in the list.

remove(int fromIndex, Removes all objects whose index values
int toIndex) are between the values specified. Note

that the elements at the fromIndex
and toIndex positions are not them-
selves removed.

removeAll(Collection c) Removes all the objects in the specified
collection from this array list.

retainAll(Collection c) Removes all the objects that are not in the
specified collection from this array list.

set(int index, Object elem) Sets the specified element to the specified
object. The element that was previously at
that position is returned as the method’s
return value.

size() Returns the number of elements in the list.

toArray() Returns the elements of the array list as an
array of objects (Object[]).

toArray(type[] array) Returns the elements of the array list as an
array whose type is the same as the array
passed via the parameter.

The rest of this chapter shows you how to use these constructors and meth-
ods to work with ArrayList objects.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 400

Book IV
Chapter 3

Using the
ArrayList Class

Creating an ArrayList Object 401

Creating an ArrayList Object
To create an array list, you first declare an ArrayList variable, and then
call the ArrayList constructor to instantiate an array list object and assign
it to the variable. You can do this on separate lines:

ArrayList signs;
signs = new ArrayList();

or, you can do it on a single line:

ArrayList signs = new ArrayList();

Here are a few things to note about creating array lists:

✦ The ArrayList class is in the java.util package, so your program
must import either java.util.ArrayList or java.util.*.

✦ Unlike an array, you don’t have to specify a capacity for an array list.
However, you can if you want. Here’s a statement that creates an array
list with an initial capacity of 100:

ArrayList signs = new ArrayList(100);

If you don’t specify a capacity for the array list, the initial capacity is set
to 10. Providing at least a rough estimate of how many elements each
array list can hold when you create it is a good idea.

✦ The capacity of an array list is not a fixed limit. The ArrayList class
automatically increases the list’s capacity whenever necessary.

✦ If you’re using Java 1.5, you can also specify the type of elements the
array list is allowed to contain. For example, this statement creates an
array list that holds String objects:

ArrayList<String> signs = new ArrayList<String>();

The advantage of specifying a type when you declare an array list is that
the compiler complains if you then try to add an object of the wrong
type to the list. (This feature is called generics because it lets the Java
API designers create generic collection classes that can be used to store
any type of object. For more information, refer to Book IV, Chapter 5.)

✦ The ArrayList class also has a constructor that lets you specify
another collection object (typically another array list) whose items are
copied into the new array list. This provides an easy way to make a copy
of an array list, but you can also use it to convert any other type of col-
lection to an array list.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 401

Adding Elements402

Adding Elements
After you create an array list, you can use the add method to add objects to
the array list. For example, here’s code that adds strings to an array list:

signs.add(“Drink Pepsi”);
signs.add(“No minors allowed”);
signs.add(“Say Pepsi, Please”);
signs.add(“7-Up: You Like It, It Likes You”);
signs.add(“Dr. Pepper 10, 2, 4”);

If you specified a type when you created the array list, the objects you add
via the add method must be of the correct type.

You can insert an object at a specific position in the list by listing the posi-
tion in the add method. For example, consider these statements:

ArrayList<String> nums = new ArrayList<String>();
nums.add(“One”);
nums.add(“Two”);
nums.add(“Three”);
nums.add(“Four”);
nums.add(2, “Two and a half”);

After these statements execute, the nums array list contains the following
strings:

One
Two
Two and a half
Three
Four

Here are some important points to keep in mind when you add elements to
array lists:

✦ If an array list is already at its capacity when you add an element, the
array list automatically expands its capacity. Although this capacity is
flexible, it’s also inefficient. So, whenever possible, you should anticipate
how many elements you’re adding to an array list and set the list’s initial
capacity accordingly. (You can also change the capacity at any time by
calling the ensureCapacity method.)

✦ Like arrays, array lists are indexed starting with zero. Keep this in mind
when you use the version of the addmethod that accepts an index number.

✦ The add method that inserts elements at a specific index position
throws the unchecked exception IndexOutOfBoundsException if
an object isn’t already at the index position you specify.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 402

Book IV
Chapter 3

Using the
ArrayList Class

Printing an ArrayList 403

Accessing Elements
To access a specific element in an array list, you can use the get method. It
specifies the index value of the element you want to retrieve. For example,
here’s a for loop that prints all the strings in an array list:

for (int i = 0; i < nums.size(); i++)
System.out.println(nums.get(i));

Here, the size method is used to set the limit of the for loop’s index
variable.

The easiest way to access all the elements in an array list is by using an
enhanced for statement. It lets you retrieve the elements without bothering
with indexes or the get method. For example:

for (String s : nums)
System.out.println(s);

Here, each String element in the nums array list is printed to the console.

If you need to know the index number of a particular object in an array list
and you have a reference to the object, you can use the indexOf method.
For example, here’s an enhanced for loop that prints the index number of
each string along with the string:

for (String s : nums)
{

int i = nums.indexOf(s);
System.out.println(“Item “ + i + “: “ + s);

}

Depending on the contents of the array list, the output from this loop looks
something like this:

Item 0: One
Item 1: Two
Item 2: Three
Item 3: Four

Printing an ArrayList
The toString method of the ArrayList class (as well as other collection
classes) is designed to make it easy to quickly print out the contents of the
list. It returns the contents of the array list enclosed in a set of brackets,
with each element value separated by commas. The toString method of
each element is called to obtain the element value.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 403

Using an Iterator404

For example, consider these statements:

ArrayList<String> nums = new ArrayList<String>();
nums.add(“One”);
nums.add(“Two”);
nums.add(“Three”);
nums.add(“Four”);
System.out.println(nums);

When you run these statements, the following is displayed on the console:

[One, Two, Three, Four]

Although this output isn’t very useful for actual applications, it’s convenient for
testing purposes or for debugging problems in programs that use array lists.

Using an Iterator
Another way to access all the elements in an array list (or any other collec-
tion type) is to use an iterator. An iterator is a special type of object whose
sole purpose in life is to let you step through the elements of a collection.

The enhanced for statement introduced with Java 1.5 is designed to sim-
plify programs that use iterators. As a result, if you’re using Java 1.5, you can
use the enhanced for statement instead of iterators. Still, you’ll probably
encounter existing programs that use iterators, so you need to know how
they work.

An iterator object implements the Iterator interface, which is defined as
part of the java.util package. As a result, to use an iterator, you must
import either java.util.Iterator or java.util.*. The Iterator
interface defines just three methods, as listed in Table 3-2. These methods
are all you need to access each element of a collection. (Actually, you only
need the hasNext and next methods. The remove method is gravy.)

Table 3-2 The Iterator Interface
Method Explanation

hasNext() Returns true if the collection has at least one element that hasn’t yet
been retrieved.

next() Returns the next element in the collection.

remove() Removes the most recently retrieved element.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 404

Book IV
Chapter 3

Using the
ArrayList Class

Using an Iterator 405

To use an iterator, you first call the array list’s iterator method to get
the iterator. Then, you use the iterator’s hasNext and next methods to
retrieve each item in the collection. The normal way to do that is with a
while loop. For example:

ArrayList<String> nums = new ArrayList<String>();
nums.add(“One”);
nums.add(“Two”);
nums.add(“Three”);
nums.add(“Four”);

String s;
Iterator e = nums.iterator();
while (e.hasNext())
{

s = (String)e.next();
System.out.println(s);

}

The Iterator Pattern
Java’s iterators follow a commonly known design pattern called the Iterator pattern. The Iterator
pattern is useful whenever you need to provide sequential access to a collection of objects. The
Iterator pattern relies on interfaces so the code that’s using the iterator doesn’t have to know
what actual class is being iterated. As long as the class implements the iterator interface, it can
be iterated.

The Iterator interface itself defines the methods used for sequential access. The common pat-
tern is for this interface to provide at least two methods:

� hasNext: Returns a boolean value that indicates whether another item is available.

� next: Returns the next item.

Java also defines a third method for its Iterator interface: remove, which removes the most
recently retrieved object.

In addition to the Iterator interface, the collection class itself needs a way to get an
iterator object. It does so via the iterator method, which simply returns an
iterator object for the collection. The iterator method is defined by the Iterable
interface. Thus, any object that implements Iterable has an iterator method that pro-
vides an iterator for the object.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 405

Updating Elements406

Here, the first five statements create an array list and add four strings to it.
Next, the iterator method is called to get an iterator for the nums array
list. The hasNext method is called in the while statement, and the next
method is called to get the element to be printed.

Note that the object returned by the next method must be cast to a
String. That’s because the Iterator interface has no knowledge of the type
of objects stored in the collection. As a result, it simply returns an Object.
You must then cast this object to the correct type before you can use it.

Updating Elements
You can use the set method to replace an existing object with another
object. For example:

ArrayList<String> nums = new ArrayList<String>();
nums.clear();
nums.add(“One”);
nums.add(“Two”);
nums.add(“Three”);
System.out.println(nums);
nums.set(0, “Uno”);
nums.set(1, “Dos”);
nums.set(2, “Tres”);
System.out.println(nums);

Here, an array list is created with three strings, and the contents of the array
list is printed to the console. Then, each of the three strings is replaced by
another string, and the contents is printed again. When you run this code,
the following is printed on the console:

[One, Two, Three]
[Uno, Dos, Tres]

Because array lists contain references to objects, not the objects them-
selves, any changes you make to an object in an array list are automatically
reflected in the list. As a result, you often don’t have to use the set method.

For example:

ArrayList<Employee> emps = new ArrayList<Employee>();

// add employees to array list
emps.add(new Employee(“Addams”, “Gomez”));
emps.add(new Employee(“Taylor”, “Andy”));
emps.add(new Employee(“Kirk”, “James”));

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 406

Book IV
Chapter 3

Using the
ArrayList Class

Deleting Elements 407

// print array list
System.out.println(emps);

// change one of the employee’s names
Employee e = emps.get(1);
e.changeName(“Petrie”, “Robert”);

// print the array list again
System.out.println(emps);

It uses the Employee class whose constructor accepts an employee’s last
and first name to create a new employee object, as well as a changeName
method that also accepts a last and first name. In addition, the Employee
class overrides the toString method to return the employee’s first and
last name.

The main method begins by creating an ArrayList object and adding
three employees. Then, it prints out the contents of the array list. Next, it
retrieves the employee with index number 1 and changes that employee’s
name. Finally, it prints the contents of the array list again.

Here’s what this code produces on the console:

[Gomez Addams, Andy Taylor, James Kirk]
[Gomez Addams, Robert Petrie, James Kirk]

Notice that the second employee’s name was changed, even though the pro-
gram doesn’t use the set method to replace the changed Employee object
in the collection. That’s because the array list merely stores references to
the Employee objects.

Deleting Elements
The ArrayList class provides several methods that let you remove ele-
ments from the collection. To remove all the elements, use the clear
method, like this:

emps.clear();

To remove a specific element, use the remove method. It lets you remove an
element based on the index number, like this:

emps.remove(0);

Here, the first element in the array list is removed.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 407

Deleting Elements408

Alternatively, you can pass the actual object you want removed. This is useful
if you don’t know the index of the object you want to remove, but you happen
to have a reference to the actual object. For example:

ArrayList<Employee> emps = new ArrayList<Employee>();

// create employee objects
Employee emp1 = new Employee(“Addams”, “Gomez”);
Employee emp2 = new Employee(“Taylor”, “Andy”);
Employee emp3 = new Employee(“Kirk”, “James”);

// add employee objects to array list
emps.add(emp1);
emps.add(emp2);
emps.add(emp3);

// print the array list
System.out.println(emps);

// remove one of the employees
emps.remove(emp2);

// print the array list again
System.out.println(emps);

Here’s what this code produces on the console:

[Gomez Addams, Andy Taylor, James Kirk]
[Gomez Addams, James Kirk]

As you can see, Andy Taylor was removed from the list without knowing his
index position.

Here are a few important details to keep in mind:

✦ The clear and remove methods don’t actually delete objects. They
simply remove the references to the objects from the array list. Like any
other object, the objects in a collection are deleted automatically by the
garbage collector, and then only if the objects are no longer being refer-
enced by the program.

✦ You can remove more than one element at once by using the
removeRange method. On it, you specify the starting and ending
index numbers. (Note that this method removes all elements between
the elements you specify, but the elements you specify aren’t them-
selves removed. For example, removeRange(5, 8) removes elements
6 and 7. Elements 5 and 8 aren’t removed.)

✦ You can also use the removeAll method to remove all the objects in one
collection from another collection. And a similar method, retainAll,
removes all the objects that are not in another collection.

30_58961X bk04ch03.qxd 3/29/05 3:47 PM Page 408

Chapter 4: Using the
LinkedList Class

In This Chapter
� Introducing linked lists

� Comparing linked lists with array lists

� Creating linked lists

� Adding items to a linked list

� Retrieving items from a linked list

� Updating and deleting items in a linked list

The ArrayList class, which I cover in the previous chapter, is a collec-
tion class that’s based on an array. Arrays have their strengths and their

weaknesses. The strength of an array is that it’s very efficient — at least until
you fill it up or try to reorganize it by inserting or deleting elements. Then, it
suddenly becomes very inefficient.

Over the years, computer scientists have developed various alternatives to
arrays that are more efficient for certain types of access. One of the oldest
of these is the linked list. A linked list is less efficient than an array for tasks
such as directly accessing an element based on its index number. However,
linked lists run circles around arrays when you need to insert or delete items
in the middle of the list.

In this chapter, you find out how to use Java’s LinkedList class, which
provides a collection that’s based on a linked list rather than an array. You’ll
find that although the LinkedList class provides many of the same fea-
tures as the ArrayList class, it also has some tricks of its own.

The LinkedList Class
A linked list is a collection in which every object in the list maintains with it
a pointer to the next object in the list and the previous object in the list. No
array is involved at all in a linked list. Instead, the list is managed entirely by
these pointers.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 409

The LinkedList Class410

Don’t worry — you don’t have to do any of this pointer management yourself.
It’s all taken care of for you by the LinkedList class.

This arrangement has some compelling advantages over arrays:

✦ Because the ArrayList class uses an array to store list data, the
ArrayList class frequently has to reallocate its array when you add
items to the list. Not so with the LinkedList class. Linked lists don’t
have any size issues. You can keep adding items to a linked list until
your computer runs out of memory.

✦ Like the ArrayList class, the LinkedList class lets you insert items
into the middle of the list. However, with the ArrayList class, this is a
pretty inefficient operation. It has to copy all the items past the insertion
point one slot over to free up a slot for the item you’re inserting. Not so
with the LinkedList class. To insert an item in the middle of a linked
list, all you have to do is change the pointers in the previous and the
next objects.

✦ With an array list, removing items from the list is pretty inefficient. The
ArrayList class has to copy every item after the deleted item one slot
closer to the front of the array to fill in the gap left by the deleted item.
Not so with the LinkedList class. To remove an item from a linked
list, all that’s necessary is to update the pointers in the items that were
before and after the item to be removed.

For example, if you want to remove the third item from a list that has
10,000 items in it, the ArrayList class has to copy 9,997 items. In con-
trast, the LinkedList class does it by updating just two of the items.
By the time the ArrayList class is done, the LinkedList class has
had time to mow the lawn, read a book, and go to Disneyland.

✦ Linked lists are especially well suited for creating two common types of
lists:

• Stacks: A stack is a list in which items can only be added to and
retrieved from the front of the list.

• Queues: A queue is a list in which items are always added to the
back of the list and always retrieved from the front.

Arrays are terribly inefficient for the sort of processing required by
stacks and queues. (You see examples of how to use linked lists to
create stacks and queues in Book IV, Chapter 5.)

✦ The ArrayList class actually uses an array internally to store the data
you add to the array list. The ArrayList class takes care of managing
the size of this array. When you add an item to the array list and the
underlying array is full, the ArrayList class automatically creates a
new array with a larger capacity and copies the existing items to the new
array before it adds the new item.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 410

Book IV
Chapter 4

Using the
LinkedList Class

The LinkedList Class 411

There’s no such thing as a free lunch, however. The flexibility of a linked list
comes at a cost: Linked lists require more memory than an array, and are
slower than arrays when it comes to simple sequential access.

Like the ArrayList class, the LinkedList class has several constructors
and a ton of methods. For your reference, Table 4-1 lists the constructors
and methods of the LinkedList class.

As you look over these methods, you’ll find several methods that seem to do
the same thing. These similar methods usually have a subtle difference. For
example, the getFirst and peek methods both return the first element
from the list without removing the element. The only difference is what hap-
pens if the list is empty. In that case, getFirst throws an exception, but
peek returns null.

But in some cases, the methods are identical. For example, the remove and
removeFirst methods are identical. In fact, if you’re crazy enough to look
at the source code for the LinkedList class, you’ll find that the remove
method consists of a single line: a call to the removeFirst method.

Table 4-1 The LinkedList Class
Constructor Explanation

LinkedList() Creates an empty linked list.

LinkedList(Collection c) Creates a linked list and copies all the ele-
ments from the specified collection into the
new linked list.

Method Explanation

add(Object element) Adds the specified object to the end of the linked
list. If you specified a type when you created the
linked list, the object must be of the correct type.

add(int index, Adds the specified object to the linked list at the
Object element) specified index position. If you specified a type

when you created the linked list, the object must
be of the correct type.

addAll(Collection c) Adds all of the elements of the specified collec-
tion to this linked list.

addAll(int index, Adds all the elements of the specified collection
Collection c) to this linked list at the specified index position.

addFirst(Object element) Inserts the specified object at the beginning of the
list. If you specified a type when you created the
linked list, the object must be of the correct type.

(continued)

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 411

The LinkedList Class412

Table 1-1 (continued)
Method Explanation

addLast(Object element) Adds the specified object to the end of the list.
This method performs the same function as the
addmethod. If you specified a type when you
created the linked list, the object must be of the
correct type.

clear() Deletes all elements from the linked list.

clone() Returns a copy of the linked list. The elements
contained in the copy are the same object
instances as the elements in the original.

contains(Object elem) Returns a boolean that indicates whether or not
the specified object is in the linked list.

containsAll(Collection c) Returns a boolean that indicates whether or not
this linked list contains all the objects that are in
the specified collection.

element() Retrieves the first element from the list. (The ele-
ment is not removed.)

get(int index) Returns the object at the specified position in
the list.

getFirst() Returns the first element in the list. If the list is
empty, throws NoSuchElementException.

getLast() Returns the last element in the list. If the list is
empty, throws NoSuchElementException.

indexOf(Object elem) Returns the index position of the first occurrence
of the specified object in the list. If the object isn’t
in the list, returns –1.

isEmpty() Returns a boolean value that indicates whether
or not the linked list is empty.

iterator() Returns an iterator for the linked list.

lastIndexOf(Object elem) Returns the index position of the last occurrence
of the specified object in the linked list. If the
object isn’t in the list, returns –1.

offer(Object elem) Adds the specified object to the end of the list.
This method returns a boolean value, which is
always true.

peek() Returns (but does not remove) the first element in
the list. If the list is empty, returns null.

remove() Retrieves the first element and removes it from
the list. Returns the element that was retrieved.
If the list is empty, throws NoSuchElement
Exception.

remove(int index) Removes the object at the specified index.
Returns the element that was removed.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 412

Book IV
Chapter 4

Using the
LinkedList Class

Creating a LinkedList 413

Method Explanation

remove(Object elem) Removes an object from the list. Note that if more
than one element refers to the object, this method
removes only one of them. Returns a boolean that
indicates whether or not the object was in the list.

removeAll(Collection c) Removes all the objects in the specified collec-
tion from this linked list.

removeFirst() Retrieves the first element and removes it from
the list. Returns the element that was retrieved.
If the list is empty, throws NoSuchElement
Exception.

removeLast() Retrieves the last element and removes it from
the list. Returns the element that was retrieved.
If the list is empty, throws NoSuchElement
Exception.

retainAll(Collection c) Removes all the objects that are not in the speci-
fied collection from this linked list.

set(int index, Object elem) Sets the specified element to the specified
object. The element that was previously at that
position is returned as the method’s return value.

size() Returns the number of elements in the list.

toArray() Returns the elements of the linked list as an array
of objects (Object[]).

toArray(type[] array) Returns the elements of the linked list as an array
whose type is the same as the array passed via
the parameter.

Creating a LinkedList
Like any other kind of object, creating a linked list is a two-step affair.
First, you declare a LinkedList variable, and then you call one of the
LinkedList constructors to create the object. For example:

LinkedList officers = new LinkedList();

Here, a linked list is created and assigned to the variable officers.

If you’re using Java 1.5 (and you should be), you can specify a type when you
declare the linked list. For example, here’s a statement that creates a linked
list that holds strings:

LinkedList<String> officers = new LinkedList<String>();

Then, you can only add String objects to this list. If you try to add any
other type of object, the compiler balks. (Base runners advance.)

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 413

Adding Items to a LinkedList414

Adding Items to a LinkedList
The LinkedList class has many different ways to add items to the list. The
most basic is the add method, which works pretty much the same way it
works for the ArrayList class. Here’s an example:

LinkedList<String> officers = new LinkedList<String>();
officers.add(“Blake”);
officers.add(“Burns”);
officers.add(“Houlihan”);
officers.add(“Pierce”);
officers.add(“McIntyre”);
for (String s : officers)

System.out.println(s);

The add method adds these items to the end of the list. So the resulting
output is this:

Blake
Burns
Houlihan
Pierce
McIntyre

The addLast method works the same. However, the addFirst method
adds items to the front of the list. Consider these statements:

LinkedList<String> officers = new LinkedList<String>();
officers.addFirst(“Blake”);
officers.addFirst(“Burns”);
officers.addFirst(“Houlihan”);
officers.addFirst(“Pierce”);
officers.addFirst(“McIntyre”);
for (String s : officers)

System.out.println(s);

Here, the resulting output shows the officers in reverse order:

McIntyre
Pierce
Houlihan
Burns
Blake

To insert an object into a specific position into the list, specify the index in
the add method. For example:

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 414

Book IV
Chapter 4

Using the
LinkedList Class

Adding Items to a LinkedList 415

LinkedList<String> officers = new LinkedList<String>();
officers.add(“Blake”);
officers.add(“Burns”);
officers.add(“Houlihan”);
officers.add(“Pierce”);
officers.add(“McIntyre”);
officers.add(2, “Tuttle”);
for (String s : officers)

System.out.println(s);

The console output from these statements is this:

Blake
Burns
Tuttle
Houlihan
Pierce
McIntyre

Here are some other thoughts to consider when you ponder how to add ele-
ments to linked lists:

✦ If you specified a type for the list when you created it, the items you add
must be of the correct type. The compiler kvetches if they aren’t.

✦ Like arrays and everything else in Java, linked lists are indexed starting
with zero.

✦ If you specify an index that doesn’t exist, the add method throws
IndexOutOfBoundsException. This is an unchecked exception,
so you don’t have to handle it.

✦ LinkedList also has a weird method named offer. It adds an item to
the end of the list and has a return type of boolean. However, it always
returns true. The offer method is defined by the Queue interface,
which LinkedList implements. Some classes that implement Queue
can refuse to accept an object added to the list via offer. In that case,
the offer method returns false. But because a linked list never runs
out of room, the offer method always returns true to indicate that the
object offered to the list was accepted.

✦ In case you’re not a M*A*S*H fan, Tuttle was a fictitious officer that
Hawkeye and B.J. made up in one episode so they could collect his pay-
checks and donate the money to the local orphanage. Unfortunately, the
ruse got out of hand. When Tuttle won a medal and a general wanted to
present it in person, they arranged for Tuttle to die in an unfortunate
helicopter accident.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 415

Retrieving Items from a LinkedList416

Retrieving Items from a LinkedList
As with the ArrayList class, you can use the get method to retrieve an
item based on its index. If you pass it an invalid index number, the get
method throws the unchecked IndexOutOfBoundsException.

You can also use an enhanced for loop to retrieve all the items in the linked
list. The examples in the preceding section use this enhanced for loop to
print the contents of the officers linked list:

for (String s : officers)
System.out.println(s);

If you want, you can also use the iterator method to get an iterator that
can access the list. For more information about iterators, refer to Book IV,
Chapter 3.

The LinkedList class also has a variety of other methods that retrieve
items from the list. Some of these methods remove the items as they are
retrieved. Some throw exceptions if the list is empty, and others return null.

Six methods retrieve the first item in the list:

✦ getFirst: Retrieves the first item from the list. This method doesn’t
delete the item. If the list is empty, NoSuchElement-Exception is
thrown.

✦ element: Identical to the getFirst method. This strangely named
method exists because it’s defined by the Queue interface, and the
LinkedList class implements Queue.

✦ peek: Similar to getFirst, but doesn’t throw an exception if the list is
empty. Instead, it just returns null. (The Queue interface also defines
this method.)

✦ remove: Similar to getFirst, but also removes the item from the list.
If the list is empty, it throws NoSuchElementException.

✦ removeFirst: Identical to remove. If the list is empty, it throws
NoSuchElementException.

✦ poll: Similar to removeFirst, but returns null if the list is empty.
(Yet another method that the Queue interface defines.)

Two methods also retrieve the last item in the list:

✦ getLast: Retrieves the last item from the list. This method does not
delete the item. If the list is empty, NoSuchElement-Exception is
thrown.

✦ removeLast: Similar to getLast, but also removes the item. If the list
is empty, it throws NoSuchElementException.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 416

Book IV
Chapter 4

Using the
LinkedList Class

Removing LinkedList Items 417

Isn’t it strange that six methods get the first item but only two get the last?
Seems to me there should be methods named lastElement, peekLast,
and pollLast that would mirror the element, peek, and poll methods.
But they didn’t ask me.

Updating LinkedList Items
As with the ArrayList class, you can use the set method to replace an
object in a linked list with another object. For example, in that M*A*S*H
episode where Hawkeye and B.J. made up Captain Tuttle, they quickly found
a replacement for him when he died in that unfortunate helicopter accident.
Here’s how Java implements that episode:

LinkedList<String> officers = new LinkedList<String>();

// add the original officers
officers.add(“Blake”);
officers.add(“Burns”);
officers.add(“Tuttle”);
officers.add(“Houlihan”);
officers.add(“Pierce”);
officers.add(“McIntyre”);
System.out.println(officers);

// replace Tuttle with Murdock
officers.set(2, “Murdock”);
System.out.println(“\nTuttle is replaced:”);
System.out.println(officers);

The output from this code looks like this:

[Blake, Burns, Tuttle, Houlihan, Pierce, McIntyre]

Tuttle is replaced:
[Blake, Burns, Murdock, Houlihan, Pierce, McIntyre]

As with an ArrayList, any changes you make to an object retrieved from a
linked list are automatically reflected in the list. That’s because the list con-
tains references to objects, not the objects themselves. For more information
about this issue, refer to Book IV, Chapter 3.

Removing LinkedList Items
You’ve already seen that several of the methods that retrieve items from a
linked list also remove the items. In particular, the remove, removeFirst,
and poll methods remove the first item from the list, and the removeLast
method removes the last item.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 417

Removing LinkedList Items418

You can also remove any arbitrary item by specifying either its index number
or a reference to the object you want to remove on the remove method. For
example, to remove item 3, use a statement like this:

officers.remove(3);

And if you have a reference to the item you want to remove, use the remove
method like this:

officers.remove(tuttle);

To remove all the items from the list, use the clear method:

officers.clear(); // Goodbye, Farewell, and Amen.

31_58961X bk04ch04.qxd 3/29/05 3:48 PM Page 418

Chapter 5: Creating Generic
Collection Classes

In This Chapter
� Discovering why the generics feature was invented

� Using generics in your own classes

� Working with wildcards in a generic class

� Examining a pair of classes that demonstrate generics

In the previous two chapters, you’ve seen how you can specify the type
for an ArrayList or a LinkedList so the compiler can prevent you

from accidentally adding the wrong type of data to the collection. The
ArrayList and LinkedList classes are able to do this because they take
advantage of a new feature of Java 1.5 called generics.

In this chapter, I show you how the generics feature works and how to put it
to use in your own classes. Specifically, you see examples of two classes that
use the LinkedList class to implement a specific kind of collection. The
first is a stack, a collection in which items are always added to the front of
the list and retrieved from the front of the list. The second is a queue, a col-
lection in which items are added to the end of the list and retrieved from the
front.

This is one of those chapters where the entire chapter gets a Technical Stuff
icon. Frankly, generics is on the leading edge of object-oriented programming.
You can get by without knowing any of the information in this chapter, so feel
free to skip it if you’re on your way to something more interesting. However,
this chapter is worth looking at even if you just want to get an idea of how
the ArrayList and LinkedList classes use the new generics feature.
And, you might find that someday you want to create your own generic
classes. Your friends will surely think you’re a genius.

To be sure, I won’t be covering all the intricacies of programming with gener-
ics. If your next job happens to be writing Java class libraries for Sun, you’ll
need to know a lot more about generics than this chapter covers. I focus
just on the basics of writing simple generic classes.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 419

Why Generics?420

Why Generics?
Before Java 1.5, collection classes could hold any type of object. For example,
the add method for the ArrayList class had this declaration:

public boolean add(Object o)
{

// code to implement the add method
}

Thus, you can pass any type of object to the add method, and the array list
gladly accepts it.

When you retrieved an item from a collection, you had to cast it to the correct
object type before you could do anything with it. For example, if you had an
array list named empList with Employee objects, you’d use a statement
like this one to get the first Employee from the list:

Employee e = (Employee)empList.get(0);

The trouble is, what if the first item in the list isn’t an Employee? Because
the add method accepts any type of object, there was no way to guarantee
that only certain types of objects could be added to the collection.

That’s why generics were invented. Now, you can declare the ArrayList
like this:

ArrayList<Employee> empList = new ArrayList<Employee>();

Here, empList is declared as an ArrayList that can hold only Employee
types. Now, the add method has a declaration that is the equivalent of this:

public boolean add(Employee o)
{

// code to implement the add method
}

Thus, you can only add Employee objects to the list. And the get method
has a declaration that’s equivalent to this:

public Employee get(int index)
{

// code to implement the get method
}

Thus, the get method returns Employee objects. You don’t have to cast
the result to an Employee because the compiler already knows the object
is an Employee.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 420

Book IV
Chapter 5

Creating Generic
Collection Classes

Creating a Generic Class 421

Creating a Generic Class
Generics let you create classes that can be used for any type specified by the
programmer at compile time. To accomplish that, the Java designers intro-
duced a new feature to the language, called formal type parameters. To create
a class that uses a formal type parameter, you list the type parameter after
the class name in angle brackets. The type parameter has a name — Sun rec-
ommends you use single uppercase letters for type parameter names — that
you can then use throughout the class anywhere you otherwise use a type.

For example, here’s a simplified version of the class declaration for the
ArrayList class:

public class ArrayList<E>

I left out the extends and implements clauses to focus on the formal type
parameter: <E>. The E parameter specifies the type of the elements that are
stored in the list. Sun recommends the type parameter name E (for Element)
for any parameter that specifies element types in a collection.

So, consider this statement:

ArrayList<Employee> empList;

Here, the E parameter is Employee, which simply means that the element
type for this instance of the ArrayList class is Employee.

Now, take a look at the declaration for the add method for the ArrayList
class:

public boolean add(E o)
{

// body of method omitted (thank you)
}

Where you normally expect to see a parameter type, you see the letter E.
Thus, this method declaration specifies that the type for the o parameter
is the type specified for the formal type parameter E. If E is Employee, that
means the add method only accepts Employee objects.

So far, so good. Now take a look at how you can use a formal type parameter
as a return type. Here’s the declaration for the get method:

public E get(int index)
{

// body of method omitted (you’re welcome)
}

Here, E is specified as the return type. That means that if E is Employee,
this method returns Employee objects.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 421

A Generic Stack Class422

One final technique you need to know before moving on: You can use the
formal type parameter within your class to create objects of any other class
that accepts formal type parameters. For example, the clone method of the
ArrayList class is written like this:

public Object clone()
{

try
{

ArrayList<E> v = (ArrayList<E>) super.clone();
v.elementData = (E[])new Object[size];
System.arraycopy(elementData, 0, v.elementData,
0, size);
v.modCount = 0;
return v;

}
catch (CloneNotSupportedException e)
{

// this shouldn’t happen since we’re Cloneable
throw new InternalError();

}
}

You don’t need to look much at the details in this method; just notice that
the first statement in the try block declares an ArrayList of type <E>.
In other words, the ArrayList class uses its own formal type parameter to
create another array list object of the same type. If you think about it, that
makes perfect sense. After all, that’s what the clone method does: creates
another array list just like this one.

The key benefit of generics is that this typing happens at compile time. Thus,
after you specify the value of a formal type parameter, the compiler knows
how to do the type checking implied by the parameter. That’s how it knows
not to let you add String objects to an Employee collection.

A Generic Stack Class
Now that you’ve seen the basics of creating generic classes, in this section
you look at a simple generic class that implements a stack. A stack is a
simple type of collection that lets you add objects to the top of the collec-
tion and remove them from the top. I name this Stack class in this section
GenStack and it has five methods:

✦ push: This method adds an object to the top of the stack.

✦ pop: This method retrieves the top item from the stack. The item is
removed from the stack in the process. If the stack is empty, this method
returns null.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 422

Book IV
Chapter 5

Creating Generic
Collection Classes

A Generic Stack Class 423

✦ peek: This method lets you peek at the top item on the stack. In other
words, it returns the top item without removing it. If the stack is empty,
it returns null.

✦ hasItems: This method returns a boolean value of true if the stack
has at least one item in it.

✦ size: This method returns an int value that indicates how many items
are in the stack.

The GenStack class uses a LinkedList to implement the stack. For the
most part, this class simply exposes the various methods of the LinkedList
class using names that are more appropriate for a stack. The complete code
for the GenStack class is shown in Listing 5-1.

LISTING 5-1:THE GENSTACK CLASS

import java.util.*;

public class GenStack<E> ➞ 3
{

private LinkedList<E> list = new LinkedList<E>(); ➞ 5

public void push(E item) ➞ 7
{

list.addFirst(item);
}

public E pop() ➞ 12
{

return list.poll();
}

public E peek() ➞ 17
{

return list.peek();
}

public boolean hasItems() ➞ 22
{

return !list.isEmpty();
}

public int size() ➞ 27
{

return list.size();
}

}

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 423

A Generic Stack Class424

The following paragraphs highlight the important details in this class:

➞ 3 The class declaration specifies the formal type parameter <E>. Thus,
users of this class can specify the type for the stack’s elements.

➞ 5 This class uses a private LinkedList object list to keep the items
stored in the stack. The LinkedList is declared with the same
type as the GenStack class itself. Thus, if the E type parameter is
Employee, the type for this LinkedList is Employee.

➞ 7 The push method accepts a parameter of type E. It uses the linked
list’s addFirst method to add the item to the beginning of the list.

➞12 The pop method returns a value of type E. It uses the linked list’s
poll method, which removes and returns the first element in the
linked list. If the list is empty, the poll method — and therefore the
pop method — returns null.

➞17 The peek method also returns a value of type E. It simply returns the
result of the linked list’s peek method.

➞22 The hasItems method returns the opposite of the linked list’s
isEmpty method.

➞27 The size method simply returns the result of the linked list’s size
method.

So that’s all there is to it. The following program gives the GenStack class a
little workout to make sure it functions properly:

public class GenStackTest
{

public static void main(String[] args)
{

GenStack<String> gs = new GenStack<String>();

System.out.println(
“Pushing four items onto the stack.”);

gs.push(“One”);
gs.push(“Two”);
gs.push(“Three”);
gs.push(“Four”);

System.out.println(“There are “
+ gs.size() + “ items in the stack.\n”);

System.out.println(“The top item is: “ +
gs.peek() + “\n”);

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 424

Book IV
Chapter 5

Creating Generic
Collection Classes

A Generic Stack Class 425

System.out.println(“There are still “
+ gs.size() + “ items in the stack.\n”);

System.out.println(“Popping everything:”);
while (gs.hasItems())

System.out.println(gs.pop());

System.out.println(“There are now “
+ gs.size() + “ items in the stack.\n”);

System.out.println(“The top item is: “ +
gs.peek() + “\n”);

}
}

This program creates a GenStack object that can hold String objects. It
then pushes four strings onto the stack and prints the number of items in
the stack. Next, it uses the peek method to print the top item and again
prints the number of items in the stack, just to make sure the peek method
doesn’t accidentally remove the item. Next, it uses a while loop to pop
each item off the stack and print it. Then it once again prints the number
of items (which should now be zero), and it peeks at the top item (which
should be null).

Here’s the output that results when you run this program:

Pushing four items onto the stack.
There are 4 items in the stack.

The top item is: Four

There are still 4 items in the stack.

Popping everything:
Four
Three
Two
One
There are now 0 items in the stack.

The top item is: null

Notice that when the program pops the items off the stack, they come out
in reverse order in which they were pushed on to the stack. That’s normal
behavior for stacks. In fact, stacks are sometimes called Last-In, First-Out
lists, or LIFO lists, for this very reason.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 425

Using Wildcard Type Parameters426

Using Wildcard Type Parameters
Suppose you have a method that’s declared like this:

public void addItems(ArrayList<Object> list)
{

// body of method not shown
}

Thought question: Does the following statement compile?

addItems(new ArrayList<String>());

Answer: Nope.

That’s surprising because String is a subtype of Object. So you’d think
that a parameter that says it accepts an ArrayList of objects accepts an
ArrayList of strings.

Unfortunately, inheritance doesn’t work quite that way when it comes to
formal type parameters. Instead, you have to use another feature of gener-
ics, called wildcards.

In short, if you want to create a method that accepts any type of
ArrayList, you have to code the method like this:

public void addItems(ArrayList<?> list)

Here, the question mark indicates that you can code any kind of type here.

That’s almost as good as inheritance, but what if you want to actually limit
the parameter to collections of a specific superclass? For example, suppose
you’re working on a payroll system that has an Employee superclass with
two subclasses named HourlyEmployee and SalariedEmployee, and
you want this method to accept an ArrayList of Employee objects,
HourlyEmployee objects, or SalariedEmployee objects?

In that case, you can add an extends clause to the wildcard, like this:

public void addItems(ArrayList<? extends Employee> list)

Then, you can call the addItems method with an ArrayList of type
Employee, HourlyEmployee, or SalariedEmployee.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 426

Book IV
Chapter 5

Creating Generic
Collection Classes

A Generic Queue Class 427

Now, before you call it a day, take this example one step further. Suppose
this addItems method appears in a generic class that uses a formal type
parameter <E> to specify the type of elements the class accepts, and you
want the addItems method to accept an ArrayList of type E or any of
its subclasses. To do that, you’d declare the addItems method like this:

public void addItems(ArrayList<? extends E> list)

Here, the wildcard type parameter <? extends E> simply means that the
ArrayList can be of type E or any type that extends E.

A Generic Queue Class
Now that you’ve seen how to use wildcards in a generic class, this section
presents a generic class that implements a queue. A queue is another type
of collection that lets you add objects to the end of the collection and
remove them from the top. Queues are commonly used in all sort of appli-
cations, from data processing applications to sophisticated networking
systems.

This queue class is named GenQueue and has the following methods:

✦ enqueue: This method adds an object to the end of the queue.

✦ dequeue: This method retrieves the first item from the queue. The item
is removed from the queue in the process. If the queue is empty, this
method returns null.

✦ hasItems: This method returns a boolean value of true if the queue
has at least one item in it.

✦ size: This method returns an int value that indicates how many items
are in the stack.

✦ addItems: This method accepts another GenQueue object as a parame-
ter. All the items in that queue are added to this queue. In the process,
all the items from the queue passed to the method are removed. The
GenQueue parameter must be of the same type as this queue or a sub-
type of this queue’s type.

The GenQueue class uses a LinkedList to implement its queue. The com-
plete code for the GenQueue class is shown in Listing 5-2.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 427

A Generic Queue Class428

LISTING 5-2:THE GENQUEUE CLASS

import java.util.*;

public class GenQueue<E> ➞ 3
{

private LinkedList<E> list = new LinkedList<E>(); ➞ 5

public void enqueue(E item) ➞ 7
{

list.addLast(item);
}

public E dequeue() ➞ 12
{

return list.poll();
}

public boolean hasItems() ➞ 17
{

return !list.isEmpty();
}

public int size() ➞ 22
{

return list.size();
}

public void addItems(GenQueue<? extends E> q) ➞ 27
{

while (q.hasItems())
list.addLast(q.dequeue());

}
}

The following paragraphs point out the highlights of this class:

➞ 3 The class declaration specifies the formal type parameter <E>. Thus,
users of this class can specify the type for the elements of the queue.

➞ 5 Like the GenStack class, this class uses a private LinkedList
object list to keep its items.

➞ 7 The enqueue method accepts a parameter of type E. It uses the linked
list’s addLast method to add the item to the end of the queue.

➞12 The dequeue method returns a value of type E. Like the pop method
of the GenStack class, this method uses the linked list’s poll
method to return the first item in the list.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 428

Book IV
Chapter 5

Creating Generic
Collection Classes

A Generic Queue Class 429

➞17 The hasItems method returns the opposite of the linked list’s
isEmpty method.

➞22 The size method returns the result of the linked list’s size method.

➞27 The addItems method accepts a parameter that must be another
GenQueue object whose element type is either the same type as this
GenQueue object’s elements or a subtype of this GenQueue object’s
element type. This method uses a while loop to remove all the items
from the q parameter and add them to this queue.

The following program exercises the GenQueue class:

public class GenQueueTest
{

public static void main(String[] args)
{

GenQueue<Employee> empList;
empList = new GenQueue<Employee>();

GenQueue<HourlyEmployee> hList;
hList = new GenQueue<HourlyEmployee>();
hList.enqueue(new HourlyEmployee(

“Trump”, “Donald”));
hList.enqueue(new HourlyEmployee(

“Gates”, “Bill”));
hList.enqueue(new HourlyEmployee(

“Forbes”, “Steve”));

empList.addItems(hList);

while (empList.hasItems())
{

Employee emp = empList.dequeue();
System.out.println(emp. emp.getFirstName()

+ “ “ + emp. emp.getLastName());
}

}
}

class Employee
{

public String lastName;
public String firstName;

public Employee() {}

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 429

A Generic Queue Class430

public Employee(String last, String first)
{

this.lastName = last;
this.firstName = first;

}

public String toString()
{

return firstName + “ “ + lastName;
}

}

class HourlyEmployee extends Employee
{

public double hourlyRate;

public HourlyEmployee(String last, String first)
{

super(last, first);
}

}

This program begins by creating a GenQueue object that can hold Employee
objects. This queue is assigned to a variable named empList.

Next, the program creates another GenQueue object. This one can hold
HourlyEmployee objects (HourlyEmployee is a subclass of Employee)
and is assigned to a variable named hList.

Then, three rookie employees are created and added to the hList queue.
The addItems method of the empList queue is then called to transfer
these employees from the hList queue to the empList queue. Because
HourlyEmployee is a subclass of Employee, the addItems method of
the empList queue accepts hList as a parameter.

Finally, a while loop is used to print the employees that are now in the
empList queue.

When this program is run, the following is printed on the console:

Donald Trump
Bill Gates
Steve Forbes

Thus, the addItems method successfully transferred the employees from
the hlist queue, which held HourlyEmployee objects, to the empList
queue, which holds Employee objects.

32_58961X bk04ch05.qxd 3/29/05 3:49 PM Page 430

Book V

Programming
Techniques

33_58961X pt05.qxd 3/29/05 3:49 PM Page 431

Contents at a Glance
Chapter 1: Programming Threads ..433

Chapter 2: Network Programming ..453

Chapter 3: Using Regular Expressions ..475

Chapter 4: Using Recursion..491

33_58961X pt05.qxd 3/29/05 3:49 PM Page 432

Chapter 1: Programming Threads

In This Chapter
� Examining threads

� Creating threads from the Thread class

� Implementing the Runnable interface

� Creating threads that cooperate

� Interrupting threads

Remember the guy from the old Ed Sullivan Show who used to spin plates?
Somehow he managed to keep all those plates spinning, running from

pole to pole to give each plate a little nudge — just enough to keep it going.

In Java, threads are the equivalent of the spinning plate guy. Threads let you
divide the work of an application up into separate pieces, which then all run
simultaneously. The result is a faster and more efficient program, but along
with the increased speed comes more difficult programming and debugging.

Truthfully, the subtleties of threaded programming is a topic for Computer
Science majors. But the basics of working with threads aren’t all that diffi-
cult to learn. In this chapter, I focus on those basics and leave the advanced
techniques for the grad students.

The main application I use to illustrate threading in this chapter simulates
the countdown clock for the space shuttle. Working with threads isn’t really
rocket science, but threading is used to solve difficult programming prob-
lems. You invariably find yourself trying to get two or more separate pieces
of code to coordinate their activities, and that’s not as easy as you might
think at first guess. As a result, I can’t possibly talk about threading without
getting into some challenging mental exercises. So be prepared to spend
some mental energy figuring out how it works.

The listings in this chapter as well as throughout the book are available at
www.dummies.com/go/javaaiofd.

Understanding Threads
A thread is a single sequence of executable code within a larger program. All
the programs shown so far in this book have used just one thread — the

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 433

Creating a Thread434

main thread that starts automatically when you run the program. However,
Java lets you create programs that start additional threads to perform spe-
cific tasks.

You’re probably already familiar with programs that use threads to perform
several tasks at once. Here are some common examples:

✦ Web browsers can download files while still letting you view Web pages.
When you download a file in a Web browser, the browser starts a sepa-
rate thread to handle the download.

✦ E-mail programs don’t make you wait for all your messages to download
before you can read the first message. Instead, these programs use sepa-
rate threads to display and download messages.

✦ Word processors can print long documents in the background while you
continue to work. These programs start a separate thread to handle
print jobs.

✦ Word processors also check your spelling as you type. Depending on
how the word processor is written, it may run the spell check in a sepa-
rate thread.

✦ Game programs commonly use several threads to handle different parts
of the game to improve the overall responsiveness of the game.

✦ All GUI-based programs use at least two threads — one thread to run the
application’s main logic, and another thread to monitor mouse and key-
board events. You find out about creating GUI programs in Java in Book VI.

✦ Indeed, the Java Virtual Machine itself uses threading for some of its
housekeeping chores. For example, the garbage collector runs as a sepa-
rate thread so it can constantly monitor the state of the VM’s memory
and decide when it needs to remove objects that are no longer being
used to create some free memory.

Creating a Thread
Suppose you’re developing software for NASA, and you’re in charge of the
program that controls the final 31 seconds of the countdown for the space
shuttle. Your software has to coordinate several key events that occur when
the clock reaches certain points. In particular:

✦ T-minus 16 seconds: Flood launch pad. This releases 350,000 gallons
of water onto the launch pad, which helps protect the shuttle systems
during launch. (I’m not making this part up.)

✦ T-minus 6 seconds: Start the main engines. In the real space shuttle,
the three engines are not started all at the same time. Instead, engine 1
is started at T-minus 6.6 seconds, engine 2 is started 120 milliseconds

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 434

Book V
Chapter 1

Program
m

ing
Threads

Creating a Thread 435

later at T-minus 6.48 seconds, and engine 3 120 milliseconds after that at
T-minus 6.36 seconds. I fudge in my program and start all three engines
at T-minus 6 seconds.

✦ T-minus 0: Lift off! The solid rocket boosters are lit, the clamps are
released, and the shuttle flies into space.

For this program, I don’t actually start any rocket engines or release huge
amounts of water. Instead, I just display messages on the console to simulate
these events. But I do create four separate threads to make everything work.
One thread manages the countdown clock. The other three threads fire off
their respective events at T-minus 16 seconds (flood the pad), T-minus 6 sec-
onds (fire the engines), and T-minus 0 (launch).

For the first attempt at this program, I just get the countdown clock up and
running. The countdown clock is represented by a class named CountDown
Clock. All this class does is count down from 20 to 0 at one second inter-
vals, displaying messages such as T minus 20 on the console as it counts.
This version of the program doesn’t do much of anything, but it does demon-
strate how to get a thread going. But first, I need to have a look at the
Thread class.

Understanding the Thread class
The Thread class lets you create an object that can be run as a thread in a
multi-threaded Java application. The Thread class has quite a few construc-
tors and methods, but for most applications you only need to use the ones
listed in Table 1-1. (Note that this table is here to give you an overview of the
Thread class and to serve as a reference. Don’t worry about the details of
each constructor and method just yet. By the end of this chapter, I explain
each of the constructors and methods.)

Table 1-1 Constructors and Methods of the Thread Class
Constructor Explanation

Thread() The basic Thread constructor without
parameters. This constructor simply cre-
ates an instance of the Thread class.

Thread(String name) Creates a Thread object and assigns
the specified name to the thread.

Thread(Runnable target) A more advanced constructor that lets
you turn any object that implements an
API interface called Runnable into a
thread. You see how this constructor is
used later in this chapter.

Thread(Runnable target, Creates a thread from any object that
String name) implements Runnable and assigns the

specified name to the thread.

(continued)

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 435

Creating a Thread436

Table 1-1 (continued)
Constructor Explanation

static int activeCount() Returns the number of active threads.

static int enumerate(Thread[] t) Fills the specified array with a copy of
each active thread. The return value is
the number of threads added to the array.

String getName() Returns the name of the thread.

int getPriority() Returns the thread’s priority.

void interrupt() Interrupts this thread.

boolean isInterrupted() Checks to see if the thread has been
interrupted.

void setPriority(int priority) Sets the thread’s priority.

void setName(String name) Sets the thread’s name.

static void Sleep Causes the currently executing thread
(int milliseconds) to sleep for the specified number of

milliseconds.

void run() This method is called when the thread is
started. Place the code that you want the
thread to execute inside this method.

void start() Starts the thread.

static void yield() Causes the currently executing thread to
yield to other threads that are waiting to
execute.

Extending the Thread class
The easiest way to create a thread is to write a class that extends the Thread
class. Then, all you have to do to start a thread is create an instance of your
thread class and call its start method.

For example, Listing 1-1 is a version of the CountDownClock class that
extends the Thread class.

LISTING 1-1:THE COUNTDOWNCLOCK CLASS (VERSION 1)

public class CountDownClock extends Thread ➞ 1
{

public void run() ➞ 3
{

for (int t = 20; t >= 0; t--) ➞ 5
{

System.out.println(“T minus “ + t);
try

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 436

Book V
Chapter 1

Program
m

ing
Threads

Creating a Thread 437

{
Thread.sleep(1000); ➞ 10

}
catch (InterruptedException e)
{}

}
}

}

Here are a few key points to notice in this class:

➞ 1 The CountDownClock class extends the Thread class. Thread is
defined in the java.language package, so you don’t have to pro-
vide an import statement to use it.

➞ 3 The CountDownClock class has a single method, named run. This
method is called by Java when the clock thread has been started. All
the processing done by the thread must either be in the run method
or in some other method called by the run method.

➞ 5 The run method includes a for loop that counts down from 20 to 0.

➞10 The CountDownClock class uses the sleep method to pause for
one second. Because the sleep method throws Interrupted
Exception, a try/catch statement handles this exception. If the
exception is caught, it is simply ignored.

At some point in its execution, the run method must either call sleep or
yield to give other threads a chance to execute.

Creating and starting a thread
After you define a class that defines a Thread object, you can create and
start the thread. For example, here’s the main class for the first version of
the countdown application:

public class CountDownApp
{

public static void main(String[] args)
{

Thread clock = new CountDownClock();
clock.start();

}
}

Here, a variable of type Thread is declared, and an instance of the Count
DownClock is created and assigned to it. This creates a thread object, but
the thread doesn’t begin executing until you call its start method.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 437

Implementing the Runnable Interface438

When you run this program, the thread starts counting down in one second
increments, displaying messages such as the following on the console:

T-minus 20
T-minus 19
T-minus 18

And so on, all the way to zero. So far, so good.

Implementing the Runnable Interface
For the threads that trigger specific countdown events such as flooding the
launchpad, starting the events, or lifting off, I create another class called
LaunchEvent. This class uses another technique for creating and starting
threads, one that requires a few more lines of code but is more flexible.

The problem with creating a class that extends the Thread class is that a
class can have one superclass. What if you’d rather have your thread object
extend some other class? In that case, you can create a class that imple-
ments the Runnable interface rather than extends the Thread class. The
Runnable interface marks an object that can be run as a thread. It has only
one method, run, that contains the code that’s executed in the thread. (The
Thread class itself implements Runnable, which is why the Thread class
has a run method.

Using the Runnable interface
To use the Runnable interface to create and start a thread, you have to do
the following:

1. Create a class that implements Runnable.

2. Provide a run method in the Runnable class.

3. Create an instance of the Thread class and pass your Runnable
object to its constructor as a parameter.

A Thread object is created that can run your Runnable class.

4. Call the Thread object’s start method.

The run method of your Runnable object is called, which executes in a
separate thread.

The first two of these steps are easy. The trick is in the third and fourth steps,
because you can complete them several ways. Here’s one way, assuming that
your Runnable class is named RunnableClass:

RunnableClass rc = new RunnableClass();
Thread t = new Thread(rc);
t.start();

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 438

Book V
Chapter 1

Program
m

ing
Threads

Implementing the Runnable Interface 439

Java programmers like to be as concise as possible, so you often see this
compressed to something more like this:

Thread t = new Thread(new RunnableClass());
t.start();

or even just this:

new Thread(new RunnableClass()).start();

This single-line version works provided you don’t need to access the thread
object later in the program.

Creating a class that implements Runnable
To sequence the launch events for the NASA application, I create a Runnable
object named LaunchEvent. The constructor for this class accepts two
parameters: the countdown time at which the event fires, and the message
that is displayed when the time arrives. Then, the run method for this class
uses Thread.sleep to wait until the desired time arrives. Then, it displays
the message.

Listing 1-2 shows the code for this class.

LISTING 1-2:THE LAUNCHEVENT CLASS (VERSION 1)

public class LaunchEvent implements Runnable ➞ 1
{

private int start;
private String message;

public LaunchEvent(int start, String message) ➞ 6
{

this.start = start;
this.message = message;

}

public void run()
{

try
{

Thread.sleep(20000 - (start * 1000)); ➞ 16
}
catch (InterruptedException e)
{}
System.out.println(message); ➞ 20

}
}

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 439

Implementing the Runnable Interface440

The following paragraphs draw your attention to the listing’s key lines:

➞ 1 This class implements the Runnable interface.

➞ 6 The constructor accepts two parameters: an integer representing the
start time (in seconds) and a string message that’s displayed when
the time arrives. The constructor simply stores these parameter
values in private fields.

➞16 In the run method, the Thread.sleep method is called to put the
thread to sleep until the desired countdown time arrives. This length of
time the thread should sleep is calculated by the expression 20000 -
(start * 1000). The countdown clock starts at 20 seconds, which
is 20,000 milliseconds. This expression simply subtracts the number
of milliseconds that corresponds to the desired start time from 20,000.
Thus, if the desired start time is 6 seconds, the sleep method sleeps
for 14,000 milliseconds — that is, 14 seconds.

➞20 When the thread wakes up, it displays the message passed via its
constructor on the console.

Using the CountDownApp class
Now that you’ve seen the code for the LaunchEvent and CountDown
Clock classes, Listing 1-3 shows the code for a CountDownApp class that
uses these classes to launch a space shuttle.

LISTING 1-3:THE COUNTDOWNAPP CLASS (VERSION 1)

public class CountDownApp
{

public static void main(String[] args)
{

Thread clock = new CountDownClock(); ➞ 5

Runnable flood, ignition, liftoff; ➞ 7
flood = new LaunchEvent(16, “Flood the pad!”);
ignition = new LaunchEvent(6, “Start engines!”);
liftoff = new LaunchEvent(0, “Liftoff!”);

clock.start(); ➞ 12

new Thread(flood).start(); ➞ 14
new Thread(ignition).start();
new Thread(liftoff).start();

}
}

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 440

Book V
Chapter 1

Program
m

ing
Threads

Implementing the Runnable Interface 441

The following paragraphs summarize how this program works:

➞ 5 The main method starts by creating an instance of the CountDown
Clock class and saving it in the clock variable.

➞ 7 Next, it creates three LaunchEvent objects to flood the pad at
16 seconds, start the engines at 6 seconds, and lift off at 0 seconds.
These objects are assigned to variables of type Runnable named
flood, ignition, and liftoff.

➞12 The clock thread is started. The countdown starts ticking.

➞14 Finally, the program starts the three LaunchEvent objects as
threads. It does this by creating a new instance of the Thread class,
passing the LaunchEvent objects as parameters to the Thread
constructor, and then calling the start method to start the thread.

Note that because this program doesn’t need to do anything with
these threads once they’re started, it doesn’t bother creating vari-
ables for them.

When you run this program, the following output is displayed on the console:

T minus 20
T minus 19
T minus 18
T minus 17
T minus 16
Flood the pad!
T minus 15
T minus 14
T minus 13
T minus 12
T minus 11
T minus 10
T minus 9
T minus 8
T minus 7
T minus 6
Start engines!
T minus 5
T minus 4
T minus 3
T minus 2
T minus 1
Liftoff!
T minus 0

As you can see, the LaunchEvent messages are interspersed with the
CountDownClock messages. Thus, the launch events are triggered at the
correct time.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 441

Creating Threads That Work Together442

You can improve the main method for this class by using an ArrayList
to store the Runnable objects. Then, you can start all the LaunchEvent
threads by using an enhanced for loop. Here’s what the improved code
looks like:

public static void main(String[] args)
{

Thread clock = new CountDownClock();

ArrayList<Runnable> events
= new ArrayList<Runnable>();

events.add(new LaunchEvent(16, “Flood the pad!”));
events.add(new LaunchEvent(6, “Start engines!”));
events.add(new LaunchEvent(0, “Liftoff!”));

clock.start();

for (Runnable e : events)
new Thread(e).start();

}

The advantage of this technique is that you don’t need to create a separate
variable for each LaunchEvent.

Creating Threads That Work Together
Unfortunately, the countdown application presented in the previous section
has a major deficiency. The CountDownClock and LaunchEvent threads
depend strictly on timing to coordinate their activities. After these threads
start, they run independently of one another. As a result, random variations
in their timings can cause the thread behaviors to change.

For example, if you run the program several times in a row, you’ll discover
that sometimes the Start engines! message appears after the T minus
6 message, and sometimes it appears before the T minus 6 message. That
might not be a big deal to you, but it would probably be disastrous for the
astronauts on the shuttle.

What these classes really need is a way to communicate with each other.
Listing 1-4 shows an improved version of the countdown application that
incorporates several enhancements. The CountDownClock class in this
version adds a new method named getTime that gets the current time
in the countdown. Then, the LaunchEvent class checks the countdown
time every 10 milliseconds and triggers the events only when the countdown
clock actually says it’s time. This version of the application runs consistently.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 442

Book V
Chapter 1

Program
m

ing
Threads

Creating Threads That Work Together 443

In addition, you want to enable the LaunchEvent class to monitor the
status of the CountDownClock, but you don’t want to couple the
LaunchEvent and CountDownClock classes too closely together.
For example, suppose you later develop a better countdown clock? If the
LaunchEvent class knows what class is doing the counting, you have to
recompile it if you use a different countdown class.

The solution is to use an interface as a buffer between the classes. This
interface defines a method that gets the current status of the clock. Then,
the CountDownClock class can implement this interface, and the
LaunchEvent class can use any object that implements this interface to
get the time.

LISTING 1-4:THE COUNT DOWN APPLICATION (VERSION 2)

import java.util.ArrayList;

// version 2.0 of the Countdown application
public class CountDownApp
{

public static void main(String[] args)
{

CountDownClock clock = new CountDownClock(20); ➞ 8

ArrayList<Runnable> events = new ArrayList<Runnable>(); ➞ 10

events.add(➞ 12
new LaunchEvent(16, “Flood the pad!”, clock));

events.add(
new LaunchEvent(6, “Start engines!”, clock));

events.add(
new LaunchEvent(0, “Liftoff!”, clock));

clock.start(); ➞ 19

for (Runnable e : events) ➞ 21
new Thread(e).start();

}
}

interface TimeMonitor ➞ 26
{

int getTime();
}

class CountDownClock extends Thread implements TimeMonitor ➞ 31
{

private int t; ➞ 33

public CountDownClock(int start) ➞ 35
{

this.t = start;
}

continued

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 443

Creating Threads That Work Together444

LISTING 1-4 (CONTINUED)

public void run()
{

for (; t >= 0; t--) ➞ 42
{

System.out.println(“T minus “ + t);
try
{

Thread.sleep(1000);
}
catch (InterruptedException e)
{}

}
}

public int getTime() ➞ 54
{

return t;
}

}

class LaunchEvent implements Runnable ➞ 60
{

private int start;
private String message;
TimeMonitor tm; ➞ 64

public LaunchEvent(int start, String message,
TimeMonitor monitor)

{
this.start = start;
this.message = message;
this.tm = monitor;

}

public void run()
{

boolean eventDone = false;
while (!eventDone)
{

try
{

Thread.sleep(10); ➞ 81
}
catch (InterruptedException e)
{}
if (tm.getTime() <= start) ➞ 85
{

System.out.println(this.message);
eventDone = true;

}
}

}
}

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 444

Book V
Chapter 1

Program
m

ing
Threads

Creating Threads That Work Together 445

The following paragraphs describe the high points of this version:

➞ 8 As you see in line 35, the constructor for the CountDownClock
class now accepts a parameter to specify the starting time for the
countdown. As a result, this line specifies 20 as the starting time for
the CountDownClock object.

➞10 An ArrayList of LaunchEvent objects is used to store each
launch event.

➞12 The lines that create the LaunchEvent objects pass the Count
DownClock object as a parameter to the LaunchEvent construc-
tor. That way, the LaunchEvent objects can call the clock’s abort
method if necessary.

➞19 The clock is started!

➞21 An enhanced for loop starts threads to run the LaunchEvent
objects.

➞26 The TimeMonitor interface defines just one method, named
getTime. This method returns an integer that represents the
number of seconds left on the countdown timer.

➞31 The CountDownClock class now implements the TimeMonitor
interface.

➞33 A private field named t is used to store the current value of the
countdown clock. That way, the current clock value can be accessed
by the constructor, the run method, and the getTime method.

➞35 The constructor for the CountDownClock class accepts the starting
time for the countdown as a parameter. Thus, this countdown clock
doesn’t have to start at 20 seconds. The value passed via this param-
eter is saved in the t field.

➞42 The for loop in the run method tests and decrements the t vari-
able. But because this variable is already initialized, it doesn’t have
an initialization expression.

➞54 The getTime() method simply returns the value of the t variable.

➞60 The start of the LaunchEvent class.

➞64 A private field of type TimeMonitor is used to access the countdown
clock. A reference to this object is passed to the LaunchEvent class
via its constructor. The constructor simply stores that reference in
this field.

➞81 The while loop includes a call to Thread.sleep that sleeps for
just 10 milliseconds. Thus, this loop checks the countdown clock
every 10 milliseconds to see if its time has arrived.

➞85 This statement calls the getTime method of the countdown clock
to see if it’s time to start the event. If so, a message is displayed, and
eventDone is set to true to terminate the thread.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 445

Synchronizing Methods446

Synchronizing Methods
Whenever you work on a program that uses threads, you have to consider the
nasty issue of concurrency. In particular, what if two threads try to access a
method of an object at precisely the same time? Unless you program carefully,
the result can be disastrous. A method that performs a simple calculation
returns inaccurate results. In an online banking application, you might dis-
cover that some deposits are credited twice and some withdrawals aren’t
credited at all. In an online ordering system, one customer’s order might get
recorded in a different customer’s account.

The key to handling concurrency issues is recognizing methods that update
data and that might be called by more than one thread. Once you identify
those methods, the solution is simple: You just add the synchronized key-
word to the method declaration, like this:

public synchronized void someMethod()...

This tells Java to place a lock on the object so that no other methods can
call any other synchronized methods for the object until this method fin-
ishes. In other words, it temporarily disables multithreading for the object.

The tough part is knowing which methods to synchronize. When I said that
any method that updates data can be synchronized, I didn’t just mean any
method that updates a database. Any method that updates instance vari-
ables is at risk and needs to be synchronized. That’s because when two or
more threads run a method at the same time, the threads share a common
copy of the method’s instance variables.

Even methods that consist of just one line of code are at risk. For example,
consider this method:

int sequenceNumber = 0;

public int getNextSequenceNumber()
{

return sequenceNumber++;
}

You’d think that because this method has just one statement, some other
thread could not interrupt it in the middle. Alas, that’s not the case. This
method must get the value of the sequenceNumber field, add 1 to it, save
the updated value back to the sequenceNumber field, and return the value.
In fact, this single Java statement compiles to 11 bytecode instructions. If the
thread is preempted between any one of them by another thread calling the
same method, the serial numbers get munged.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 446

Book V
Chapter 1

Program
m

ing
Threads

Threadus Interruptus 447

For safety’s sake, why not just make all the methods synchronized? There
are two reasons:

✦ It takes time to synchronize methods. Java has to acquire a lock on the
object being synchronized, run the method, and then release the lock.
But before it can do that, it has to check to make sure some other thread
doesn’t already have a lock on the object. All of this takes time.

✦ More importantly, synchronizing all your methods defeats the purpose
of multithreading. So you should synchronize only those methods that
require it.

The synchronized keyword doesn’t block all access to an object. Other
threads can still run unsynchronized methods of the object while the
object is locked.

The Object class provides three methods that can let synchronized objects
coordinate their activities. The wait method puts a thread in the waiting state
until some other thread calls either the object’s notify or (more commonly)
notifyAll method. These methods are useful in situations where one thread
has to wait for another thread to do something before it can proceed. The
classic example is a banking system where one thread makes withdrawals
and the other makes deposits. If a customer’s account drops to zero, the
thread that makes withdrawals can call wait. Then, the thread that makes
deposits can call notifyAll. That way, each time a deposit is made, the
withdrawal thread can recheck the customer’s account balance to see if it
now has enough money to make the withdrawal.

Threadus Interruptus
You can interrupt another thread by calling its interrupt method, pro-
vided you have a reference to the thread. For example:

t.interrupt();

Here, the thread referenced by the t variable is interrupted. Now, all the
interrupted thread has to do is find out that it has been interrupted and
respond accordingly. That’s the topic of the following sections.

Finding out if you’ve been interrupted
As you’ve already seen, several methods of the Thread class, including
sleep and yield, throw InterruptedException. Up until now, I told
you to simply ignore this exception. And in many cases, that’s appropriate.
However, many (if not most) threads should respond to Interrupted
Exception in one way or another. In most cases, the thread should termi-
nate when it’s interrupted.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 447

Threadus Interruptus448

Unfortunately, finding out if a thread has been interrupted isn’t as easy as it
sounds. InterruptedException is thrown when another thread calls the
interrupt method on this thread while the thread is not executing. That’s
why the methods that can cause the thread to give up control to another
thread throw this exception. That way, when the thread resumes execution,
you know it was interrupted.

However, the yield and sleep methods aren’t the only way for control to
be wrested away from a thread. Sometimes, the thread scheduler just steps
in and says, “You’ve had enough time, now it’s someone else’s turn to play.”
If that happens, and then some other thread calls your thread’s interrupt
method, InterruptedException isn’t thrown. Instead, a special flag
called the interrupted flag is set to indicate that the thread was interrupted.
You can test the status of this flag by calling the static interrupted
method.

Unfortunately, that means your threads have to check twice to see if they
have been interrupted. The usual way to do that is to follow this form:

public void run()
{

boolean done = false
boolean abort = false;
while(!done)
{

// do the thread’s work here
// set done to true when finished
try
{

sleep(100); // sleep a bit
}
catch(InterruptedException e)
{

abort = true;
}
if (Thread.interrupted())

abort = true;
if (abort)

break;
}

}

Here, the abort boolean variable is set to true if InterruptedException
is thrown or if the interrupted flag is set. Then, if abort has been set to true, a
break statement is executed to leave the while loop. Of course, this scheme
has a million variations. But this one works in most situations.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 448

Book V
Chapter 1

Program
m

ing
Threads

Threadus Interruptus 449

Aborting the countdown
To illustrate how you can interrupt threads, Listing 1-5 shows yet another
version of the countdown application. This version aborts the countdown if
something goes wrong with any of the launch events.

To simplify the code a bit, I assume that things aren’t going well at NASA,
so every launch event results in a failure that indicates to abort the count-
down. Thus, whenever the start time for a LaunchEvent arrives, the
LaunchEvent class attempts to abort the countdown. It goes without
saying that in a real launch control program, you wouldn’t want to abort
the launch unless something actually does go wrong.

LISTING 1-5:THE COUNTDOWN APPLICATION WITH ABORTS

import java.util.ArrayList;

public class CountDownApp ➞ 3
{

public static void main(String[] args)
{

CountDownClock clock = new CountDownClock(20);

ArrayList<Runnable> events = new ArrayList<Runnable>();
events.add(

new LaunchEvent(16, “Flood the pad!”, clock));
events.add(

new LaunchEvent(6, “Start engines!”, clock));
events.add(

new LaunchEvent(0, “Liftoff!”, clock));

clock.start();

for (Runnable e : events)
new Thread(e).start();

}
}

interface TimeMonitor
{

int getTime();
void abortCountDown(); ➞ 26

}

class CountDownClock extends Thread implements TimeMonitor
{

private int t;

continued

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 449

Threadus Interruptus450

LISTING 1-5 (CONTINUED)

public CountDownClock(int start)
{

this.t = start;
}

public void run()
{

boolean aborted = false; ➞ 40
for (; t >= 0; t--)
{

System.out.println(“T minus “ + t);
try
{

Thread.sleep(1000);
}
catch (InterruptedException e)
{

aborted = true; ➞ 50
}
if (Thread.interrupted())

aborted = true; ➞ 53
if (aborted) ➞ 54
{

System.out.println(“Stopping the clock!”);
break;

}
}

}

public int getTime()
{

return t;
}

public synchronized void abortCountDown() ➞ 67
{

Thread[] threads = new Thread[Thread.activeCount()]; ➞ 69
Thread.enumerate(threads); ➞ 70
for(Thread t : threads) ➞ 71

t.interrupt();
}

}

class LaunchEvent implements Runnable
{

private int start;
private String message;
TimeMonitor tm;

public LaunchEvent(int start, String message,
TimeMonitor monitor)

{
this.start = start;
this.message = message;
this.tm = monitor;

}

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 450

Book V
Chapter 1

Program
m

ing
Threads

Threadus Interruptus 451

public void run()
{

boolean eventDone = false;
boolean aborted = false; ➞ 92
while (!eventDone)
{

try
{

Thread.sleep(10);
}
catch (InterruptedException e)
{

aborted = true; ➞ 101
}
if (tm.getTime() <= start)
{

System.out.println(this.message);
eventDone = true;
System.out.println(“ABORT!!!!”); ➞ 107
tm.abortCountDown(); ➞ 108

}
if (Thread.interrupted())

aborted = true; ➞ 111
if (aborted) ➞ 112
{

System.out.println(“Aborting “ + message);
break;

}
}

}
}

The following paragraphs point out the highlights of this program:

➞ 3 The CountDownApp class itself hasn’t changed. That’s the beauty of
object-oriented programming. Although I changed the implementations
of the CountDownClock and LaunchEvent classes, I didn’t change
the public interfaces for these classes. As a result, no changes are
needed in the CountDownApp class.

➞26 The LaunchEvent class needs a way to notify the CountDownTimer
class that the countdown should be aborted. To do that, I added an
abortCountDown method to the TimeMonitor interface.

➞40 The run method of the CountDownClass uses a boolean variable
named aborted to indicate whether the thread has been interrupted.
This variable is set to true in line 50 if InterruptedException is
caught. It’s also set to true in line 53 if Thread.interrupted()
returns true.

➞54 If the aborted field has been set to true, it means the thread has
been interrupted. So the message Stopping the clock! is
displayed, and a break statement exits the loop. Thus, the thread
is terminated.

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 451

Threadus Interruptus452

➞ 67 The abortCountDown method is synchronized. That’s because any
of the LaunchEvent objects can call it, and there’s no guarantee
that they won’t all try to call it at the same time.

➞ 69 The abortCountDown method starts by creating an array of
Thread objects that’s large enough to hold all the active threads.
The number of active threads is provided by the activeCount
method of the Thread class.

➞ 70 The abortCountDown method then calls the enumerate method of
the Thread class to copy all the active threads into this array. Note
that this method is static, so you don’t need a reference to any partic-
ular thread to use it. (The activeCount method used in line 69 is
static too.)

➞ 71 An enhanced for loop is used to call the interrupt method on all
the active threads. That shuts down everything.

➞ 92 Like the CountDownClock class, the LaunchEvent class uses a
boolean variable to indicate whether the thread has been inter-
rupted. This thread is set if InterruptedException is caught in
line 101 or if Thread.interrupted() returns true in line 111.
Then, it’s tested in line 112. If it has been set to true, the thread
prints a message indicating that the launch event has been aborted,
and a break statement is used to exit the loop and, therefore, termi-
nate the thread.

➞101 When the launch event’s start time arrives, the LaunchEvent class
displays the message ABORT! and calls the abortCountDown
method. Thus, the countdown is aborted the first time any launch
event occurs.

When you run this version of the countdown application, here’s what
appears on the console:

T minus 20
T minus 19
T minus 18
T minus 17
T minus 16
Flood the pad!
ABORT!!!!
Stopping the clock!
Aborting Flood the pad!
Aborting Start engines!
Aborting Liftoff!

34_58961X bk05ch01.qxd 3/29/05 3:47 PM Page 452

Chapter 2: Network Programming

In This Chapter
� IP addresses, DNS names, and other fun stuff

� The InetAddress class

� The Socket class

� The ServerSocket class

� A simple client/server program

� A server program that uses threads

The term network programming can mean a lot of different things. Applets
are a form of network programming, as are Java Server Pages and servlets.

I cover these network programming features in detail in Book VII.

File and database programming can also be thought of as a form of network
programming, as files and databases can be located on a server computer
rather than on the computer where the application is run. Book VIII covers
the networking aspects of file and database programming.

In this chapter, you discover how to use Java’s sockets interface, which lets
you set up input and output streams between programs on client and server
computers. In fact, I show you how to create a simple server program that
can be accessed over the Internet.

Along the way, you find out about the TCP/IP networking protocol, IP
addresses and ports, and other useful networking topics.

Understanding Network Programming
Network programming usually involves two types of programs: client pro-
grams and server programs. A server program is a program that provides
services to one or more users who run client programs to access those
services. These client and server computers communicate with each other
through well-established protocols, which dictate the nature of the communi-
cations between clients and servers.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 453

Understanding Network Programming454

Examples of client and server programs abound:

✦ The World Wide Web uses Web servers that provide services. The clients
in the World Wide Web are Web browsers, such as Internet Explorer or
Navigator. The protocol used to communicate between Web servers and
browsers is called HTTP.

✦ E-mail is made possible by a protocol called the Simple Mail Transfer
Protocol, or SMTP. The servers are mail servers, such as sendmail and
Microsoft Exchange; the clients are e-mail programs, such as Microsoft
Outlook.

✦ The Internet system that converts human-friendly addresses such as
www.dummies.com to numeric IP addresses such as 208.215.179.139 is
managed by a protocol called DNS, which stands for Domain Name System.
Your own computer serves as a DNS client, requesting address lookup
from DNS servers. For example, when you type www.dummies.com in
your Web browser, the browser first asks a DNS server to get the correct
IP address for the Web site.

I could go on and on.

IP addresses and ports
An IP address is a number that uniquely identifies every computer on an IP
network. IP addresses are 32-bit binary numbers, which means that theoreti-
cally, a maximum of something in the neighborhood of 4 billion unique host
addresses can exist throughout the Internet.

IP addresses are usually represented in a format known as dotted-decimal
notation. In dotted-decimal notation, each group of eight bits, known as an
octet, is represented by its decimal equivalent. For example:

192.168.136.28

You usually see IP addresses represented in this format.

Besides an IP address, you must also use a port to access data from a com-
puter over the Internet. The various services that a server computer might
provide are assigned well-known port numbers. For example, the port number
for the Web protocol HTTP is 80. As a result, a computer that wants to access
a Web server HTTP must do so over port 80.

Port numbers are often specified with a colon following an IP address. For
example, the HTTP service on a server whose IP address is 192.168.10.133 is
192.168.10.133:80.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 454

Book V
Chapter 2

N
etw

ork
Program

m
ing

Understanding Network Programming 455

Literally thousands of established ports are in use. If you need to make up
a port number for an application, pick a number that’s greater than 49151.
Those numbers are available for private use.

Host names, DNS, and URLs
A host name is a name that’s associated with a particular IP address. Host
names are created using a naming standard called DNS, which stands for
Domain Name System. If it weren’t for DNS, you’d buy books from 207.171.
166.48 instead of from www.amazon.com, you’d sell your used furniture at
66.135.192.87 instead of on www.ebay.com, and you’d search the Web at
216.239.57.99 instead of at www.google.com.

The Internet has an entire network of DNS server computers throughout the
world that look up host names and provide the corresponding IP address.
For example, when you enter www.dummies.com into the address bar of a
Web browser, your browser consults a DNS server to find out the IP address
for www.dummies.com. Then it displays the home page for that address.

Closely related to DNS is URL, which stands for Uniform Resource Locator.
URL is a naming scheme that can uniquely identify any resource on the
Internet. By resource, I usually mean file. Thus, URL turns the DNS naming
system into a huge file system that lets you access any file that’s available
anywhere on the Internet. It does this by appending filepath information to
the end of a host name, like this:

ftp.someserver.com/pub/myfile.txt

This URL refers to a file named myfile.txt in a directory named pub on a
computer identified by the host name ftp.someserver.com. I won’t deal
with URLs in this chapter, but they play a big role in Web programming. So
be prepared to revisit them in Book VII.

Every computer has a special host name and IP address that’s used to iden-
tify itself to itself. This host name is localhost, and the IP address is
127.0.0.1. This it’s-all-about-me address is sometimes called the loopback
address. localhost is an invaluable testing feature because it lets you test
networking programs without requiring that you use separate computers. In
other words, you can run a client and server program on the same computer
by having them both use localhost to refer to each other.

Telnet
Telnet is a handy debugging tool that can let you check out network pro-
grams interactively. It comes free with just about every operating system,
though it may or may not be installed automatically. So if you don’t have it,
you may have to retrieve it from your operating system disks.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 455

Getting Information about Internet Hosts456

Using telnet is easy. From a command prompt, just type telnet followed by
name of the host (or its IP address) and the port number you want to con-
nect to. For example:

telnet somecomputer.com 80

This command connects to port 80 of somecomputer.com.

To connect to a network server program running on the same computer
you’re running telnet on, just use localhost as the host name. For exam-
ple, here’s a command that connects to a server program using port 1234:

telnet localhost 1234

Once telnet fires up, anything you type is sent to the port, and anything
received from the port is displayed in the telnet window.

You may have to configure telnet to echo characters you type so you can see
what you’re typing. Each telnet program has a different way to do this, so you
have to consult the program’s help to find out. (Try running telnet -?
from the command prompt to get help.)

The telnet command is a command-based telnet client. Windows also
comes with a Windows-based telnet client named Hyperterminal. You can
run it by choosing Start➪Programs➪Accessories➪Communications➪
Hyperterminal.

Getting Information about Internet Hosts
One of the most useful Java API classes for network programming is the
InetAddress class. In the following sections, you discover what this class
does and how to use it in a simple program that displays the IP address used
for any domain name.

The InetAddress class
As you know, an IP address is simply a number that corresponds to a partic-
ular host computer on the Internet. The designers of Java could have simply
represented IP addresses as long numbers. But instead, they created a pow-
erful class called InetAddress that represents an IP address.

The InetAddress includes a number of useful methods that let you create
InetAddress objects from strings that represent IP addresses or host names
or perform useful lookups to find out the IP address for a given host name or
vice versa. Table 2-1 lists the most commonly used methods.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 456

Book V
Chapter 2

N
etw

ork
Program

m
ing

Getting Information about Internet Hosts 457

Table 2-1 Methods of the InetAddress Class
Method Description

byte[] getAddress() Returns the raw IP address as an array of
bytes.

static InetAddress[] Returns an array of Internet addresses for
getAllByName(String host) the specified host name. This method per-

forms a DNS query to get the addresses.
Throws UnknownHostException if
the specified host doesn’t exist.

static InetAddress getByName Returns the Internet address for the spec-
(String host) ified host name or IP address. This method

performs a DNS query to get the address.
Throws UnknownHostException if
the specified host doesn’t exist.

String getCannonicalHostName() Returns the fully qualified host name for
this IP address.

String getHostAddress() Returns the IP address as a formatted
string.

String getHostName() Performs a reverse DNS lookup to get the
host name for this IP address.

boolean isReachable Determines if the IP address can be
(int timeout) reached. The attempt fails if no response

is reached before the timeout period
(in milliseconds) elapses.

String toString() Converts the IP address to a string. The
result includes both the host name and
the IP address.

Here are a few additional points about this class:

✦ This class doesn’t have a constructor. Instead, the normal way to create
it is to call one of its static methods, such as getByName.

✦ The isReachable, getAllByName, and getByName methods throw
exceptions.

✦ Several of these methods perform DNS queries to determine their return
values. These methods use the DNS server configured for your system
to perform these queries.

✦ This class is part of the java.net package, so any program that uses it
must import either java.net.InetAddress or java.net.*.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 457

Getting Information about Internet Hosts458

A program that looks up host names
Listing 2-1 presents a program that uses the InetAddress class to look up
the IP addresses associated with any given host name. This program uses
the getAllByName method of the InetAddress class to do this lookup.
Here’s a sample of what this handy little program can do:

Welcome to the IP lookup application.

Enter a host name: www.wiley.com
www.wiley.com/208.215.179.146

Look up another? (Y or N) y

Enter a host name: www.dummies.com
www.dummies.com/208.215.179.139

Look up another? (Y or N) y

Enter a host name: amazon.com
amazon.com/207.171.166.48
amazon.com/207.171.166.102
amazon.com/207.171.163.30
amazon.com/207.171.163.90

Look up another? (Y or N) n

The Façade Pattern
The InetAddress class is an example of a
commonly used design pattern called the
Façade pattern. In this pattern, you use a single
class to hide the details of a complex object or
set of related classes. The InetAddress
class combines the representation of an IP
address with a variety of tasks that are com-
monly associated with IP addresses, such as
using DNS to get the IP address based on a
host name. (An even better example of the
facade pattern is the URL class, which pro-
vides a single class to access the complex fea-
tures of URLs.)

The Façade pattern is commonly used in Java
programming, especially in systems that need
to incorporate access to complicated existing

systems. For example, suppose you have a fully
integrated order handling system already in
place, and you want to provide a way for Web
users to order directly from your company via
this system. Unfortunately, the existing system
is way too complicated for your customers to
use directly — it’s designed to be used by
trained sales personnel, and provides access
to many different sales features that your cus-
tomers don’t need and shouldn’t be exposed to.

One way to do this is to create a facade for the
ordering system. This facade includes an inter-
face that provides just the classes and meth-
ods needed to implement your ordering system
online, hiding as much of the complexity of the
real ordering system as possible.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 458

Book V
Chapter 2

N
etw

ork
Program

m
ing

Getting Information about Internet Hosts 459

As you can see, this program prompts the user for a host name. It then looks
up the IP address or addresses for the host name, displays the results, and
asks the user if he or she wants to look up another host.

LISTING 2-1:THE HOSTLOOKUP APPLICATION

import java.util.Scanner;
import java.net.*; ➞ 2

public class HostLookup
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(
“Welcome to the IP lookup application.”);

String host;
do ➞ 11
{

System.out.print(“\nEnter a host name: “);
host = sc.nextLine(); ➞ 14
try
{

InetAddress[] addresses ➞ 17
= InetAddress.getAllByName(host);

for (InetAddress ip : addresses) ➞ 19
System.out.println(ip.toString()); ➞ 20

}
catch (UnknownHostException e)
{

System.out.println(“Unknown host.”);
}

} while (doAgain()); ➞ 26
}

private static boolean doAgain()
{

System.out.println();
String s;
while (true)
{

System.out.print(“Look up another? (Y or
N) “);

s = sc.nextLine();
if (s.equalsIgnoreCase(“Y”))

return true;
else if (s.equalsIgnoreCase(“N”))

return false;
}

}
}

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 459

Creating Network Server Applications460

The following paragraphs describe the key lines in this program:

➞ 2 The InetAddress class lives in the java.net package, so an
import statement is required to use it.

➞11 This do loop lets the user look up as many host names as he or she
wants. The loop ends in line 26, which calls the doAgain method to
ask the user if he or she wants to look up another host.

➞14 This line gets the host name the user wants to look up and saves it in
the string variable host.

➞17 This statement creates an array variable named addresses whose
type is InetAddress. In other words, this variable holds an array of
Internet addresses. Then, it calls the static getAllByName method
of the InetAddress class, passing the host name entered in line 14
as the parameter. This method performs a DNS lookup on the host
name and returns an array that contains all the Internet addresses
for the name.

➞19 An enhanced for loop is used to process each InetAddress object
in the addresses array.

➞20 This line calls the toString method to convert an Internet address
to a string. The string returned by the toString method includes
both the host name and the IP address.

Creating Network Server Applications
One popular form of network programming is creating client and server
programs that work together to perform specific tasks. These programs
communicate with each other by sending information over the network. The
format of this information is governed by a protocol, which is merely an agree-
ment on the types of messages the clients and servers can send and receive.

A few hundred well-established protocols already exist for such things as
sending e-mail and Web pages, looking up DNS names, sharing files, and so
on. However, for specialized networking applications, you may find yourself
developing your own protocol to coordinate your clients and servers.

Each protocol usually has a unique port assigned to it. For example, port 80
is reserved for the HTTP protocol used to exchange Web pages, and port 25
is used for the SMTP protocol used to exchange e-mail messages. If you end
up creating your own protocol, you need to pick a port that doesn’t conflict
with any of the known ports or with any ports that the users of your applica-
tion may already be using for other purposes.

Client and server computers establish a connection on a port by means of
a special object called a socket. In the following sections, I talk about two Java
classes that are designed to work with sockets. Then, you see an example of a
simple server program and a client that’s designed to work with the server.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 460

Book V
Chapter 2

N
etw

ork
Program

m
ing

Creating Network Server Applications 461

In this section, I look at two classes that are designed for communicating
through sockets. The first, Socket, represents a basic socket object. The
second, ServerSocket, is used to help servers establish socket connec-
tions with clients.

The Socket class
The Socket class represents a socket connection between two programs.
Although the programs can be running on the same computer, they don’t
have to be. In fact, any two computers that are connected to the Internet can
communicate with each other via a socket. Table 2-2 lists the most commonly
used constructors and methods of this class.

Table 2-2 Constructors and Methods of the Socket Class
Constructor Description

Socket() Creates an unconnected socket.

Socket(InetAddress address, Creates a socket and connects it
int port) to the specified address and port.

Socket(String host, int port) Creates a socket and connects it
to the specified host and port.

Method Description

void Close() Closes the socket.

void connect(InetSocketAddress Connects the socket to the
endpoint) specified address.

InetAddress getInetAddress() Gets the address to which the
socket is connected.

InputStream getInputStream() Gets an input stream that can be
used to receive data sent through
this socket.

OutputStream getOutputstream() Gets an output stream that can
be used to send data through this
socket.

int getPort() Gets the port to which this socket
is connected.

boolean isBound() Indicates whether or not the
socket is bound to a port.

boolean isClosed() Indicates whether or not the
socket is closed.

Here are a few important details about the Socket class:

✦ Although the Socket class has constructors that let you connect to a
specific address, the normal way to create a socket is to use the attach
method of the ServerSocket class.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 461

Creating Network Server Applications462

✦ The InputStream object returned by the getInputStream method
can be passed to a constructor of the Scanner class. Then, you can use
the resulting Scanner object to retrieve data from the socket.

✦ The getOutputStream method returns an object of the Output
Stream class. This is the same class used by System.out. As a result,
you can use the familiar print and println methods to send data to
the socket.

✦ All the constructors and methods of this class except the default
constructor and the getInetAddress, getPort, isBound, and
isClosed methods throw exceptions. As a result, you need to enclose
calls to these methods in a try/catch statement.

The ServerSocket class
A server socket is a socket that lets clients connect with your application.
When a client connects, the server socket creates a Socket object, which
the application can then use to communicate with the client. Table 2-3 lists
the most commonly used constructors and methods of this class.

Table 2-3 Constructors and Methods of the ServerSocket Class
Constructor Description

ServerSocket() Creates a server socket that isn’t bound to
any port.

ServerSocket(int port) Creates a server socket and binds it to the
specified port. The server socket then listens
for connection attempts on this port.

Method Description

Socket attach() Listens for connection attempts via the port
this socket is bound to. The thread that calls
this method waits until a connection is made.
Then, this method returns, passing a Socket
object that can be used to communicate with
the client.

void bind(InetSocketAddress Binds this server socket to the specified
endpoint) address.

void close() Closes the server socket.

InetAddress getInetAddress() Gets the address to which the server socket is
connected.

boolean isBound() Indicates whether or not the server socket is
bound to a port.

boolean isClosed() Indicates whether or not the server socket is
closed.

Here are some important points to remember about the ServerSocket
class:

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 462

Book V
Chapter 2

N
etw

ork
Program

m
ing

Introducing BART 463

✦ When you call the attach method, the thread is suspended until a con-
nection is made.

✦ The second constructor and the attach, bind, and close methods
throw exceptions. As a result, you need to enclose calls to these meth-
ods in a try/catch statement.

Introducing BART
In this section, I create a simple network server program that provides clients
with a randomly selected quote from a well known television program called
the Shrimpsons. It seems that a certain young boy on this program, whose
name shall remain unknown, frequently has to write sentences on the black-
board as punishment. The sentences that he has been known to write have
some minor amusement value.

I call the server the BartServer, and the protocol used to communicate with
the BartServer BART, short for Blackboard Assignment Retrieval Transaction,
because it allows you to randomly retrieve blackboard assignments. The
protocol itself is simple:

1. When you connect to the BartServer, it displays a greeting line and a line
of instructions.

2. If you send the command get, the BartServer replies by sending you a
randomly selected sentence from one of the young man’s blackboard
assignments.

3. If you send the command bye, the BartServer disconnects you.

4. If you send anything else, the BartServer replies “Huh?”

The BartServer communicates over port 1234. Once you get the BartServer
up and running on your computer, you can test it out by running the telnet
command from a command prompt. Type the command telnet local
host 1234, and you’re greeted with a message indicating that you have
successfully connected. Here’s a typical telnet session with the BartServer:

Welcome to BartServer 1.0
Enter GET to get a quote or BYE to exit.
get
I will not waste chalk.
get
I will not instigate a revolution.
get
I will not conduct my own fire drills.
gte
Huh?
bye
So long, suckers!

Connection to host lost.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 463

Introducing BART464

Don’t forget, it’s the Shrimp-sons. We don’t want to get sued, now, do we?

The BartQuote class
Before you roll up your sleeves and look at the network programming
required to implement the BartServer, take a look first at the supporting
class, named BartQuote. This class has a single method named getQuote
that returns one of 20 randomly selected blackboard sentences. The code for
this class is shown in Listing 2-2.

Note that the sentences are hard-coded into this program. That’s not the
way you’d do it if you really wanted to use the BartServer. Instead, you’d put
the sentences in a file and read the file each time you start up the server.
I don’t cover File I/O until Book VIII, though, and I don’t want to introduce
any code here you couldn’t follow, because the network programming in
the rest of this chapter is complicated enough. Don’t have a cow, man.

LISTING 2-2:THE BARTQUOTE CLASS

import java.util.ArrayList;

public class BartQuote
{

ArrayList<String> q = new ArrayList<String>(); ➞ 5

public BartQuote() ➞ 7
{

q.add(“I will not waste chalk.”);
q.add(“I will not skateboard in the halls.”);
q.add(“I will not burp in class.”);
q.add(“I will not instigate a revolution.”);
q.add(“It’s potato, not potatoe.”);
q.add(“I will not encourage others to fly.”);
q.add(“Tar is not a plaything.”);
q.add(“I will not sell school property.”);
q.add(“I will not get very far with this attitude.”);
q.add(“I will not sell land in Florida.”);
q.add(“I will not grease the monkey bars.”);
q.add(“I will not hide behind the Fifth Amendment.”);
q.add(“I am not a dentist.”);
q.add(“I will finish what I sta”);
q.add(“Hamsters cannot fly.”);
q.add(“I will not aim for the head.”);
q.add(“I will not expose the ignorance “

+ “of the faculty.”);
q.add(“I will not conduct my own fire drills.”);
q.add(“I will not fake seizures.”);
q.add(“This punishment is not boring “

+ “and meaningless.”);
}
public String getQuote() ➞ 33
{

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 464

Book V
Chapter 2

N
etw

ork
Program

m
ing

Introducing BART 465

int i = (int)(Math.random() * q.size());
return q.get(i);

}
}

Here are the key points of this class:

➞ 5 The sentences are kept in an ArrayList object named q. If you
haven’t read about the ArrayList class, run (don’t walk) to Book IV,
Chapter 3.

➞ 7 The BartQuote constructor uses the add method of the ArrayList
class to add 20 sentences to the array list.

➞33 The getQuote method returns a sentence randomly selected from the
array list. Math.random is used to calculate the random number. (For
more information about Math.random, refer to Book II, Chapter 3.)

The BartServer program
The BartServer program is the program you run on a server computer to
provide randomly selected blackboard sentences for clients that want them.
This program is shown in Listing 2-3.

LISTING 2-3:THE BARTSERVER PROGRAM

import java.net.*; ➞ 1
import java.util.*;
import java.io.*;

public class BartServer
{

public static void main(String[] args)
{

int port = 1234; ➞ 9

BartQuote bart = new BartQuote(); ➞ 11

try
{

System.out.println(“BartServer 1.0”);
System.out.println(“Listening on port “ + port);
ServerSocket ss; ➞ 17
ss = new ServerSocket(port);
Socket s; ➞ 20
s = ss.accept();

String client;
client = s.getInetAddress().toString(); ➞ 24
System.out.println(“Connected to “ + client);

Scanner in;
in = new Scanner(s.getInputStream()); ➞ 28

continued

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 465

Introducing BART466

LISTING 2-3 (CONTINUED)

PrintWriter out;
out = new PrintWriter(s.getOutputStream(),

true); ➞ 31

out.println(“Welcome to BartServer 1.0”); ➞ 33
out.println(“Enter GET to get a quote “

+ “or BYE to exit.”);

while (true) ➞ 37
{

String input = in.nextLine(); ➞ 39
if (input.equalsIgnoreCase(“bye”))

break;
else if (input.equalsIgnoreCase(“get”))
{

out.println(bart.getQuote());
System.out.println(“Serving “ + client);

}
else

out.println(“Huh?”);
}
out.println(“So long, suckers!”);
s.close(); ➞ 51
System.out.println(

“Closed connection to “ + client);
}
catch (Exception e) ➞ 55
{

e.printStackTrace();
}

}
}

The following paragraphs walk you through the key parts of this program:

➞ 1 This program begins with an import statement to import the java.
net package. Notice also that the java.io package is imported. Later
in this program, you’ll see that this program uses the PrintWriter
class. You’re already familiar with this class — System.out is a
PrintWriter object.

➞ 9 The port variable stores the port that the server communicates
on. This is hard-coded with the value 1234, but you could just as
easily ask the user to enter the port number or read it from a config-
uration file.

➞11 This line creates a new instance of the BartQuote class and assigns
it to a variable named bart.

➞17 This line and the next line declare a ServerSocket variable and
create a new ServerSocket object using the port variable. As a
result, this ServerSocket object can be used to establish client
connections on port 1234.

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 466

Book V
Chapter 2

N
etw

ork
Program

m
ing

Introducing BART 467

➞20 This line declares a Socket variable. Then the next line uses the
accept method of the ServerSocket object to wait for a client to
connect to port 1234. When a client connects, a Socket object is
created and assigned to the variable s.

➞24 This statement uses the getInetAddress method of the Socket
object to get an InetAddress object that represents the client’s IP
address. Then, it uses the InetAddress object’s toString method
to create a string that shows the client’s address. This string is saved
to the client variable.

➞28 The BartServer program uses a Scanner object to read data sent
from the client over the socket. In this line, it uses the socket’s
getInputStream method to get a standard input stream for the
socket. Then, it uses this input stream as a parameter to the Scanner
constructor, which in turn creates a Scanner object that works over
the socket’s input stream. You can then use the Scanner object refer-
enced by the in variable to get commands sent to the server from
clients.

➞31 Next, you do a similar thing to get a PrintWriter object that can
send data to a client through the socket. The getOutputStream
method gets a standard output stream, which is then used as a
parameter to the PrintWriter constructor. This PrintWriter
is then assigned to a variable named out.

➞33 These lines send the greeting messages to the client.

➞37 The while loop processes commands from the client until the bye
command is entered. That way, the client can request as many black-
board sentences as it wants.

➞39 The Scanner object is used to get a line of input from the client. The
client input is then checked with nested if statements. If the client
sent bye, the break statement breaks the while loop. If the client
sent get, the getQuote method of the BartQuote object is called
to get a random quote. Then, the quote is sent to the client via a
println command. If the user enters anything else, the server sends
back Huh?.

➞51 When the loop ends, the program displays a farewell message and
closes the socket connection.

➞55 Most of the Socket class methods throw an exception if something
goes wrong with the socket connection. That’s why most of the
statements for the main method are contained in a try block. If
an exception is thrown, e.printStackTrace is called to print
detailed information about the exception on the console.

You may have noticed that the BartServer program displays various status
messages in its console window as it runs. For example, when a client con-
nects, it displays a message showing the IP address of the client. And when a

35_58961X bk05ch02.qxd 3/29/05 3:46 PM Page 467

Introducing BART468

client requests a quote, a message is displayed on the console. Here’s a typi-
cal console screen for BartServer where a client connected, requested three
quotes, and then disconnected:

BartServer 1.0
Listening on port 1234
Connected to /127.0.0.1
Serving /127.0.0.1
Serving /127.0.0.1
Serving /127.0.0.1
Closed connection to /127.0.0.1

This program is pretty simple as network server programs go. Still, it illus-
trates the basic techniques of network server programming. Many server
programs consist mostly of a big while loop that gets input from the client,
inspects the input to see what the client wants to do, does what the client
asks, and then sends some output back to the client.

The BartClient program
The preceding section shows you how to connect to the BartServer program
with telnet to interact with the server. Now, this section presents a client
program that communicates with a BartServer server. This program starts
by asking the user for a host name. Then, it connects to the BartServer at
that host, requests a quote, and displays that result on the computer’s con-
sole 20 times (as if the console were a blackboard).

Figure 2-1 shows a typical execution of this program. Here, I entered
localhost as the BartServer host. localhost is useful for testing clients
and servers together on the same computer system. The Java code for this
program is shown in Listing 2-4.

Figure 2-1:
Running the
BartClient
program.

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 468

Book V
Chapter 2

N
etw

ork
Program

m
ing

Introducing BART 469

LISTING 2-4:THE BARTCLIENT PROGRAM

import java.net.*;
import java.util.*;
import java.io.*;

public class BartClient
{

public static void main(String[] args)
{

int port = 1234;

System.out.println(“Welcome to the Bart Client\n”);

Socket s = getSocket(port); ➞ 13

try
{

System.out.println(“Connected on port “ + port);

Scanner in =
new Scanner(s.getInputStream()); ➞ 20

PrintWriter out;
out = new PrintWriter(s.getOutputStream(),

true); ➞ 23

// discard the welcome message
in.nextLine(); ➞ 26

// discard the exit instructions
in.nextLine(); ➞ 29

// get a quote
out.println(“get”); ➞ 32
String quote = in.nextLine(); ➞ 33

// disconnect from the server
out.println(“bye”); ➞ 36
s.close(); ➞ 37

// write the quote on the chalkboard
for (int i = 0; i < 20; i++) ➞ 41

System.out.println(quote);
}
catch (Exception e)
{

e.printStackTrace(); ➞ 46
}

}

private static Socket getSocket(int port) ➞ 50
{

Socket s;
String host;
InetAddress ip;

Scanner sc = new Scanner(System.in);

continued

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 469

Introducing BART470

LISTING 2-4 (CONTINUED)

while (true)
{

System.out.print(
“What server do you want to connect to?”);

host = sc.nextLine(); ➞ 62
try
{

ip = InetAddress.getByName(host); ➞ 65
s = new Socket(ip, port); ➞ 66
return s; ➞ 67

}
catch (UnknownHostException e) ➞ 69
{

System.out.println(“The host is unknown.”);
}
catch (IOException e)
{

System.out.println(“Network error.”);
}

}
}

}

Here’s an explanation of the more confusing aspects of this program:

➞13 Connecting to a server is a complicated enough procedure that I placed
it in a separate method named getSocket. This method prompts
the user for a host name and doesn’t return until the user enters one
that the program can connect to. The port number is passed as a
parameter, and the return value is a Socket object that’s connected
to the server. (The nitty-gritty details about how this method works
start with line 50.)

➞20 This statement gets a Scanner object that can be used to read data
from the client via the socket’s input stream.

➞23 This statement gets a PrintWriter object that can be used to send
data to the client via the socket’s output stream.

➞26 Once connected, the server sends a welcome message. This message
is helpful to users connected via telnet, but it isn’t very useful to a
client program such as this one. So this statement simply uses the
Scanner object to read the line from the input stream and discards it.

Because the welcome message includes the version number for the
server, the program could read the line and check it to make sure
you’re connected to a current version of the server. I don’t think
there will be much demand for additional features in BartServer,
though, so you don’t have to worry about version checking.

➞29 The server also sends a line of helpful instructions that you need to
read from the stream and discard.

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 470

Book V
Chapter 2

N
etw

ork
Program

m
ing

BartServer 2.0 471

➞32 This line sends the word get to the server. That’s how the client pro-
gram asks the server to send back a randomly selected sentence.

➞33 After sending the get request, the client reads the next line of data
from the socket input stream. Note that if delays occur because the
network is slow, the nextLine method simply waits until the line
has been sent.

➞36 Having got what it came for (a blackboard sentence), the client pro-
gram sends a bye command to the server. The server sends back a
rude farewell message, but the client program isn’t interested in it, so
it doesn’t even bother to read it.

➞37 The connection to the server is closed.

➞41 Now that the client program has its blackboard sentence writing
assignment, it uses a for loop to write it on the board 20 times.

➞46 Any of the socket I/O statements can throw exceptions. They are
all caught here as a generic exception, and the diagnostic information
is sent to the console so you can debug any problems that might arise.

➞50 The getSocket method accepts a port number as a parameter and
returns a socket that’s connected via the specified port. This method
doesn’t give up until the user enters the name of a host the program
can connect to.

➞62 The host name is read from the console.

➞65 The static getByName method of the InetAddress class is called
to get an IP address for the host name entered by the user. Note that
if the user enters a host name that doesn’t exist, UnknownHost
Exception is thrown. This exception is caught in line 69.

➞66 Now that you have an IP address, this line tries to create a Socket
object using the specified address and port. This method throws
IOException if it isn’t able to connect to the IP address and port.

➞67 If you make it to this line, you can assume the socket has been created
and you’re connected. So the return statement passes the socket
back to the caller, in line 13.

BartServer 2.0
The BartServer program that is presented in the previous section works fine,
but it has one major deficiency: It handles connections for only one client.
To make matters worse, it quits when that client disconnects. That’s not much
of a server.

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 471

BartServer 2.0472

So after much user feedback, I decided to release BartServer 2.0, with new
and improved features. BartServer 2.0 uses threads to allow multiple clients
to connect to the server at the same time. Each time a client connects, a
thread is started to process any requests for that client. The main thread
continues to run, waiting for other clients to connect. Figure 2-2 shows the
multithreading features of BartServer 2.0 in action. Listing 2-5 shows the
code for version 2.0 of BartServer.

LISTING 2-5 BARTSERVER 2.0

import java.net.*;
import java.io.*;
import java.util.*;

public class BartServer2
{

public static void main(String[] args)
{

int port = 1234;

BartQuote bart = new BartQuote();

try
{

System.out.println(“BartServer 2.0”);
System.out.println(“Listening on port “ + port);
ServerSocket ss = new ServerSocket(port);

while (true) ➞ 19
{

Socket s = ss.accept();
System.out.println(

“Connection established!”);
Thread t = new Thread(

new BartThread(s, bart)); ➞ 25
t.start();

}
}
catch (Exception e)
{

System.out.println(“System exception!”);
}

}
}

class BartThread implements Runnable ➞ 36
{

private Socket s;
private BartQuote bart;

public BartThread(Socket socket, BartQuote bart) ➞ 41
{

this.s = socket;
this.bart = bart;

}

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 472

Book V
Chapter 2

N
etw

ork
Program

m
ing

BartServer 2.0 473

public void run() ➞ 47
{

String client = s.getInetAddress().toString();
System.out.println(“Connected to “ + client);
try
{

Scanner in = new Scanner(s.getInputStream());
PrintWriter out;
out = new PrintWriter(s.getOutputStream(),

true);

out.println(“Welcome to the Bart Server”);
out.println(“Enter BYE to exit.”);

while (true)
{

String input = in.nextLine();
if (input.equalsIgnoreCase(“bye”))

break;
else if (input.equalsIgnoreCase(“get”))
{

out.println(bart.getQuote());
System.out.println(“Serving “ + client);

}
else

out.println(“Huh?”);
}
out.println(“So long, suckers!”);
s.close();

}
catch (Exception e)
{

e.printStackTrace();
}

System.out.println(“Closed connection to “ + client);
}

}

Most of this code is the same as the code in version 1.0, so I just highlight
the key changes:

➞19 A while loop is used to service connection requests through the
accept method of the ServerSocket object.

➞25 Each time a new client connects, a thread is created using the
BartThread class to create the thread’s Runnable object. Then,
this thread is started. In the meantime, the main thread stays in the
while loop, waiting for other clients to connect.

If threading gives you a serious headache, you may want to turn back
a chapter and review the information on programming with threads
in Book V, Chapter 1.

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 473

BartServer 2.0474

➞36 The BartThread handles the processing required for each con-
nected client. This class implements Runnable, which means it
must define a run method. The run method is called each time a
new thread is created.

➞41 The constructor for the BartThread class initializes the two class
fields with values passed as parameters from the main thread. These
parameters are the Socket object the client is connected to and a
shared copy of the BartQuote object that was created by the main
thread.

It isn’t shown here, but the getQuote method of the BartQuote
class used by this version of BartServer should be synchronized.
That’s because multiple threads access it. For more information,
refer to Book V, Chapter 1.

➞47 The run method services the requests for a single client connected
to the BartServer. Most of the code in this method was simply copied
straight from the previous version, so you shouldn’t have any trouble
understanding how this method works.

Figure 2-2:
BartClients
galore!

35_58961X bk05ch02.qxd 3/29/05 3:47 PM Page 474

Chapter 3: Using Regular
Expressions

In This Chapter
� Introducing regular expressions

� Trying out regular expressions with a helpful program

� Creating simple expressions that match patterns of characters

� Using regular expression features, such as custom classes, quantifiers,
and groups

� Using regular expressions with the String class

� Using the Pattern and Matcher classes for more extensive regular
expression work

Regular expressions are not expressions that have a lot of fiber in their
diet. Instead, a regular expression is a special type of pattern matching

string that can be very useful for programs that do string manipulation.
Regular expression strings contain special pattern-matching characters in
them that can be matched against another string to see if the other string
fits the pattern. Regular expressions are very handy for doing complex data
validation — for example, for making sure users enter properly formatted
phone numbers, e-mail addresses, or Social Security numbers.

Regular expressions are also useful for many other purposes, including
searching text files to see if they contain certain patterns (can you say,
Google?), filtering e-mail based on its contents, or performing complicated
search-and-replace functions.

In this chapter, you find out the basics of using regular expressions. I
emphasize validation, and focus on comparing strings entered by users
against patterns specified by regular expressions to see if they match up.
For more complex uses for regular expressions, you have to turn to a more
extensive regular expression reference.

Regular expressions are actually constructed using a simple but powerful
mini-language, so they are like little programs unto themselves. Unfortunately,
this mini-language is terse — very terse — to the point of sometimes being
downright arcane. Much of it depends on single characters that are packed

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 475

A Program for Experimenting with Regular Expressions476

with meaning that’s often obscure. So be warned — the syntax for regular
expressions takes a little getting used to. But once you get your mind around
the basics, you’ll find that simple regular expressions aren’t that tough to
create and can be very useful.

Also, be aware that this chapter only covers a portion of all you can do with
regular expressions. If you find that you need to use more complicated pat-
terns, you can find plenty of helpful information on the Internet. Just search
any search service for regular expression.

A regular expression is often called a regex. Most people pronounce that
with a soft g, as if it were spelled rejex. And some pronounce it as if it were
spelled rejects.

A Program for Experimenting
with Regular Expressions

Before I get into the details of putting together regular expressions, Listing 3-1
presents a short program that can be a very useful tool while you’re learning
how to create regular expressions. This program lets you enter a regular
expression. Then, you can enter a string, and the program tests it against the
regular expression and lets you know whether or not the string matches the
regex. The program then prompts you for another string to compare. You
can keep entering strings to compare with the regex you’ve already entered.
When you’re done, just press the Enter key without entering a string. The
program then asks if you want to enter another regular expression. If you
answer Y, the whole process repeats. If you answer N, the program ends.

Here’s a sample run of this program. For now, don’t worry about the details of
the regular expression string. Just note that it should match any three-letter
word that begins with f, ends with r, and has an a, i, or o in the middle.

Welcome to the Regex Tester

Enter regex: f[aio]r
Enter string: for
Match.
Enter string: fir
Match.
Enter string: fur
Does not match.
Enter string: fod
Does not match.
Enter string:
Another? (Y or N) n

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 476

Book V
Chapter 3

Using Regular
Expressions

A Program for Experimenting with Regular Expressions 477

In this test, I entered the regular expression f[aio]. Then, I entered the
string for. The program indicated that this string matched the expression
and asked for another string. So I entered fir, which also matched. Then I
entered fur and fod, which didn’t match. I then entered a blank string, so
the program asked if I wanted to test another regex. I entered n, so the pro-
gram ended.

This program uses the Pattern and Matcher classes, which I don’t explain
until the end of the chapter. However, I suggest you use this program along-
side this chapter. Regular expressions make a lot more sense if you actually
try them out to see them in action. Plus, you can learn a lot by trying simple
variations as you go. (You can always download the source code for this pro-
gram from this book’s Web site if you don’t want to enter it yourself.)

In fact, I use portions of console output from this program throughout the
rest of this chapter to illustrate regular expressions. There’s no better way
to see how regular expressions work than to see an expression and some
samples of strings that match and don’t match the expression.

LISTING 3-1:THE REGULAR EXPRESSION TEST PROGRAM

import java.util.regex.*;
import java.util.Scanner;

public final class Reg {

static String r, s;
static Pattern pattern;
static Matcher matcher;
static boolean match, validRegex, doneMatching;

private static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println(“Welcome to the Regex Tester\n”);
do
{

do
{

System.out.print(“\nEnter regex: “);
r = sc.nextLine();
validRegex = true;
try
{

pattern = Pattern.compile(r);
}

continued

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 477

Basic Character Matching478

LISTING 3-1 (CONTINUED)

catch (Exception e)
{

System.out.println(e.getMessage());
validRegex = false;

}
}while (!validRegex);

doneMatching = false;
while (!doneMatching)
{

System.out.print(“Enter string: “);
s = sc.nextLine();
if (s.length() == 0)

doneMatching = true;
else
{

matcher = pattern.matcher(s);
if (matcher.matches())

System.out.println(“Match.”);
else

System.out.println(
“Does not match.”);

}
}

} while (askAgain());
}

private static boolean askAgain()
{

System.out.print(“Another? (Y or N) “);
String reply = sc.nextLine();
if (reply.equalsIgnoreCase(“Y”))

return true;
return false;

}
}

Basic Character Matching
Most regular expressions simply match characters to see if a string complies
to a simple pattern. For example, you can check a string to see if it matches
the format for Social Security numbers (xxx-xx-xxxx), phone numbers [(xxx)
xxx-xxxx], or more complicated patterns such as e-mail addresses. (Well
actually, Social Security and phone numbers are more complicated than you
might think too. More on that later.) In the following sections, you find out
how to create regex patterns for basic character matching.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 478

Book V
Chapter 3

Using Regular
Expressions

Basic Character Matching 479

Matching single characters
The simplest regex patterns just match a string literal exactly. For example:

Enter regex: abc
Enter string: abc
Match.
Enter string: abcd
Does not match.

Here, the pattern abc matches the string abc but not abcd.

Using predefined character classes
A character class represents a particular type of character rather than a spe-
cific character. Regex lets you use two types of character classes: predefined
classes and custom classes. The predefined character classes are shown in
Table 3-1.

Table 3-1 Character Classes
Regex Matches . . .

. Any character

\d Any digit (0–9)

\D Any non-digit (anything other than 0–9)

\s Any white space character (spaces, tabs, newlines, returns, and backspaces)

\S Any character other than a white space character

\w Any word character (a–z, A–Z, 0–9, or an underscore)

\W Any character other than a word character

The period is like a wildcard that matches any character. For example:

Enter regex: c.t
Enter string: cat
Match.
Enter string: cot
Match.
Enter string: cart
Does not match.

Here, c.t matches any three-letter string that starts with c and ends with t.
In this example, the first two strings (cat and cot) match, but the third string
(cart) doesn’t because it’s more than three characters.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 479

Basic Character Matching480

The \d class represents a digit and is often used in regex patterns used to val-
idate input data. For example, here’s a simple regex pattern that validates a
U. S. Social Security number, which must be entered in the form XXX-XX-XXXX:

Enter regex: \d\d\d-\d\d-\d\d\d\d
Enter string: 779-54-3994
Match.
Enter string: 550-403-004
Does not match.

Here, the regex pattern specifies that the string must contain three digits, a
hyphen, two digits, another hyphen, and four digits.

Note that this regex pattern isn’t really enough to validate real Social Security
numbers, because the government places more restrictions on these numbers
than just the pattern XXX-XX-XXXX. For example, no Social Security number
can begin with 779. Thus, the number 779-54-3994 entered in the preced-
ing example isn’t really a valid Social Security number.

Note that the \d class has a counterpart: \D. The \D class matches any
character that is not a digit. For example, here’s a first attempt at a regex
for validating droid names:

Enter regex: \D\d-\D\d
Enter string: R2-D2
Match.
Enter string: C2-D0
Match.
Enter string: C-3PO
Does not match.

Here, the pattern matches strings that begin with a character that isn’t a
digit, followed by a character that is a digit, followed by a hyphen, followed
by another non-digit character, and ending with a digit. Thus, R2-D2 and
C3-P0 match. Unfortunately, this regex is far from perfect, as any Star Wars
fan can tell you. That’s because the proper spelling of the shiny gold proto-
col droid’s name is C-3PO, not C3-P0. Typical.

The \s class matches white space characters including spaces, tabs,
newlines, returns, and backspaces. This class is useful when you want to
allow the user to separate parts of a string in various ways. For example:

Enter regex: ...\s...
Enter string: abc def
Match.
Enter string: abc def
Match.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 480

Book V
Chapter 3

Using Regular
Expressions

Basic Character Matching 481

Here, the pattern specifies that the string can be two groups of any three
characters separated by one white space character. In the first string that’s
entered, the groups are separated by a space. In the second group, they’re
separated by a tab. The \s class also has a counterpart: \S. It matches any
character that isn’t a white space character.

If you want to limit white space characters to actual spaces, just use a space
in the regex. For example:

Enter regex:
Enter string: abc def
Match.
Enter string: abc def
Does not match.

Here, the regex specifies two groups of any character separated by a space.
The first input string matches this pattern, but the second does not because
the groups are separated by a tab.

The last set of predefined classes are \w and \W. The \w class identifies any
character that’s normally used in words. That includes upper- and lowercase
letters, digits, and the underscore. For example:

Enter regex: \w\w\w\W\w\w\w
Enter string: abc def
Match.
Enter string: 123 456
Match.
Enter string: 123A456
Does not match.

Here, the pattern calls for two groups of word characters separated by a
non-word character.

Isn’t it strange that underscores are considered to be word characters? I don’t
know of too many words in the English language (or any other language, for
that matter) that have underscores in them. I guess that’s the computer-nerd
origins of regular expressions showing through.

Using custom character classes
To create a custom character class, you simply list all the characters that you
want included in the class within a set of brackets. For example:

Enter regex: b[aeiou]t
Enter string: bat
Match.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 481

Basic Character Matching482

Enter string: bet
Match.
Enter string: bit
Match.
Enter string: bot
Match.
Enter string: but
Match.
Enter string: bmt
Does not match.

Here, the pattern specifies that the string must start with the letter b, followed
by a class that can include a, e, i, o, or u, followed by t. In other words, it
accepts three letter words that begin with b, end with t, and have a vowel in
the middle.

If you want to let the pattern include uppercase letters as well as lowercase
letters, you have to list them both:

Enter regex: b[aAeEiIoOuU]t
Enter string: bat
Match.
Enter string: BAT
Does not match.
Enter string: bAt
Match.

You can use as many custom groups on a line as you want. For example,
here’s one that defines classes for the first and last characters so they too
can be upper- or lowercase:

Enter regex: [bB][aAeEiIoOuU][tT]
Enter string: bat
Match.
Enter string: BAT
Match.

This pattern specifies three character classes. The first can be b or B, the
second can be any upper- or lowercase vowel, and the third can be t or T.

Using ranges
Custom character classes can also specify ranges of letters and numbers. For
example:

Enter regex: [a-z][0-5]
Enter string: r2
Match.
Enter string: b9
Does not match.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 482

Book V
Chapter 3

Using Regular
Expressions

Basic Character Matching 483

Here, the string can be two characters long. The first must be a character
from a through z, and the second must be from 0 through 5.

You can also use more than one range in a class, like this:

Enter regex: [a-zA-Z][0-5]
Enter string: r2
Match.
Enter string: R2
Match.

Here, the first character can be lowercase a through z or uppercase A
through Z.

You can use ranges to build a class that accepts only characters that appear
in real words, as opposed to the \w class which allows underscores:

Enter regex: [a-zA-Z0-9]
Enter string: a
Match.
Enter string: N
Match.
Enter string: 9
Match.

Using negation
Regular expressions can include classes that match any character but the
ones listed for the class. To do that, you start the class with a caret, like this:

Enter regex: [^cf]at
Enter string: bat
Match.
Enter string: cat
Does not match.
Enter string: fat
Does not match.

Here, the string must be a three-letter word that ends in at, but isn’t fat
or cat.

Matching multiple characters
The regex patterns described so far in this chapter require that each position
in the input string always match a specific character class. For example, the
pattern \d\W[a-z] requires a digit in the first position, a white space char-
acter in the second position, and one of the letters a through z in the third
position. These are pretty rigid requirements.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 483

Basic Character Matching484

To create more flexible patterns, you can use any of the quantifiers listed in
Table 3-2. These quantifiers let you create patterns that match a variable
number of characters at a certain position in the string.

Table 3-2 Quantifiers
Regex Matches the Preceding Element. . .

? Zero or one times

* Zero or more times

+ One or more times

{n} Exactly n times

{n,} At least n times

{n,m} At least n times but no more than m times

To use a quantifier, you code it immediately after the element you want it to
apply to. For example, here’s a version of the Social Security number pattern
that uses quantifiers:

Enter regex: \d{3}-\d{2}-\d{4}
Enter string: 779-48-9955
Match.
Enter string: 483-488-9944
Does not match.

Here, the pattern matches three digits, followed by a hyphen, followed by
two digits, followed by another hyphen, followed by four digits.

Simply duplicating elements rather than using a quantifier is just as easy, if
not easier. For example, \d\d is just as clear as \d{2}.

The ? quantifier lets you create an optional element that may or may not be
present in the string. For example, suppose you want to allow the user to
enter Social Security numbers without the hyphens. Then, you could use
this pattern:

Enter regex: \d{3}-?\d{2}-?\d{4}
Enter string: 779-48-9955
Match.
Enter string: 779489955
Match.
Enter string: 779-489955
Match.
Enter string: 77948995
Does not match.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 484

Book V
Chapter 3

Using Regular
Expressions

Basic Character Matching 485

The question marks indicate that the hyphens are optional. Notice that this
pattern lets you include or omit either hyphen. The last string entered doesn’t
match because it has only eight digits, and the pattern requires nine.

Using escapes
In regular expressions, certain characters have special meaning. This leads
to the question, what if you want to search for one of those special charac-
ters? In that case, you escape the character by preceding it with a backslash.
For example:

Enter regex: \(\d{3}\) \d{3}-\d{4}
Enter string: (559) 555-1234
Match.
Enter string: 559 555-1234
Does not match.

Here, \(represents a left parenthesis, and \) represents a right parenthesis.
Without the backslashes, the regular expression treats the parenthesis as a
grouping element.

Here are a few additional points to ponder about escapes:

✦ Strictly speaking, you need to use the backslash escape only for characters
that have special meanings in regular expressions. However, I recommend
you escape any punctuation character or symbol, just to be sure.

✦ You can’t escape alphabetic characters (letters). That’s because a back-
slash followed by certain alphabetic characters represents a character, a
class, or some other regex element.

✦ To escape a backslash, code two slashes in a row. For example, the regex
\d\d\\\d\d accepts strings made up of two digits followed by a back-
slash and two more digits, such as 23\88 and 95\55.

Using parentheses to group characters
You can use parentheses to create groups of characters to apply other regex
elements to. For example:

Enter regex: (bla)+
Enter string: bla
Match.
Enter string: blabla
Match.
Enter string: blablabla
Match.
Enter string: bla bla bla
Does not match.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 485

Basic Character Matching486

Here, the parentheses treat bla as a group, so the + quantifier applies to the
entire sequence. Thus, this pattern looks for one or more occurrences of the
sequence bla.

Here’s an example that finds U.S. phone numbers that can have an optional
area code:

Enter regex: (\(\d{3}\)\s?)?\d{3}-\d{4}
Enter string: 555-1234
Match.
Enter string: (559) 555-1234
Match.
Enter string: (559)555-1239
Match.

This regex pattern is a little complicated, but if you examine it element by ele-
ment, you should be able to figure it out. It starts with a group that indicates
the optional area code: (\(\d{3}\)\s?)?. This group begins with the left
parenthesis that marks the start of the group. The characters in the group
consist of an escaped left parenthesis, three digits, an escaped right paren-
thesis, and an optional white space character. Then, a right parenthesis
closes the group, and the question mark indicates that the entire group is
optional. The rest of the regex pattern looks for three digits followed by a
hyphen and four more digits.

When you mark a group of characters with parentheses, the text that matches
that group is captured so you can use it later in the pattern. The groups that
are captured are called capture groups and are numbered beginning with 1.
You can then use a backslash followed by the capture group number to indi-
cate that the text must match the text that was captured for the specified
capture group.

For example, suppose that droids named following the pattern \w\d-\w\d
must have the same digit in the second and fifth character. In other words,
r2-d2 and b9-k9 are valid droid names, but r2-d4 and d3-r4 are not.

Here’s an example that can validate that type of name:

Enter regex: \w(\d)-\w\1
Enter string: r2-d2
Match.
Enter string: d3-r4
Does not match.
Enter string: b9-k9
Match.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 486

Book V
Chapter 3

Using Regular
Expressions

Basic Character Matching 487

Here, \1 refers to the first capture group. Thus, the last character in the
string must be the same as the second character, which must be a digit.

Using the | symbol
The | symbol defines an or operation, which lets you create patterns that
accept any of two or more variations. For example, here’s an improvement
to the pattern for validating droid names:

Enter regex: (\w\d-\w\d)|(\w-\d\w\w)
Enter string: r2-d2
Match.
Enter string: c-3po
Match.

Here, the | character indicates that either the group on the left or the group
on the right can be used to match the string. The group on the left matches
a word character, a digit, a hyphen, a word character, and another digit. The
group on the right matches a word character, a hyphen, a digit, and two word
characters.

You may want to use an additional set of parentheses around the entire part
of the pattern that the | applies to. Then, you can add additional pattern ele-
ments before or after the | groups. For example, what if you want to let a
user enter the area code for a phone number with or without parentheses.
Here’s a regex pattern that does the trick:

Enter regex: ((\d{3})|(\(\d{3}\)))?\d{3}-\d{4}
Enter string: (559) 555-1234
Match.
Enter string: 559 555-1234
Match.
Enter string: 555-1234
Match.

The first part of this pattern is a group that consists of two smaller groups
separated by an | character. The first of these groups matches an area code
without parentheses followed by a space, and the second matches an area
code with parentheses followed by a space. So the outer group matches an
area code with or without parentheses. This entire group is marked with a
question mark as optional, and then the pattern continues with three digits,
a hyphen, and four digits.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 487

Using Regular Expressions in Java Programs488

Using Regular Expressions in Java Programs
So far, this chapter has shown you the basics of creating regular expres-
sions. Now, the following sections show you how to put them to use in
Java programs.

The String problem
Before getting into the classes for working with regular expressions, I want
to clue you in about a problem that Java has when dealing with strings that
contain regular expressions. As you’ve seen throughout this chapter, regex
patterns rely on the backslash character to mark different elements of a
pattern. The bad news is that Java treats the backslash character in a string
literal as an escape character. Thus, you can’t just quote regular expressions
in string literals, because Java steals the backslash characters before they
get to the regular expression classes.

In most cases, the compiler simply complains that the string literal is not
correct. For example, the following line won’t compile:

String regex = “\w\d-\w\d”; // error: won’t compile

The compiler sees the backslashes in the string and expects to find a valid
Java escape sequence, not a regular expression.

Unfortunately, the solution to this problem is ugly: You have to double the
backslashes wherever they occur. Java treats two backslashes in a row as an
escaped backslash, and places a single backslash in the string. Thus, you
have to code the statement shown in the previous paragraph like this:

String regex = “\\w\\d-\\w\\d”; // now it will
compile

Here, each backslash I want in the regular expression is coded as a pair of
backslashes in the string literal.

If you’re in doubt about whether you’re coding your string literals right, just
use System.out.println to print the resulting string. Then, you can
check the console output to make sure you wrote the string literal right. For
example, if I followed the previous statement with System.out.println
(regex), the following output would appear on the console:

\w\d-\w\d

Thus, I know I coded the string literal for the regular expression correctly.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 488

Book V
Chapter 3

Using Regular
Expressions

Using Regular Expressions in Java Programs 489

Using regular expressions with the String class
If all you want to do with a regular expression is check to see whether a
string matches a pattern, you can use the matches method of the String
class. This method accepts a regular expression as a parameter and returns
a boolean that indicates whether or not the string matches the pattern.

For example, here’s a static method that validates droid names:

private static boolean validDroidName(String droid)
{

String regex = “(\\w\\d-\\w\\d)|(\\w-\\d\\w\\w)”;
return droid.matches(regex);

}

Here, the name of the droid is passed via a parameter, and the method
returns a boolean that indicates whether the droid’s name is valid. The
method simply creates a regular expression from a string literal, and then
uses the matches method of the droid string to match the pattern.

You can also use the split method to split a string into an array of String
objects based on delimiters that match a regular expression. One common
way to do that is to simply create a custom class of characters that can be
used for delimiters. For example:

String s = “One:Two;Three|Four\tFive”;
String regex = “[:;|\\t]”;
String strings[] = s.split(regex);
for (String word : strings)

System.out.println(word);

Here, a string is split into words marked by colons, semicolons, vertical bars,
or tab characters. When you run this program, here’s what’s displayed on
the console:

One
Two
Three
Four
Five

Using the Pattern and Matcher classes
The matches method is fine for occasional use of regular expressions. But if
you want your program to do a lot of pattern matching, you should use the
Pattern and Matcher classes instead. The Pattern class represents a
regular expression that has been compiled into executable form (remember,
regular expressions are like little programs). Then, you can use the compiled
Pattern object to create a Matcher object, which you can then use to
match strings.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 489

Using Regular Expressions in Java Programs490

The Pattern class itself is pretty simple. Although it has about ten meth-
ods, you usually use just these two:

✦ static Pattern compile(String pattern): Compiles the spec-
ified pattern. This static method returns a Pattern object. It throws
PatternSyntaxExpression if the pattern contains an error.

✦ Matcher matcher(String input): Creates a Matcher object to
match this pattern against the specified string.

First, you use the compile method to create a Pattern object. (Pattern
is one of those weird classes that doesn’t have constructors. Instead, it
relies on the static compile method to create instances.) Because the
compile method throws PatternSyntaxException, you must use a
try/catch statement to catch this exception when you compile a pattern.

Once you have a Pattern instance, you then use the matcher method to
create an instance of the Matcher class. This class has more than 30 meth-
ods that let you do all sorts of things with regular expressions that aren’t
covered in this chapter, such as finding multiple occurrences of a pattern in
an input string or replacing text that matches a pattern with a replacement
string. For purposes of this book, I’m concerned only with the matches
method: static boolean matches() returns a boolean that indicates
whether the entire string matches the pattern.

To illustrate how to use these methods, here’s an enhanced version of the
validDroidName method that creates a pattern for the droid validation
regex and saves it in a static class field:

private static Pattern droidPattern;

private static boolean validDroidName(String droid)
{

if (droidPattern == null)
{

String regex = “(\\w\\d-\\w\\d)|(\\w-
\\d\\w\\w)”;

droidPattern = Pattern.compile(regex);
}
Matcher m = droidPattern.matcher(droid);
return m.matches();

}

Here, the private class field droidPattern saves the compiled pattern
for validating droids. The if statement in the validDroidName method
checks to see if the pattern has already been created. If not, the pattern is
created by calling the static compile method of the Pattern class. Then,
the matcher method is used to create a Matcher object for the string
passed as a parameter, and the string is validated by calling the matches
method of the Matcher object.

36_58961X bk05ch03.qxd 3/29/05 3:46 PM Page 490

Chapter 4: Using Recursion

In This Chapter
� Introducing recursion

� Calculating factors with recursion

� Listing directories with recursion

� Sorting with recursion

Recursion is a basic programming technique in which a method calls
itself to solve some problem. A method that uses this technique is

called recursive. Many programming problems can only be solved by recur-
sion, and some problems that can be solved by other techniques are better
solved by recursion.

I’m not sure, but I think the term recursion comes from the Latin recurse,
recurset, recursum, which means to curse repeatedly. I do know that that’s
exactly what many programmers feel like when struggling with complex
recursive programming problems.

It’s true, sometimes the concept of recursion can get a little tricky. So many
programmers steer clear, looking for other techniques to solve the problem
at hand. And in many cases, a non-recursive solution is best. However, many
problems just cry out for recursion.

The Classic Factorial Example
One of the classic problems for introducing recursion is calculating the fac-
torial of an integer. The factorial of any given integer — I’ll call it n so I sound
mathematical — is the product of all the integers from 1 to n. Thus, the fac-
torial of 5 is 120: 5 times 4 times 3 times 2 times 1.

The non-recursive solution
You don’t have to use recursion to calculate factorials. Instead, you can use
a simple for loop. For example, here’s a method that accepts an int number
and returns the number’s factorial as a long:

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 491

The Classic Factorial Example492

private static long factorial(int n)
{

long f = 1;
for (int i = 1; i <=n; i++)

f = f * i;
return f;

}

This method just uses a for loop to count from 1 to the number, keeping
track of the product as it goes. Here’s a snippet of code that calls this
method and displays the result:

int n = 5;
long fact;
fact = factorial(n);
System.out.println(“The factorial of “+ n + “ is “

+ fact + “.”);

If you run this code, the following line is displayed on the console:

The factorial of 5 is 120.

Factorials get big fast. You should use a long rather than an int to calcu-
late the result. And you should use the NumberFormat class to format the
result. For example, if int is 20 instead of 5, the previous code prints this on
the console:

The factorial of 20 is 2432902008176640000.

If you use the NumberFormat class to format the result, the console output
is more readable:

The factorial of 20 is 2,432,902,008,176,640,000.

The recursive solution
The non-recursive solution to the factorial problem works, but it isn’t much
fun. The recursive solution is based on the notion that the factorial for any
number n is equal to n times the factorial of n – 1, provided that n is greater
than 1. If n is 1, the factorial of n is 1.

This definition of factorial is recursive because the definition includes the
factorial method itself. It also includes the most important part of any recursive
method: an end condition. The end condition indicates when the recursive
method should stop calling itself. In this case, when n is 1, I just return 1.
Without an end condition, the recursive method keeps calling itself forever.

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 492

Book V
Chapter 4

Using Recursion

The Classic Factorial Example 493

Here’s the recursive version of the factorial method:

private static long factorial(int n)
{

if (n == 1)
return 1;

else
return n * factorial(n-1);

}

This method returns exactly the same result as the version in the previous
section, but it uses recursion to calculate the factorial.

One way to visualize how recursion works is to imagine that you have five
friends, named Jordan, Jeremy, Jacob, Justin, and Bob. Your friends aren’t
very smart, but they’re very much alike. In fact, they’re clones of each other.
Cloning isn’t a perfect process yet, so these clones have limitations. Each
can do only one multiplication and can ask one of its clones one question.

So you walk up to Joshua and say, “Joshua, what’s the factorial of five?”

Jordan says, “I don’t know, but I do know it’s five times the factorial of four.
Jeremy, what’s the factorial of four?”

Jeremy says, “I don’t know, but I do know it’s four times the factorial of
three. Jacob, what’s the factorial of three?”

Jacob says, “I don’t know, but I do know it’s three times the factorial of two.
Justin, what’s the factorial of two?”

Justin says, “I don’t know, but I do know it’s two times the factorial of one.
Hey, Bob! What’s the factorial of one?”

Bob, being the most intelligent of the bunch on account of not having a
J-name, replies, “Why, one of course.” So he tells his answer to Justin.

Justin says, “Ah! Two times one is two.” So he tells the answer to Jacob.

Jacob says, “Thanks. Three times two is six.” Jacob tells his answer to
Jeremy.

Jeremy says, “Dude! Four times six is 24.” Jeremy tells his answer to Jordan.

Jordan says, “Very good! Five times 24 is 120.” So he tells you the answer.

That’s pretty much how recursion works.

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 493

Displaying Directories494

Displaying Directories
Recursion lends itself well to applications that have to navigate through
directory structures, such as a Windows or Unix file system. In a file system,
a directory is a list of files and other directories. Each of those directories is
itself a list of files and other directories, and so on. Directories can be snugly
nestled inside of other directories and have no limit in number.

Listing 4-1 shows a program that uses a recursive method to list all the direc-
tories that are found starting from a given path. I use indentation to show the
directory structure. For example, here’s the console output for the directo-
ries I used to organize the documents for this book:

Welcome to the Directory Lister
Enter a path: C:\Java AIO

Listing directory tree of:
C:\Java AIO
Apps
Book 1
Book 2
Book 3
Book 4
Book 5

Manuscript
Book 1
Book 2
Book 3
Book 4
Book 5
Front

Plans
Another? (Y or N) n

Well, as you can see I haven’t done Books VI through IX yet. By the time you
read this chapter, there will be even more directories to list!

Don’t enter c:\ unless you’re prepared to wait a long time for the program
to finish listing all of the directories on your hard drive.

The Directory Listing application is remarkably simple. Before I explain its
details, though, I want to point out that this program uses the File class,
which is part of the java.io package. The File class represents a single
file or directory. You find out much more about this class in Book VIII. For
now, you just need to know these five details:

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 494

Book V
Chapter 4

Using Recursion

Displaying Directories 495

✦ The constructor for this class accepts a directory path as a parameter
and creates an object that represents the specified directory.

✦ You can use the exists method to find out if the directory specified by
the path parameter exists.

✦ The listFiles method returns an array of File objects that repre-
sent every file and directory in the current File object.

✦ The isDirectory method returns a boolean that indicates whether
or not the current File object is a directory. If this method returns
false, you can assume the File object is a file.

✦ The getName method returns the name of the file.

LISTING 4-1:THE DIRECTORY LISTING APPLICATION

import java.io.File; ➞ 1
import java.util.Scanner;

public class DirList
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.print(
“Welcome to the Directory Lister”);

do
{

System.out.print(“\nEnter a path: “);
String path = sc.nextLine(); ➞ 15

File dir = new File(path); ➞ 17
if (!dir.exists() || !dir.isDirectory()) ➞ 18

System.out.println(
“\nThat directory doesn’t exist.”);

else
{

System.out.println(
“\nListing directory tree of:”);

System.out.println(dir.getPath()); ➞ 25
listDirectories(dir, “ “); ➞ 26

}
} while(askAgain()); ➞ 28

}

continued

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 495

Displaying Directories496

LISTING 4-1 (CONTINUED)

private static void listDirectories(➞ 31
File dir, String indent)

{
File[] dirs = dir.listFiles(); ➞ 34
for (File f : dirs) ➞ 35
{

if (f.isDirectory()) ➞ 37
{

System.out.println(
indent + f.getName()); ➞ 40

listDirectories(f, indent + “ “); ➞ 41
}

}
}

private static boolean askAgain()
{

System.out.print(“Another? (Y or N) “);
String reply = sc.nextLine();
if (reply.equalsIgnoreCase(“Y”))

return true;
return false;

}
}

The following paragraphs point out the highlights of how this program works:

➞ 1 This import statement is required to use the File class.

➞15 A Scanner object is used to get the pathname from the user.

➞17 The pathname is passed to the File class constructor to create a
new File object for the directory entered by the user.

➞18 The exists and isDirectory methods are called to make sure the
path entered by the user exists and points to a directory rather than
a file.

➞25 If the user entered a good path, the getPath method is called to
display the name of the path represented by the File object.
(I could just as easily have displayed the path variable here.)

➞26 The listDirectories method is called to list all the subdirecto-
ries in the directory specified by the user.

➞28 The user is asked if he or she wants to list another directory, and the
loop repeats if the user enters Y.

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 496

Book V
Chapter 4

Using Recursion

Writing Your Own Sorting Routine 497

➞31 This is the start of the listDirectories method. This method
takes two parameters: a File object representing the directory to be
listed and a String object that provides the spaces used to indent
each line of the listing. When this method is first called from the main
method, the indentation is set to two spaces by a string literal.

➞34 The listFiles method is called to get an array of all the File
objects in this directory.

➞35 An enhanced for loop is used to process all the File objects in the
array.

➞37 This if statement checks to see if a file is a directory rather than a file.

➞40 If the File object is a directory, the indentation string is printed,
followed by the name of the directory as returned by the getName
method.

➞41 Next, the listDirectories method is called recursively to list the
contents of the f directory. However, two spaces are added to the
indentation string so that any directories in the f directory are
indented two spaces to the right of the current directory.

If you’re having trouble understanding how the recursion in this program
works, think of it this way: The listDirectory method lists all the sub-
directories in a single directory. For each directory, this method does two
things: (1) prints the directory’s name, and (2) calls itself to print any sub-
directories of that directory.

Previously, I mentioned that all recursive methods must have some type
of condition test that causes the method to stop calling itself. In this pro-
gram, the condition test may not be obvious. However, eventually the
listDirectories method is passed a directory that doesn’t have any
subdirectories. When that happens, the recursion ends — at least for that
branch of the directory tree.

Writing Your Own Sorting Routine
The world is full of Computer Science majors who don’t know anything more
about computers than you do. However, they once attended a class in which
the instructor explained how sorting algorithms worked. They may have
received a C in that class, but it was good enough to graduate.

Now, you have a chance to learn what you missed by not majoring in Computer
Science. I’m going to show you how one of the most commonly used sorting
techniques actually works. It’s called Quicksort, and it’s a very ingenious use
of recursion. I even show you a simple Java implementation of it.

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 497

Writing Your Own Sorting Routine498

Quicksort is easily the most technical part of this entire book. If you never
wanted to major in Computer Science, and if you don’t even want to talk to
people who did, you may want to just skip the rest of this chapter now.

For most of us, learning how sorting algorithms such as Quicksort work is
merely an intellectual exercise. The Java API has sorting already built in —
for example, check out the Arrays.sort method. Those sort routines are
way better than any that you or I will ever write.

Understanding how Quicksort works
The Quicksort technique sorts an array of values by using recursion. Its
basic steps are this:

1. Pick an arbitrary value that lies within the range of values in the array.

This value is called the pivot point. The most common way to choose the
pivot point is to simply pick the first value in the array. Folks have written
doctoral degrees on more sophisticated ways to pick a pivot point that
results in faster sorting. I like to stick with using the first element in the
array.

2. Rearrange the values in the array so that all the values that are less
than the pivot point are on the left side of the array and all the values
that are greater than or equal to the pivot point are on the right side
of the array.

The pivot value indicates the boundary between the left side and the
right side of the array. It probably won’t be dead center, but that doesn’t
matter. This step is called partitioning, and the left and right sides of the
arrays are called partitions.

3. Now treat each of the two sections of the array as a separate array,
and start over with Step 1 for that section.

That’s the recursive part of the algorithm.

The hardest part of the Quicksort algorithm is the partitioning step. This
step must rearrange the partition so that all values that are smaller than the
pivot point are on the left, and all elements that are larger than the pivot point
are on the right. For example, suppose the array has these ten values:

38 17 58 22 69 31 88 28 86 12

Here, the pivot point is 38, and the task of the partitioning step is to
rearrange the array to something like this:

17 12 22 28 31 38 88 69 86 58

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 498

Book V
Chapter 4

Using Recursion

Writing Your Own Sorting Routine 499

Notice that the values are still out of order. However, the array has been
divided around the value 38: All values that are less than 38 are to the left
of 38, and all values that are greater than 38 are to the right of 38.

Now, you can divide the array into two partitions at the value 38 and repeat
the process for each side. The pivot value itself goes with the left partition,
so the left partition is this:

17 12 22 28 31 38

This time, the partitioning step picks 17 as the pivot point and rearranges
the elements as follows:

12 17 22 28 31 38

As you can see, this portion of the array is now sorted. Unfortunately,
Quicksort doesn’t realize that at this point, so it takes a few more recursions
to be sure. But that’s the basic process.

The sort method
The actual code that drives a Quicksort routine is surprisingly simple:

public static void sort(int low, int high)
{

if (low >= high)
return;

int p = partition(low, high);
sort (low, p);
sort (p+1, high);

}

This method sorts the portion of an array indicated by the low and high index
values passed to it. Ignoring the if statement for now, the sort method
works by calling a partition method. This method rearranges the array
into two sections called partitions so that all the values in the left partition
are smaller than all the values in the right partition. The partition
method returns the index of the end of the left partition. Then, the sort
method calls itself twice: once to sort the left partition, and then again to
sort the right partition.

To get the sort started, you call it with zero as the low value and the array
length and 1 as the high value. Thus, the sort method begins by sorting the
entire array. Each time the sort method executes, it calls itself twice to sort
smaller partitions of the array.

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 499

Writing Your Own Sorting Routine500

The if statement at the beginning of the sort method compares the low
value with the high value. If the low value is equal to or greater than the high
value, the partition has only one element (or perhaps no elements) and is
therefore already sorted. In that case, the sort method simply returns with-
out calling itself again. That’s the condition that ends the recursion.

The partition method
The sort method itself is the simple part of the Quicksort technique. The
hard part is the partition method. This method accepts two parameters:
the low and high indexes that mark the portion of the array that should be
sorted. The basic outline of the partition method goes something like this:

1. Pick a pivot point.

2. Move all elements that are less than the pivot point to the left side of
the partition.

3. Move all elements that are greater than the pivot point to the right
side of the partition.

4. Return the index of the pivot point.

The most commonly used technique for partitioning the array is to maintain
two index variables, named i and j, that work from both ends of the array
toward the center. First, i starts at the beginning of the array and moves for-
ward until it encounters a value that’s greater than the pivot value. Then, j
starts at the opposite end of the array and moves backward until it finds a
value that’s less than the pivot point. At that point, the partition method
has a value that’s greater than the pivot point on the left side of the array
and a value that’s less than the pivot point on the right side of the array. So
it swaps them.

Then, it repeats the cycle: i is incremented until it finds another value that’s
greater than the pivot value, j is decremented until it finds another value
that’s less than the pivot value, and the elements are swapped. This process
repeats until j is less than i, which means the indexes have crossed and the
partitioning is done.

Now put it together in some code:

public static int partition(int low, int high)
{

int pivot = a[low];

int i = low - 1;
int j = high + 1;

while (i < j)
{

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 500

Book V
Chapter 4

Using Recursion

Writing Your Own Sorting Routine 501

for (i++; a[i] < pivot; i++);
for (j--; a[j] > pivot; j--);
if (i < j)

swap(i, j);
}
return j;

}

Note that in this code, the array being sorted is a static int array named a.
The low and high ends of the partition to be partitioned are passed in as
parameters, and the method starts by choosing the first element in the parti-
tion as the value for the pivot point. Next, it initializes the index variables i
and j from the parameters. Notice that 1 is subtracted from the low value
and 1 is added to the high value. The index variables take one step back
from the array before the looping starts so they can get a good start.

The while loop is used to indicate when the partitioning is finished. It repeats
as long as i is less than j. Once these index variables stop, the partitioning
is done, and the value of j is returned to indicate the index point that divides
the left partition from the right partition.

In the body of the while loop are two strange bodyless for loops. These
for loops don’t have a body because their only purpose is to move their
index values until they find a value that’s either less than or greater than the
pivot value.

The first for loop increments the i index variable until it finds a value that’s
greater than the pivot point. Thus, this for loop finds the first value that
might need to be moved to the other side of the array.

Next, the second for loop decrements the j index variable until it finds a
value that’s less than the pivot point. So this loop finds a value that may
need to be swapped with the value found by the first for loop.

Finally, the if statement checks to see if the indexes have crossed. Assuming
they haven’t, a swap method is called to swap the elements. The swap method
is mercifully simple:

public static void swap(int i, int j)
{

int temp = a[i];
a[i] = a[j];
a[j] = temp;

}

This method moves the i element to a temporary variable, moves the
j element to the i element, and then moves the temporary variable to
the j element.

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 501

Writing Your Own Sorting Routine502

Putting it all together
Now that you’ve seen the basic steps necessary to create a Quicksort pro-
gram, Listing 4-2 shows a program that gives these methods a workout. This
program creates an array of 100 randomly selected numbers with values
from 1 through 100. It prints the array, uses the sorting methods shown in
the previous sections to sort the array, and then prints the sorted array.
Here’s a sample run:

Unsorted array:

65 51 38 47 93 87 50 36 77 58 22 92 46 60 49 90 28 39 27 8
66 76 40 99 90 35 34 30 7 41 45 34 41 17 36 63 52 65 50 77
2 93 48 6 91 67 34 69 33 47 50 12 88 15 65 40 29 74 34 14
55 37 28 25 98 66 69 88 66 27 29 88 29 87 9 29 77 32 4 11
68 40 17 61 50 90 24 1 59 91 69 5 82 69 51 45 29 38 61 86

Sorted array:

1 2 4 5 6 7 8 9 11 12 14 15 17 17 22 24 25 27 27 28
28 29 29 29 29 29 30 32 33 34 34 34 34 35 36 36 37 38 38 39
40 40 40 41 41 45 45 46 47 47 48 49 50 50 50 50 51 51 52 55
58 59 60 61 61 63 65 65 65 66 66 66 67 68 69 69 69 69 74 76
77 77 77 82 86 87 87 88 88 88 90 90 90 91 91 92 93 93 98 99

As you can see, the first array is in random order, but the second array is
nicely sorted.

LISTING 4-2: A SORTING PROGRAM

public class QuickSortApp
{

public static void main(String[] args)
{

int LEN = 100;
int[] unsorted = new int[LEN];
for (int i = 0; i<LEN; i++) ➞ 7

unsorted[i] = (int)(Math.random() * 100) + 1;
System.out.println(“Unsorted array:”);
printArray(unsorted); ➞ 10
int[] sorted = sort(unsorted); ➞ 11
System.out.println(“\n\nSorted array:”);
printArray(sorted); ➞ 13

}

private static void printArray(int[] array) ➞ 16
{

System.out.println();
for (int i = 0; i < array.length; i++)
{

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 502

Book V
Chapter 4

Using Recursion

Writing Your Own Sorting Routine 503

if (array[i] < 10)
System.out.print(“ “);

System.out.print(array[i] + “ “);
if ((i+1) % 20 == 0)

System.out.println();
}

}

private static int[] a; ➞ 29

public static int[] sort(int[] array) ➞ 31
{

a = array;
sort(0, a.length - 1);
return a;

}

public static void sort(int low, int high) ➞ 38
{

if (low >= high)
return;

int p = partition(low, high);
sort (low, p);
sort (p+1, high);

}

public static int partition(int low, int high) ➞ 47
{

int pivot = a[low];

int i = low - 1;
int j = high + 1;

while (i < j)
{

for (i++; a[i] < pivot; i++);
for (j--; a[j] > pivot; j--);
if (i < j)

swap(i, j);
}
return j;

}

public static void swap(int i, int j) ➞ 64
{

int temp = a[i];
a[i] = a[j];
a[j] = temp;

}
}

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 503

Writing Your Own Sorting Routine504

Most of the code in this program has already been explained, so I just point
out a few of the highlights:

➞ 7 This for loop assigns 100 random values to the array.

➞10 The printArray method is called to print the unsorted array.

➞11 The sort method is called to sort the array.

➞13 The printArray method is called again to print the sorted array.

➞16 The printArray method uses a for loop to print array elements.
Each element is separated by two spaces. However, an additional space
is printed before each element if the element’s value is less than 10.
That way, the values line up in columns. Also, the remainder operator
(%) is used to call the println method every 20 elements. Thus, this
method prints five lines with 20 values on each line. (The last few
values in the array won’t line up exactly if they happen to be 100, but
that’s okay.)

➞29 A static variable named a is used to hold the array while it is being
sorted.

➞31 The sort method has two versions. The first accepts an int array
as a parameter and returns an int array with the sorted values. This
method sets the static a variable to the array passed via the param-
eters, calls the second version of the sort method to sort the entire
array, and then returns the sorted array.

➞38 This is the second sort method. It sorts the partition indicated by the
parameters. The operation of this method is explained in detail in the
section titled “The sort method.”

➞47 The partition method is also explained in detail in the previous
section.

➞64 The swap method simply exchanges the two indicated values.

Remember the cool XOR technique for exchanging two integer values
without the need for a temporary variable? You can improve the per-
formance of your sort ever so slightly by replacing the swap method
with this code:

public static void swap(int i, int j)
{

a[i] ^= a[j];
a[j] ^= a[i];
a[i] ^= a[j];

}

37_58961X bk05ch04.qxd 3/29/05 3:45 PM Page 504

Book VI

Swing

38_58961X pt06.qxd 3/29/05 3:44 PM Page 505

Contents at a Glance
Chapter 1: Swinging into Swing ..507

Chapter 2: Handling Events ..521

Chapter 3: Getting Input from the User ..537

Chapter 4: Choosing from a List ..563

Chapter 5: Using Layout Managers ..585

38_58961X pt06.qxd 3/29/05 3:44 PM Page 506

Chapter 1: Swinging into Swing

In This Chapter
� Examining some basic Swing concepts

� Fussing with frames

� Putting panels in your frames

� Looking at labels

� Beginning with buttons

� Leaping into layout

So far in this book, all the programs have been console-based, like some-
thing right out of the 1980s. Console-based Java programs have their

place, especially when you’re first learning about Java. But eventually, you’ll
want to create programs that work with a Graphical User Interface, also
known as a GUI.

This chapter gets you started in that direction. You create simple GUI appli-
cations that display simple buttons and text labels. Along the way, you find
out about two key classes: JFrame and JPanel, which provide the visual
containers that hold buttons, labels, and other components I discuss in later
chapters.

Some Important Swing Concepts You Need to Know
Learning Swing is one of the most complicated tasks of learning Java.
Complicated enough, in fact, that I have to go over some conceptual infor-
mation before I get into the nitty-gritty of writing GUI code. So put on your
thinking cap for the next few sections.

Understanding what Swing does
Swing is a package that lets you create applications that use a flashy Graphical
User Interface (or GUI) instead of a dull console interface. Figure 1-1 shows a
typical window created with Swing. As you can see, this window includes a
variety of user-interface components, including labels, text fields, drop-down
lists, and buttons.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 507

Some Important Swing Concepts You Need to Know508

The Swing class hierarchy
The Swing API provides many different classes for creating various types of
user interface elements. In this chapter, I look at three of those classes:
JFrame, JPanel, and JLabel. However, these three classes are part of a
larger collection of classes that are all related through inheritance, as shown
in Figure 1-2. The Swing family tree splits at the Component class into one
group of classes that are derived from the JComponent class, and another
branch that descends from the Window class.

Object

Component

Container

Frame JPanel JLabel

JFrame

JComponentWindow

Figure 1-2:
The Swing
family tree.

Figure 1-1:
A typical
Swing
window.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 508

Book VI
Chapter 1

Sw
inging into
Sw

ing
Some Important Swing Concepts You Need to Know 509

The following paragraphs briefly describe each of the classes shown in this
figure:

✦ Object: All classes ultimately derive from Object, so it’s no surprise
that this class is at the top of the tree.

✦ Component: The Component class represents an object that has a
visual representation that can be shown on-screen and that can interact
with users. This class defines some basic methods that are available to
all Swing classes. For example, the setVisible method determines
whether a component is visible or hidden. And the setBounds method
sets the location and size of the component. This is an AWT class, not a
Swing class.

✦ Container: The Container class builds on the basic visual capabilities
of the Component class by adding the ability to hold other containers.
This too is an AWT class rather than a Swing class. From this class, you
get the add method, which lets you add components to a container. As
you’ll see, you use this method in almost all GUI programs.

✦ Window: This class defines a window, which is a specialized type of
container object that has a border, a title bar, buttons that minimize,
maximize, and close the window, and that can be repositioned and
possibly even resized by the user.

✦ Frame: A frame is a type of Window that serves as the basis for Java GUI
applications. Frame is an AWT class that has been improved upon by
the JFrame class.

✦ JFrame: The Swing version of the older Frame class. Most of your
Swing applications include at least one JFrame object.

✦ JComponent: The JComponent class is a Swing class that is the basis
for all other Swing components except for frames.

✦ JPanel: This class creates panels, which are containers used to organ-
ize and control the layout of other components such as labels, buttons,
text fields, and so on. In most Swing applications, one or more panels are
added to a frame. Then, when the frame is displayed, the components
that were added to its panels are made visible.

✦ JLabel: This class creates a label that displays a simple text value.

As you work with Swing, you’ll find that some of the classes you use are
defined in the javax.swing package. So you need to start every Swing
application with this line:

import javax.swing.*;

In addition, you’ll find that some Swing features use classes in the java.awt
and java.awt.event packages. So you may need to import those packages
as well.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 509

I’ve Been Framed!510

I’ve Been Framed!
The top-level component for most Swing-based applications is called a frame
and is defined by the JFrame class. By itself, a frame doesn’t do much. But
to do anything else in Swing, you must first create a frame. Figure 1-3 shows
a frame that does nothing but display the message Hello, World! in its
title bar.

The JFrame has about a bazillion methods, but only a few of them are
useful in most programs. Table 1-1 lists the JFrame methods you use most,
along with a couple of constructors.

Table 1-1 Useful JFrame Constructors and Methods
Constructor Description

JFrame() Creates a new frame with no title.

JFrame(String title) Creates a new frame with the specified title.

Method Description

void add(Component c) Adds the specified component to the frame.

JMenuBar getJMenuBar() Gets the menu for this frame.

void pack() Adjusts the size of the frame to fit the compo-
nents you’ve added to it.

void remove(Component c) Removes the specified component from the
frame.

void Sets the action taken when the user closes the
setDefaultCloseOperation frame. You should almost always specify

JFrame.EXIT_ON_CLOSE.

void setIconImage Sets the icon displayed when the frame is
(Icon image) minimized.

void setLayout Sets the layout manager used to control how
(LayoutManager layout) components are arranged when the frame is dis-

played. The default is the BorderLayout manager.

void setLocation Sets the x and y position of the frame on-screen.
(int x, int y) The top-left corner of the screen is 0, 0.

Figure 1-3:
The frame
displayed by
the Hello,
World!
program.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 510

Book VI
Chapter 1

Sw
inging into
Sw

ing
Hello, World! in Swing 511

Method Description

void setLocationRelativeTo Centers the frame on-screen if the parameter is
(Component c) null.

void setResizeable Sets whether or not the size of the frame can be
(boolean value) changed by the user. The default setting is true

(the frame can be resized).

void setSize(int width, Sets the size of the frame to the specified width
int height) and height.

void setJMenuBar(JMenuBar Sets the menu for this frame.
menu)

At the minimum, you want to set a title for a new frame, set the frame’s size
so it’s large enough to see any components you add to it (by default, the
frame is zero pixels wide and zero pixels high, so it isn’t very useful), and
call the setVisible method to make the frame visible. One way to do
these three things is to create an instance of the JFrame class and set its
properties using statements like this:

JFrame frame = new JFrame(“This is the title”);
frame.setSize(350, 260);
frame.setVisible(true);

However, creating a frame by declaring a class that extends the JFrame
class is more common. Then, you call these methods in the constructor,
as I describe in the next section.

By default, the user can change the size of a frame. If you want to fix the size
of your frame so the user can’t change it, just call setResizeable(false).

Hello, World! in Swing
To get you started with Swing, Listing 1-1 shows a Swing version of the clas-
sic Hello, World! program, using nothing but a frame. If you run this program,
the frame shown in Figure 1-1 is displayed on-screen. As you can see, the
frame’s title bar contains the text “Hello, World!”

The purpose of this seemingly pointless little program is to illustrate one
solution to the first problem you encounter when you work with Swing: The
main method is a static method, but Swing frames are objects. So, you have
to figure out how to get your program out of a static context. This program
does that by creating the application as a class that extends JFrame. Then,
the main method calls the class constructor, in effect creating an instance of
itself. That’s all the main method does; the real work of this application is
done by the constructor.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 511

Hello, World! in Swing512

LISTING 1-1:THE SWING VERSION OF THE HELLO,WORLD! PROGRAM

import javax.swing.*; ➞ 1

public class HelloFrame extends JFrame ➞ 3
{

public static void main(String[] args) ➞ 5
{

new HelloFrame(); ➞ 7
}

public HelloFrame() ➞ 10
{

this.setSize(200,100); ➞ 12
this.setDefaultCloseOperation(➞ 13

JFrame.EXIT_ON_CLOSE);
this.setTitle(“Hello World!”); ➞ 15
this.setVisible(true); ➞ 16

}
}

The following paragraphs describe most of the features of this program:

➞ 1 The program starts with an import statement that imports all the
classes in the javax.swing package. Most of the Swing classes are
defined in this package. However, you may have to import other
classes as well, depending on what GUI features your program uses.

➞ 3 The class for this application, named JFrame, extends a Swing class
named JFrame. A class that extends JFrame is often called a frame
class. The JFrame class defines a basic frame in which you can display
GUI components, such as labels and text boxes. All Swing applications
need at least one class that extends JFrame.

➞ 5 Swing applications are still Java applications, and all Java applica-
tions need a static main method that starts the application. So the
first method listed in this class is the main method.

➞ 7 The first (and only) statement of the main method creates a new
instance of the HelloFrame class. Unlike console applications,
Swing applications can’t run in a static context. As a result, the main
purpose of the static main method in a Swing application is to create
an instance of the application’s frame class.

➞10 When an instance of the HelloFrame class is created in line 7, the
constructor that starts on this line is executed. The main job of the
constructor for a frame class is to set the options for the frame and
create any GUI components that are displayed in the frame.

➞12 The first option that this constructor sets is the size of the frame. To
do that, it calls the setSize method. The parameters specify that

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 512

Book VI
Chapter 1

Sw
inging into
Sw

ing
Positioning the Frame On-Screen 513

the frame should be 200 pixels wide and 100 pixels high. (A pixel is
one of the little dots that makes up the image on a computer screen.
Pixel is short for picture element, but that won’t be on the test.)

➞13 The next option this constructor sets is what to do if the user closes
the frame by clicking its Close button, which usually appears in the
upper-right hand corner of the frame. By default, clicking the Close
button hides the frame but doesn’t terminate the application. As a
result, the application’s main thread (the one that’s still running in
a static context via the main method) keeps running for a while.
Eventually, Java figures out that nothing’s happening and shuts the
application down. But the application exits more cleanly if you use
the setDefaultCloseOperation to set the close operation to
JFrame.EXIT_ON_CLOSE. That causes the program to terminate
when the frame is closed.

➞15 The next statement uses the setTitle method to set the title of the
frame.

➞16 The last statement in the constructor calls the setVisible method
with a parameter value of true, which makes the frame visible on-
screen. If you leave this statement out, the frame is created but the
user never sees it.

That’s all there is to this program. Granted, it’s a little more complicated
than the console-base Hello, World! program from Book I, Chapter 1. But not
by much. Just to be sure its operation is clear, here’s a recap of what hap-
pens when this program is run:

1. Java runs the static main method for the HelloWorld class.

2. The main method creates an instance of the HelloWorld class, which
causes the constructor to be executed.

3. The constructor sets the frame size, the default close operation, and the
title.

4. Now that the constructor is done, the program continues with the main
method, where the setVisible method is called to display the frame.

Positioning the Frame On-Screen
The JFrame class provides two methods that let you specify the position of
the frame on-screen. If you want to place the frame at some arbitrary location
on-screen, use the setLocation method. For example, to put the frame at
the top left corner of the screen, use this statement:

frame.setLocation(0,0);

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 513

Using the JPanel Class514

If you want to center the frame on-screen, call the setLocationRelativeTo
method and pass null as the parameter:

frame.setLocationRelativeTo(null);

This method is designed to let you position a frame relative to some other
component that’s already displayed. But if you pass null as the parameter,
the method centers the frame on-screen.

If you want to position a window at some location other than the top left
corner or dead center on-screen, you may need to know the width and
height of the user’s screen so you can calculate a location for your frame.
To determine the size of the user’s screen, you can use a class named
Toolkit. The Toolkit class has a bunch of methods, but you need to
know two of them here:

✦ getDefaultToolkit: A static method that creates a Toolkit object.
You must use this method before you can use the getScreenSize
method.

✦ getScreenSize: Returns the size of the screen as a Dimension
object. The Dimension class has two public fields that represent the
size of the screen: height and width. Both fields are of type int.

Suppose you want to position a frame so that its bottom-left corner is right at
the center of the screen. The following code placed in the frame’s constructor
does the trick:

Toolkit tk = Toolkit.getDefaultToolkit();
Dimension d = tk.getScreenSize();
int x = d.width / 2;
int y = (d.height / 2) - this.getHeight();
this.setLocation(x, y);

This code first creates a Toolkit object and uses it to get the screen
dimensions. It sets the x position to the horizontal center of the screen by
dividing the screen width by 2. Then it sets the y position to the vertical
center (the screen height divided by 2) less the width of the frame. That puts
the bottom of the frame at the vertical midpoint.

Using the JPanel Class
A panel is a type of container that’s designed to hold a group of components
so they can be displayed on a frame. The normal way to display a group of
controls such as text fields, labels, buttons, and other GUI widgets is to add
those controls to a panel, and then add the panel to the frame. You can bypass
the panel and add the controls directly to the frame if you want, but using a
separate panel to hold the frames control is almost always a good idea.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 514

Book VI
Chapter 1

Sw
inging into
Sw

ing
Using the JPanel Class 515

Panels are defined by the JPanel class. Like the JFrame class, the JPanel
class has a bevy of methods. Table 1-2 lists the most commonly used con-
structors and methods for the JPanel class.

Table 1-2 Interesting JPanel Constructors and Methods
Constructor Description

JPanel() Creates a new panel.

JPanel(boolean Creates a new panel. If the parameter is true, the panel
isDoubleBuffered) uses a technique called double-buffering, which results in

better display for graphics applications. This constructor
is usually used for game programs or other panels that
display animations.

JPanel(LayoutManager Creates a new panel with the specified layout manager.
layout) The default layout manager is FlowLayout.

Method Description

void add(Component c) Adds the specified component to the panel.

void remove Removes the specified component from the panel.
(Component c)

void setLayout Sets the layout manager used to control how components
(LayoutManager are arranged when the panel is displayed. The default is
layout) the FlowLayout manager.

void setLocation(int Sets the x and y position of the frame-screen. The top-left
x, int y) corner of the screen is 0, 0.

void setSize(int Sets the size of the frame to the specified width and
width, int height) height.

void setToolTipText Sets the tooltip text that’s displayed if the user rests the
(String text) mouse over an empty part of the panel.

You can use several different techniques to create a panel and add it to a
frame. One is to simply create a JPanel object and assign it to a variable in
the JFrame constructor. You can then add components to the panel, and
then add the panel to the frame. For example

// HelloFrame constructor
public HelloFrame()
{

this.setSize(200,100);

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.setTitle(“Hello, World!”);

JPanel panel = new JPanel();

// code to add components to the panel goes here

this.setVisible(true);
}

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 515

Using Labels516

Another commonly used technique is to create a separate class for the panel.
This class should extend JPanel. Then, you can add any components the
panel needs in the constructor:

class HelloPanel extends JPanel
{

public HelloPanel()
{

// code to add components to the panel goes here
}

}

Then, in the frame class constructor, you create a new instance of the panel
class and add it to the panel:

HelloPanel panel = new HelloPanel();
this.add(panel);

Or, just this statement does the trick:

this.add(new HelloPanel());

Using Labels
Now that you know how to create frames and panels, you can create a useful
component to add to a panel: a label. A label is a component that simply dis-
plays text. Labels are used for a variety of purposes: to display captions for
other controls such as text fields or combo boxes, to display informational
messages, or to show the results of a calculation or a database lookup.

A label can also display an image, or it can display both an image and some
text. And you have complete control over the appearance of the text: You
can specify the font, size, whether the text is bold, italic, or underlined, what
color the text is displayed as, and so on. In this chapter, I discuss how to
work with basic labels. For more information about additional things you
can do with labels, see Book IX, Chapters 1 and 2.

To create a label, you use the JLabel class. Table 1-3 shows its most com-
monly used constructors and methods.

Table 1-3 Tolerable JLabel Constructors and Methods
Constructor Description

JLabel() Creates a new label with no initial text.

JLabel(String text) Creates a new label with the specified text.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 516

Book VI
Chapter 1

Sw
inging into
Sw

ing
Using Labels 517

Method Description

String getText() Returns the text displayed by the label.

void setText(String Sets the text displayed by the label.
text)

void setToolTipText Sets the tooltip text that’s displayed if the user rests the
(String text) mouse over the label for a few moments.

void setVisible Shows or hides the label.
(boolean value)

When you create a label, you can pass the text you want it to display to the
constructor, like this:

JLabel label1 = new JLabel(“Hello, World!”);

Or, you can create the label first, and then set its text later:

JLabel label1 = new JLabel();
label1.setText(“Hello, World!”);

A label won’t be displayed until you add it to a panel that is, in turn, added
to a frame. Here’s an example of a constructor for a frame class that creates
a panel, creates a label, adds the label to the panel, and adds the panel to
the frame:

// HelloFrame constructor
public HelloFrame()
{

this.setSize(200,100);

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.setTitle(“Hello, World!”);

JPanel panel1 = new JPanel();
JLabel label1 = new JLabel(“Hello, World!”)
panel1.add(label1);
this.add(panel1);

this.setVisible(true);
}

Figure 1-4 shows what this frame looks like when the program is run.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 517

Creating Buttons518

Creating Buttons
Next to labels, the Swing component you use most is the JButton compo-
nent, which creates a button the user can click. Figure 1-5 shows a frame
with a single button.

In the next chapter, you find out how to write the code that responds when
the user clicks a button. Here, I just focus on how to create buttons and con-
trol their appearance. Table 1-4 lists the most commonly used constructors
and methods that are available for the JButton class.

Table 1-4 Worthwhile JButton Constructors and Methods
Constructor Description

JButton() Creates a new button with no initial text.

JButton(String text) Creates a new button with the specified
text.

Method Description

doClick() Triggers an action event for the button as if
the user clicked it. (I tell you why this is
sometimes useful in the next chapter.)

String getText() Returns the text displayed by the button.

void setBorderPainted Shows or hides the button’s border. The
(boolean value) default setting is true (the border is

shown).

Figure 1-5:
A frame
with a
panel,
which
includes
a button.

Figure 1-4:
A frame
with a
panel,
which has
a label.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 518

Book VI
Chapter 1

Sw
inging into
Sw

ing
Creating Buttons 519

Method Description

void setContentAreaFilled Specifies whether or not the button’s
(boolean value) background should be filled or left empty.

The default setting is true (the back-
ground is filled in).

void setEnabled(boolean value) Enables or disables the button. The default
setting is true (enabled).

void setRolloverEnabled Enables or disables the rollover effect,
(boolean value) which causes the border to get thicker

when the mouse moves over the button.
The default setting is true (rollover effect
enabled).

void setText(String text) Sets the text displayed by the button.

void setToolTipText Sets the tooltip text that’s displayed if the
(String text) user lets the mouse rest over the button.

void setVisible(boolean Shows or hides the button. The default
value) setting is true (the button is visible).

As you can see, the constructors of the JButton class are similar to the
constructors for the JLabel class: You can either create an empty button
or a button with text. For example, here’s the code that creates the button
shown in Figure 1-5:

JButton button1 = new JButton(“Click me!”);

If you don’t provide the button text when you call the constructor, you can
supply it later via the setText method, like this:

JButton button1 = new JButton();
button1.setText(“Click me!”);

You might not think you’d ever do that, but sometimes the meaning of a
button changes depending on what the user is doing. For example, a pro-
gram that lets a user add, change, or delete records in a file might set the
text of a button to Add Record, Change Record, or Delete Record
depending on what the user happens to be doing at the time. In a program
like that, you may need to use the getText method to find out what text is
currently displayed by a button.

Most of the other methods listed in Table 1-4 simply affect how a button looks.
To disable a button so the user can’t click it, call setEnabled(false). To
remove the dark border from the edges of a button, call setBorderPainted
(false). To remove the background from a button so all that’s displayed
is the text, call setContentAreaFilled(false). And to make a button
disappear altogether, call setVisible(false).

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 519

A Word about the Layout of Components520

A Word about the Layout of Components
Controlling the layout of components on a panel is one of the hardest things
about using Swing. Hard enough, in fact, that I devote Book VI, Chapter 5 to
it. Until then, you need to know a few key points:

✦ The layout of components on a panel (or frame) is controlled by a layout
manager, which determines the final placement of each component. The
layout manager takes the size of the component, the size of the panel, and
the position of other nearby components into account when it makes its
decisions.

✦ Swing provides seven different layout managers you can choose from.
Each has is own way of deciding where each component goes.

✦ The default layout manager for panels is called FlowLayout. It places
components one after another in a row, and starts a new row only when
it gets to the end of the panel (or the frame that contains it).

✦ With FlowLayout (and with the other layout managers too), the layout
changes if the user changes the size of the frame. The size of the frame
makes a big difference in how FlowLayout arranges controls.

✦ You can always call the frame’s setResizeable(false) method to
prevent the user from resizing the frame.

✦ If you want to change the layout manager used for a panel, you call the
panel’s setLayout method.

✦ For many (if not most) Swing applications, you use more than one panel
to display your components. Each panel can have a different layout man-
ager. With this technique, you can create complex layouts with lots of
components, all arranged just the way you want.

✦ If you need to, you can always turn off the layout manager altogether.
To do that, you call the panel’s setLayout method with null set
as the parameter. Then, you use absolute positioning, which lets you
set the x and y position and the size of each component by calling its
setBounds method.

✦ This list could go on and on. For more information about controlling
layout, refer to Book VI, Chapter 5.

39_58961X bk06ch01.qxd 3/29/05 3:44 PM Page 520

Chapter 2: Handling Events

In This Chapter
� Understanding important event concepts

� Working with event handling classes and interfaces

� Responding to button clicks

� Using inner classes for event handling

� Providing an Exit button

� Dealing with the Close button

In the previous chapter, you find out how to create Swing frames that
include panels, labels, and buttons. However, the frames don’t do

anything other than sit there. They look good, but they’re completely
unresponsive. Click them all you want, but they don’t do anything.
They’re kind of like teenagers.

In this chapter, you get those buttons to do something. Specifically, you find
out how to write code that’s executed when a user clicks a button. The tech-
nique you use to do that is called event listening, and it’s one of the most
important aspects of writing Swing programs. It may seem a little compli-
cated at first, but after you get the swing of it (sorry), event listening makes
perfect sense.

Although event listening is used mostly to respond to button clicks, it can
also be used to respond to other types of user interactions. For example,
you can use event listening to write code that’s executed when the user
makes a selection from a combo box, moves the mouse over a label, or
presses a key on the keyboard. The event-listening techniques in this chap-
ter work for those events as well.

Examining Events
An event is an object that’s generated when the user does something note-
worthy with one of your user-interface components. For example, if the user
clicks a button, drags the mouse over a label, or selects an item from a combo
box, an event object is generated. This event object is then passed to a spe-
cial method you create called an event listener. The event listener can examine
the event object, determine exactly what type of event occurred, and respond
accordingly. For example, if the user clicks a button, the event listener might

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 521

Examining Events522

write any data entered by the user via text fields to a file. If the user passes the
mouse over a label, the event handler might change the text displayed by the
label. And if the user selects an item from a combo box, the event handler
might use the value that was selected to look up information in a database.
The possibilities are endless!

There are several different types of event objects, represented by various
classes that all inherit AWTEvent. Table 2-1 lists the most commonly used
event classes. In addition, this table lists the listener interface that’s used
to create an object that can listen for the event and handle it when it is
generated.

Note that these event classes are contained in the package java.awt.
Strictly speaking, event handling is provided by AWT, not by Swing.

Table 2-1 Commonly Used Event Classes
Event Class Listener Interface Description

ActionEvent ActionListener Created when the user performs an
action with a button or other compo-
nent. Usually, this means that the user
has clicked the button. However, the
user can also invoke a button action
by tabbing to the button and pressing
the Enter key.

ItemEvent ItemListener Created when the selected item in a
list control, such as a combo box or
list box, is changed.

DocumentEvent DocumentListener Created when the user changes the
contents of a text component. such as
a text field.

WindowEvent WindowListener Created when the status of the
window (frame) changes.

KeyEvent KeyListener Created when the user presses a key
on the keyboard. This event can be
used to watch for specific keystrokes
entered by the user.

MouseEvent MouseListener Created when the user does some-
thing interesting with the mouse, such
as clicks one of the buttons, drags the
mouse, or simply moves the mouse
over another object.

FocusEvent FocusListener Created when a component receives
or loses focus.

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 522

Book VI
Chapter 2

Handling Events

Examining Events 523

The events listed in Table 2-1 can be divided into two categories. The first
three (ActionEvent, ItemEvent, and DocumentEvent) are called
semantic events because they’re related to user interactions that usually
have some specific meaning. For example, when the user clicks a button, he
or she is trying to do something specific. In contrast, the other events are
called low-level events.

If you’re cramming for the test, you absolutely need to know three important
terms:

✦ Event: An object that’s created when the user does something notewor-
thy with a component, such as clicking it.

✦ Event Source: The component that generated the event object. Usually,
the event source is a button or other component the user can click, but
any Swing component can be an event source.

✦ Event Listener: The object that listens for events and handles them
when they occur. The event listener object must implement the interface
appropriate for the event. These listener interfaces define the method or
methods that the event source calls when the event occurs. Table 2-2
lists the methods that are defined by each of the interfaces that are
listed in Table 2-1.

Table 2-2 Methods Defined by Event Listener Interfaces
Listener Interface Method Description

ActionListener void actionPerformed Called when an action event
(ActionEvent e) occurs.

ItemListener void itemStateChanged Called when the selected
(ItemEvent e) item changes.

DocumentListener void changeUpdate Called when text is changed.
(DocumentEvent e)

void insertUpdate Called when text is inserted.
(DocumentEvent e)

void removeUpdate Called when text is deleted.
DocumentEvent e)

WindowListener void windowActivated Called when the window is
(WindowEvent e) activated.

void windowClosed Called when the window has
(WindowEvent e) been closed.

void windowClosing Called when the user
(WindowEvent e) attempts to close the window.

void windowDeactivated Called when the window is
(WindowEvent e) deactivated.

(continued)

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 523

Handling Events524

Table 2-2 (continued)
Listener Interface Method Description

void windowDeiconified Called when the window is
(WindowEvent e) changed from icon to normal.

void windowIconified Called when the window is
(WindowEvent e) minimized to an icon.

void windowOpened Called when the window is
(WindowEvent e) opened.

KeyListener void keyPressed Called when the user
(KeyEvent e) presses a key.

void keyReleased Called when the user
(KeyEvent e) releases a key.

void keyTyped Called when the user types
(KeyEvent e) a key.

MouseListener void mouseClicked Called when the user clicks
(MouseEvent e) the mouse.

void mouseEntered Called when the mouse
MouseEvent e) moves over a component.

void mouseExited Called when the mouse
(MouseEvent e) leaves a component.

void mousePressed Called when the user
(MouseEvent e) presses the mouse button.

void mouseReleased Called when the user
(MouseEvent e) releases the mouse button.

FocusListener void focusGained Called when the component
(FocusEvent e) gains focus.

FocusListener void focusLost Called when the component
(FocusEvent e) looses focus.

Handling Events
Now that you know the basic objects that are used for event handling, you
have to actually wire them up to create a program that responds to events.

To write Java code that responds to events, you have to do the following:

1. Create a component that can generate events.

You want to add buttons or other components that generate events to
your frame so it displays components the user can interact with. (Strictly
speaking, all Swing components can generate some events. Even a label
generates a MouseEvent when the user moves the mouse over it. But a
frame that consists of nothing but labels isn’t very useful.)

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 524

Book VI
Chapter 2

Handling Events

Handling Events 525

Usually, you declare the variable that refers to the event source as a pri-
vate class field, outside of the constructor for the frame or any other
method. For example

private JButton button1;

Then, in the constructor for the frame class, you can create the button.
For example, here’s code that creates a panel, creates a button, adds it
to a panel, and then adds the panel to the frame:

JPanel panel = new JPanel();
button1 = new JButton(“Click me!”);
panel.add(button1);
this.add(panel);

Note that this code appears in the constructor of the frame class, so
this in the last line refers to the frame.

2. Create a class that implements the listener interface for the event you
want to handle.

For example, to handle action events, you should create a class that
implements the ActionListener interface. As you see later in this
chapter, you can do that in at least four ways. But one of the easiest is to
simply add implements ActionListener to the definition of the
frame class. Thus, the frame class declaration looks something like this:

public class ClickMe
extends JFrame implements ActionListener

Later in this chapter, I tell you about other ways to implement the event
listener interface.

3. Write the code for any methods defined by the listener.

When you implement a listener interface, you must provide an implemen-
tation of each method defined by the interface. Most listener interfaces
define just one method, corresponding to the type of event the interface
listens for. For example, the ActionListener interface defines a method
named actionPerformed. This method is called whenever an action
event is created. Thus, the code you place inside the actionPerformed
method is executed when an action event occurs.

For example, here’s an actionPerformed method that responds to
action events:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == button1)
button1.setText(“You clicked!”);

}

Here, this code changes the text displayed by button1 if the event
source is button1.

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 525

The ClickMe Program526

4. Register the listener with the source.

The final step is to register the event listener with the event source.
Every component that serves as an event source provides a method that
lets you register event listeners to listen for the event. For ActionEvent
sources, the method is addActionListener. Here’s a modification to
the frame constructor code that creates the button1 button and regis-
ters the frame class as the action event listener:

JPanel panel = new JPanel();
button1 = new JButton(“Click me!”);
button1.addActionListener(this);
panel.add(button1);
this.add(panel);

Here, you can specify this as the event listener because the frame class
itself implements ActionListener.

The ClickMe Program
To see how all these elements work together in a complete program, Figure 2-1
shows three incarnations of a frame created by a program called ClickMe.
This program displays a frame that has a single button that initially says
Click Me! When the user clicks the button, the button’s text changes
to I’ve been clicked! as shown in the second frame in the figure.
Then, if the user clicks the button again, the text changes to I’ve been
clicked 2 times! as shown in the third frame. Thereafter, the count
increases each time the button is clicked. Listing 2-1 shows the complete
code for this program.

Figure 2-1:
The ClickMe
program in
action.

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 526

Book VI
Chapter 2

Handling Events

The ClickMe Program 527

LISTING 2-1:THE CLICKME PROGRAM

import javax.swing.*;
import java.awt.event.*; ➞ 2

public class ClickMe
extends JFrame implements ActionListener ➞ 5

{
public static void main(String [] args) ➞ 7
{

new ClickMe();
}

private JButton button1; ➞ 12

public ClickMe() ➞ 14
{

this.setSize(200,100);

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.setTitle(“I’m Listening”);

JPanel panel1 = new JPanel();
button1 = new JButton(“Click Me!”); ➞ 21
button1.addActionListener(this); ➞ 22
panel1.add(button1);
this.add(panel1);

this.setVisible(true);
}

private int clickCount = 0; ➞ 29

public void actionPerformed(ActionEvent e) ➞ 31
{

if (e.getSource() == button1) ➞ 33
{

clickCount++; ➞ 35
if (clickCount == 1) ➞ 36

button1.setText(“I’ve been clicked!”);
else

button1.setText(“I’ve been clicked “
+ clickCount + “ times!”);

}
}

}

The following paragraphs point out some key lines of the program:

➞ 2 The program must import the java.awt.event package, which
defines the ActionEvent class and the ActionListener interfaces.

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 527

Using Inner Classes to Listen for Events528

➞ 5 The ClickMe class extends the JFrame class and implements
ActionListener. That way, this class does double-duty: It defines
the frame, and it listens for events generated by components added
to the frame.

➞ 7 The main method is required as usual. It simply creates an instance
of the ClickMe class to get the frame started.

➞12 The button1 variable is defined as a private class field so both the
ClickMe constructor and the actionPerformed method can
access it.

➞14 The constructor does all the usual stuff that a constructor for a
frame class does: It sets the frame size, default close operation, and
title, and then it adds components to the frame. It ends by calling
setVisible to make the frame visible on the screen.

➞21 This line creates a button and assigns it to the button1 field.

➞22 This line adds the current object as an action listener for the
button1 button.

➞29 A field named clickCount is used to keep track of how many times
the button has been clicked. This field is initialized to zero when the
object is created.

➞31 The actionPerformed method must be coded because the ClickMe
class implements the ActionListener interface. This method is
called by the button1 object whenever the user clicks the button.
The ActionEvent parameter is the event generated by the button
click.

➞33 The getSource method of the ActionEvent parameter is called to
determine the event source. In this program, this if statement isn’t
really required, because the program has only one event source.
However, most Swing programs have more than one event source,
so you need to test the event source in the event listener.

➞35 This statement increments the click count to indicate that the button
has been clicked.

➞36 This if statement tests the value of the clickCount field and
changes the text displayed by the button accordingly.

Using Inner Classes to Listen for Events
As explained in Book III, Chapter 7, an inner class is a class that’s nested
within another class. Inner classes are commonly used for event listeners.
That way, the class that defines the frame doesn’t also have to implement
the event listener. Instead, it includes an inner class that handles the events.

Listing 2-2 shows a version of the ClickMe program that uses an inner class
to handle the action event for the button.

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 528

Book VI
Chapter 2

Handling Events

Using Inner Classes to Listen for Events 529

LISTING 2-2:THE CLICKME2 PROGRAM WITH AN INNER CLASS

import javax.swing.*;
import java.awt.event.*;

public class ClickMe2 extends JFrame ➞ 4
{

public static void main(String [] args)
{

new ClickMe2();
}

private JButton button1; ➞ 11

public ClickMe2()
{

this.setSize(200,100);
this.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
this.setTitle(“I’m Listening”);

ClickListener cl = new ClickListener(); ➞ 20

JPanel panel1 = new JPanel();
button1 = new JButton(“Click Me!”);
button1.addActionListener(cl); ➞ 24
panel1.add(button1);
this.add(panel1);

this.setVisible(true);
}

private class ClickListener
implements ActionListener ➞ 32

{
private int clickCount = 0; ➞ 34

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == button1) ➞ 38
{

clickCount++;
if (clickCount == 1)

button1.setText(“I’ve been clicked!”);
else

button1.setText(“I’ve been clicked “
+ clickCount + “ times!”);

}
}

}
}

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 529

Adding an Exit Button530

This program works essentially the same as the program shown in Listing 2-1,
so I won’t review the basics. Instead, I just point out some highlights:

➞ 4 The ClickMe2 class still extends JFrame, but doesn’t implement
ActionListener.

➞11 The button that serves as the event source must be referenced by a
class field so the inner class can access it. This field can be private,
because inner classes have access to private members of the class
that contains them.

➞20 This statement creates an instance of the ClickListener class
(the inner class) and assigns it to the variable c1.

➞24 This statement adds c1 as an action listener for the button. Note that
because this frame has only one button, I could just as easily have
omitted line 20 and coded line 24 like this:

button1.addActionListener(new ClickListener());

However, because most real-world applications have more than one
event source, creating an instance of the listener class first, then
reusing that object as the listener for each event source is common.

➞32 The ClickListener class is declared as an inner class by placing
its declaration completely within the ClickMe2 class. The Click
Listener class implements the ActionListener interface so it
can handle action events.

➞34 The clickCount variable is declared as a class field in the inner
class.

➞38 The button1 variable is available to the inner class here because
inner classes can access private members of the class that contains
them.

Adding an Exit Button
In Book VI, Chapter 1, you find out how to create a frame that exits the appli-
cation when the user clicks the frame’s Exit button. To add an Exit button to
your application, you must do three things:

1. Create the Exit button and add it to the frame.

Usually, you actually add the Exit button to a panel that is in turn added
to the frame.

2. Add an action event listener to the button.

3. Add code in the actionPerformed method of the action listener to
quit the application when the user clicks the button.

You normally do that by calling System.exit(0).

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 530

Book VI
Chapter 2

Handling Events

Adding an Exit Button 531

In many applications, you don’t want to just blindly terminate the application.
Instead, you should make sure the user has saved his or her data before
ending. If not, you can either save the data automatically or require the user
to save the data before allowing the program to end.

Suppose you want to change the ClickMe2 application that is shown in
Listing 2-2 so that it has an Exit button, but the Exit button won’t let the user
quit unless he or she has clicked the ClickMe button at least once. First, you
change Line 11 to declare an exitButton class field:

private JButton button1, exitButton;

Next, you add code to the constructor to create the button, register the
event listener, and add the button to the panel:

exitButton = new JButton(“Exit”);
exitButton.addActionListener(cl);
panel1.add(exitButton);

Finally, you modify the actionPerformed method of the ClickListener
class to handle the Exit button:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == button1)
{

clickCount++;
if (clickCount == 1)

button1.setText(“I’ve been clicked!”);
else

button1.setText(“I’ve been clicked “
+ clickCount + “ times!”);

}
else if (e.getSource() == exitButton)
{

if (clickCount > 0)
System.exit(0);

else
{

JOptionPane.showMessageDialog(ClickMe3.this,
“You must click at least once!”,
“Not so fast, buddy”,
JOptionPane.ERROR_MESSAGE);

}
}

}

Here, an if statement is used to determine which button was clicked when
the actionPerformed method is called. This step is necessary because
the ClickHandler class is used to handle action events for both buttons.
If the event source is the Exit button, another if statement checks to see if

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 531

Catching the WindowClosing Event532

the clickCount variable is greater than zero. If it is, System.exit(0) is
called to end the application. Otherwise, JOptionPane is used to display
an error message, and the application is not ended.

Unfortunately, just adding this logic to the Exit button isn’t enough, because
the user can bypass your Exit button by clicking the frame’s Close button.
What you want is for the frame Close button to act exactly like the Exit button.
To do that, you need to add a window event listener in addition to an action
event listener, as I describe in the next section.

Catching the WindowClosing Event
Book VI, Chapter 1 shows you how to use the setDefaultCloseOperation
method of the JFrame class to let the user quit the application by using the
frame’s Close button. However, if your application checks to see if data has
been saved or other conditions have been met before allowing the user to
exit, this approach won’t work. In that case, you want to set up the Close
button so it works the same as your Exit button.

To do that, you need to add a listener that listens for window events to the
frame. When the user clicks the Close button, the frame generates a window
Closing event which you can handle by registering a WindowListener
with the frame itself. Then, in the windowClosing method of the Window
Listener, you can just call the Exit button’s doClick event. That triggers
an action event for the Exit button as if the user clicked it. Thus, the Close
button is handled in exactly the same way as the Exit button.

The first step to setting up a window listener is getting rid of the default
behavior that automatically exits the application when the user clicks the
Close button. To do that, you must change the constant you use in the
setDefaultCloseOperation from EXIT_ON_CLOSE to DO_NOTHING_
ON_CLOSE, like this:

this.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_
CLOSE);

That way, the default action of the JFrame class is to completely ignore the
Close button. Then, you can install a window listener to handle the Close
button any way you want.

Next, you can set up the WindowListener to listen for window events.
One way to do that is to create an inner class that implements the Window
Listener interface. Unfortunately, the WindowListener interface has a
lot of methods, and you must provide an implementation for each method
even if you don’t want to do anything for that method. Thus, your Window
Listener looks something like this:

private class Closer implements WindowListener
{

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 532

Book VI
Chapter 2

Handling Events

Catching the WindowClosing Event 533

public void windowClosing(WindowEvent e)
{

exitButton.doClick();
}

public void windowActivated(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}

}

Finally, you register the WindowListener with the frame by calling its
addWindowListener method in the frame class constructor:

this.addWindowListener(new Closer());

If you find it annoying that you have to code all those dummy methods when
you implement the WindowListener interface, you can use an adapter class
instead. An adapter class is a class that implements an interface and pro-
vides dummy implementations for all the methods defined by the interface.
Instead of implementing the interface, you extend the adapter class. Then,
you only have to provide an implementation for the method or methods
you’re interested in.

Many of Java’s event listener interfaces have corresponding adapter classes.
They’re listed in Table 2-3. Here’s what the Closer class looks like if you
extend WindowAdapter instead of implement WindowListener:

private class Closer extends WindowAdapter
{

public void windowClosing(WindowEvent e)
{

exitButton.doClick();
}

}

That saves some code. However, you can save even more code by skipping
the Closer class altogether, and handling the window closing event with an
anonymous inner class instead. Then, the statement in the frame construc-
tor that registers the window event listener looks like this:

addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

exitButton.doClick();
}

});

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 533

The ClickMe Program Revisited534

Here, the window listener is created as an anonymous inner class that
extends WindowAdapter and defines the windowClosing method.

Table 2-3 Adapter Classes for Event Listeners
Listener Interface Adapter Class

WindowListener WindowAdapter

KeyListener KeyAdapter

MouseListener MouseAdapter

FocusListener FocusAdapter

An anonymous inner class is simply a class that has no name, that is used
only once in the program, and is defined right at the spot where it’s used.
For a rundown of the weird syntax used to create an anonymous inner class,
refer to Book III, Chapter 7.

The ClickMe Program Revisited
Now that you’ve mulled over the various techniques for creating an Exit
button and handling the Close button, Listing 2-3 presents a third version of
the ClickMe program that adds all these features so you can see how they
work together. This version of the program adds an Exit button, but does not
allow the user to quit until he or she has clicked the ClickMe button at least
once. And it treats the Close button as if the user had clicked Exit.

LISTING 2-3:THE CLICKME APPLICATION WITH AN EXIT BUTTON

import javax.swing.*;
import java.awt.event.*;

public class ClickMe3 extends JFrame
{

public static void main(String [] args)
{

new ClickMe3();
}

private JButton button1, exitButton; ➞ 11

public ClickMe3()
{

this.setSize(275,100);
this.setTitle(“I’m Listening”);
this.setDefaultCloseOperation(➞ 17

JFrame.DO_NOTHING_ON_CLOSE);

ClickListener cl = new ClickListener();

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 534

Book VI
Chapter 2

Handling Events

The ClickMe Program Revisited 535

JPanel panel1 = new JPanel();

addWindowListener(new WindowAdapter() ➞ 24
{

public void windowClosing(WindowEvent e)
{

exitButton.doClick(); ➞ 28
}

});

button1 = new JButton(“Click Me!”);
button1.addActionListener(cl);
panel1.add(button1);

exitButton = new JButton(“Exit”); ➞ 36
exitButton.addActionListener(cl);
panel1.add(exitButton);
this.add(panel1);

this.setVisible(true);
}

private class ClickListener implements
ActionListener

{
private int clickCount = 0;

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == button1)
{

clickCount++;
if (clickCount == 1)

button1.setText(“I’ve been clicked!”);
else

button1.setText(“I’ve been clicked “
+ clickCount + “ times!”);

}
else if (e.getSource() == exitButton) ➞ 61
{

if (clickCount > 0)
System.exit(0);

else
{

JOptionPane.showMessageDialog(
ClickMe3.this,
“You must click at least once!”,
“Not so fast, buddy”,
JOptionPane.ERROR_MESSAGE);

}
}

}
}

}

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 535

The ClickMe Program Revisited536

The following paragraphs draw your attention to the key sections of this
program:

➞11 The exitButton variable is declared along with the button1 vari-
able as a class field so it can be accessed from the inner classes.

➞17 The setDefaultCloseOperation method tells the JFrame class
that no default action is taken if the user closes the window.

➞24 A window listener is installed on the frame to listen for window
events. This listener is constructed from an anonymous inner class
that extends the WindowAdapter class.

➞28 In the windowClosing method, the doClick method of the Exit
button is called. That way, the Close button is handled exactly as if
the user had clicked the Exit button.

➞36 This and the next two lines create the Exit button, register its action
event listener, and add it to the panel.

➞61 In the actionPerformed method of the action listener class, this if
statement checks to see if the action event came from the Exit button.
If so, another if statement checks to see if the user has clicked the
ClickMe button at least once. If so, the application exits. Otherwise, a
message is displayed, and the program refuses to budge.

40_58961X bk06ch02.qxd 3/29/05 3:43 PM Page 536

Chapter 3: Getting Input
from the User

In This Chapter
� Text fields

� Text areas

� Scroll bars

� Check boxes

� Radio buttons

� Borders

� Sliders

In the first two chapters of Book VI, you find out how to use two basic
Swing user interface components — labels and buttons — and how to

handle events generated when the user clicks one of those buttons. If all
you ever want to write are programs that display text when the user clicks
a button, you can put the book down now. But if you want to write pro-
grams that actually do something worthwhile, you need to use other Swing
components.

In this chapter, you find out how to use components that get information
from the user. First, I cover two components that get text input from the
user: text fields, which get a line of text, and text areas, which get multiple
lines. Then, I move on to two components that get either/or information
from the user: radio buttons and check boxes.

Along the way, I tell you about some features that let you decorate these
controls to make them more functional. Specifically, I look at scroll bars,
which are commonly used with text areas, and borders, which are used with
radio buttons and check boxes.

Using Text Fields
A text field is a box that the user can type text in. You create text fields by
using the JTextField class. Table 3-1 shows some of the more interesting
and useful constructors and methods of this class.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 537

Using Text Fields538

Table 3-1 Handy JTextField Constructors and Methods
Constructor Description

JTextField() Creates a new text field.

JTextField(int cols) Creates a new text field with the specified width.

JTextField(String text, Creates a new text field with the specified width and
int cols) initial text value.

Method Description

String getText() Gets the text value entered into the field.

void requestFocus() Asks for the focus to be moved to this text field.

void setColumns Sets the size of the text field. (Better to do this in the
(int cols) constructor.)

void setEditable If false, makes the field read-only.
(boolean value)

void setText(String Sets the field’s text value.
text)

void setToolTipText Sets the tooltip text that’s displayed if the user rests
(String text) the mouse over the text field for a few moments.

When you create a text field by calling a constructor of the JTextField
class, you can specify the width of the text field and an initial text value, as
in these examples:

JTextField text1 = new JTextField(15);
JTextField text2 = new JTextField(“Initial Value”, 20);

The width is specified in columns, which is a vague and imprecise measure-
ment that’s roughly equal to the width of one character in the font that the
text field uses. You have to experiment a bit to get the text fields the right size.

The usual way to work with text fields is to create them in the frame construc-
tor, and then retrieve text entered by the user in the actionPerformed
method of an action listener attached to one of the frame’s buttons using
code like this:

String lastName = textLastName.getText();

Here, the value entered by the user into the textLastName text field is
assigned to the String variable lastName.

The following paragraphs describe a few additional details you need to know
about using text fields:

✦ When you use a text field, you usually also want to place a label nearby
to tell the user what type of text to enter into the field.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 538

Book VI
Chapter 3

Getting Input from
the User

Using Text Fields 539

✦ You can create a read-only text field by calling the setEditable method
with a value of false. The text field has a border around it like a regular
text field, but the background is gray instead of white and the user can’t
change the text displayed by the control.

✦ In most programs, you want to make sure that the user enters accept-
able data into text fields. This is especially true if the user is supposed
to enter numeric data into the text fields, as I describe in the section
“Using text fields for numeric entry,” later in this chapter.

Looking at a sample program
Figure 3-1 shows the operation of a simple program that uses a text field to ask
for the user’s name. If the user enters a name, the program uses JOptionPane
to say good morning to the user by displaying the middle message box shown
in Figure 3-1. But if the user clicks the button without entering anything, the
program displays the second JOptionPane message shown at the bottom.

The code for this program is shown in Listing 3-1.

LISTING 3-1: SAYING GOOD MORNING WITH A TEXT FIELD

import javax.swing.*;
import java.awt.event.*;

public class Namer extends JFrame ➞ 4
{

public static void main(String [] args)
{

new Namer();
}

continued

Figure 3-1:
The Namer
application
in action.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 539

Using Text Fields540

LISTING 3-1 (CONTINUED)

private JButton buttonOK;
private JTextField textName; ➞ 12

public Namer()
{

this.setSize(325,100);
this.setTitle(“Who Are You?”);
this.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

ButtonListener bl = new ButtonListener();

JPanel panel1 = new JPanel();

panel1.add(new JLabel(“Enter your name: “)); ➞ 25

textName = new JTextField(15); ➞ 27
panel1.add(textName);

buttonOK = new JButton(“OK”);
buttonOK.addActionListener(bl);
panel1.add(buttonOK);

this.add(panel1);

this.setVisible(true);
}

private class ButtonListener implements
ActionListener

{
public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String name = textName.getText(); ➞ 46
if (name.length() == 0) ➞ 47
{

JOptionPane.showMessageDialog(
Namer.this,
“You didn’t enter anything!”,
“Moron”,
JOptionPane.INFORMATION_MESSAGE);

}
else
{

JOptionPane.showMessageDialog(
Namer.this,
“Good morning “ + name,
“Salutations”,

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 540

Book VI
Chapter 3

Getting Input from
the User

Using Text Fields 541

JOptionPane.INFORMATION_MESSAGE);
}
textName.requestFocus(); ➞ 63

}
}

}
}

This program isn’t very complicated, so the following paragraphs just hit the
highlights:

➞ 4 The name of the frame class is Namer.

➞12 A class variable is used to store a reference to the text field so that
both the constructor and the action listener can access it.

➞25 A label is created to tell the user what data to enter into the text field.

➞27 The text field is created with a length of 15 columns, and then added
to the panel.

➞46 In the actionPerformed method of the action listener class, this
statement retrieves the value entered by the user and stores it in a
string variable.

➞47 This if statement checks to see if the user entered anything by
examining the length of the string variable created in line 46. If the
length is zero, JOptionPane is used to display an error message.
Otherwise, JOptionPane is used to say good morning to the user.

➞63 The requestFocus method is called to move the focus back to the
text field after the user clicks the button. If you don’t do this, focus
stays on the button and the user has to use the Tab key to move the
focus to the text field.

Using text fields for numeric entry
You need to take special care if you’re using a text field to get numeric data
from the user. The getText method returns a string value. You can pass
this value to one of the parse methods of the wrapper classes for the primi-
tive numeric types. For example, to convert the value entered into a text box
to an int, you use the parseInt method:

int count = Integer.parseInt(textCount.getText());

Here, the result of the getText method is used as the parameter to the
parseInt method.

Table 3-2 lists the parse methods for the various wrapper classes. Note that
each of these methods throws NumberFormatException if the string

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 541

Using Text Fields542

can’t be converted. As a result, you need to call the parseInt method in a
try/catch block to catch this exception.

Table 3-2 Methods that Convert Strings to Numbers
Wrapper Class Parse Method

Integer parseInt(String)

Short parseShort(String)

Long parseLong(String)

Byte parseByte(String)

Float parseByte(String)

Double parseByte(String)

If your program uses more than one or two numeric entry text fields, con-
sider creating separate methods to validate the user’s input. For example,
here’s a method that accepts a text field and a string that provides an error
message that’s displayed if the data entered into the field can’t be converted
to an int. The method returns a boolean that indicates whether the field
contains a valid integer:

private boolean isInt(JTextField f, String msg)
{

try
{

Integer.parseInt(f.getText());
return true;

}
catch (NumberFormatException e)
{

JOptionPane.showMessageDialog(f,
“Entry Error”, msg,
JOptionPane.ERROR_MESSAGE);

f.requestFocus();
return false;

}
}

Then, you can call this method whenever you need to check to see if a text
field has a valid integer. For example, here’s the actionPerformed method
for a program that gets the value entered in a textCount text field and dis-
plays it in a JOptionPane message box if the value entered is a valid integer:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

if (isInt(textCount,
“You must enter an integer.”))

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 542

Book VI
Chapter 3

Getting Input from
the User

Using Text Fields 543

{
JOptionPane.showMessageDialog(Number.this,

“You entered “
+

Integer.parseInt(textCount.getText()),
“Your Number”,
JOptionPane.INFORMATION_MESSAGE);

}
textCount.requestFocus();

}
}

Here, the isInt method is called to make sure the text entered by the user
can be converted to an int. If so, the text is converted to an int and dis-
played in a message box. (In this example, the name of the outer class is
Number, which is why the first parameter of the showMessageDialog
method specifies Number.this.)

Creating a validation class
If you’re feeling really ambitious, you can create a separate class to hold
methods that do data validation. I suggest you make the methods static so
you don’t have to create an instance of the validation class to use its meth-
ods. And to avoid parsing the data twice, write the validation methods so
they return two values: a boolean that indicates whether the data could be
parsed, and a primitive that provides the parsed value.

Of course, a method can return only one value. The only way to coax a
method into returning two values is to return an object that contains both of
the values. And to do that, you have to create a class that defines the object.
Here’s an example of a class you could use as the return value of a method
that validates integers:

public class IntValidationResult
{

public boolean isValid;
public int value;

}

And here’s a class that provides a static method named isInt that vali-
dates integer data and returns an IntValidationResult object:

public class Validation
{

public static IntValidationResult isInt(
JTextField f, String msg)

{
IntValidationResult result =

new IntValidationResult();
try

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 543

Using Text Areas544

{
result.value =

Integer.parseInt(f.getText());
result.isValid = true;
return result;

}
catch (NumberFormatException e)
{

JOptionPane.showMessageDialog(f,
“Entry Error”, msg
JOptionPane.ERROR_MESSAGE);

f.requestFocus();
result.isValid = false;
result.value = 0;
return result;

}
}

}

Here’s an actionPerformed method that uses the isInt method of this
class to validate the textCount field:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

IntValidationResult ir;
ir = Validation.isInt(textCount,

“You must enter an integer.”);
if (ir.isValid)
{

JOptionPane.showMessageDialog(Number2.this,
“You entered “ + ir.value,
“Your Number”,
JOptionPane.INFORMATION_MESSAGE);

}
textCount.requestFocus();

}
}

Using Text Areas
A text area is similar to a text field, but lets the user enter more than one line
of text. If the user enters more text into the text area than can be displayed
at once, the text area can use a scroll bar to let the user scroll to see the
entire text. Figure 3-2 shows a text area in action.

To create a text area like the one shown in Figure 3-2, you must actually use
two classes. First, you use the JTextArea class to create the text area. But
unfortunately, text areas by themselves don’t have scroll bars. So you have

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 544

Book VI
Chapter 3

Getting Input from
the User

Using Text Areas 545

to add the text area to a second component called a scroll pane, created by
the JScrollPane class. Then, you add the scroll pane, not the text area, to
a panel so it can be displayed.

Creating a text area isn’t as hard as it sounds. Here’s the code I used to
create the text area shown in Figure 3-2, which I then added to a panel:

textNovel = new JTextArea(10, 20);
JScrollPane scroll = new JScrollPane(textNovel,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

panel1.add(scroll);

Here, the first statement creates a text area, giving it an initial size of 10 rows
and 20 columns. Then, the second statement creates a scroll pane. Notice
that the text area object is passed as a parameter to the constructor for the
JScrollPane, along with constants that indicate whether the scroll pane
should include vertical or horizontal scroll bars (or both). Finally, the third
statement adds the scroll pane to the panel named panel1.

The following sections describe the constructors and methods of the
JTextArea and JScrollPane classes in more detail.

The JTextArea class
Table 3-3 lists the most popular constructors and methods of the JTextArea
class, which you use to create text areas. In most cases, you use the second
constructor, which lets you set the number of rows and columns to display.
The rows parameter governs the height of the text area, while the cols
parameter sets the width.

Figure 3-2:
A frame that
uses a text
area.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 545

Using Text Areas546

Table 3-3 Clever JTextArea Constructors and Methods
Constructor Description

JTextArea() Creates a new text area.

JTextArea(int rows, Creates a new text area large enough to display
int cols) the specified number of rows and columns.

JTextArea(String text, Creates a new text area with the specified initial
int rows, int cols) text value, large enough to display the specified

number of rows and columns.

Method Description

void append(String text) Adds the specified text to the end of the text area’s
text value.

int getLineCount() Gets the number of lines currently in the text value.

String getText() Gets the text value entered into the field.

void insert(String str, Inserts the specified text at the specified position.
int pos)

void requestFocus() Asks for the focus to be moved to this text field.

void replaceRange(String Replaces text indicated by the start and end
str, int start, int end) position with the new specified text.

void setColumns(int cols) Sets the width of the text area. (It’s better to do this
in the constructor.)

void setEditable(boolean If false, makes the field read only.
value)

void setLineWrap(boolean If true, lines wrap if the text doesn’t fit on one
value) line.

void setText(String text) Sets the field’s text value.

void setToolTipText Sets the tooltip text that’s displayed if the user rests
(String text) the mouse over the text field for a few moments.

void setWrapStyleWord() If true, the text wraps at word boundaries.

To retrieve the text entered by the user into a text area, you use the getText
method. For example, here’s an actionPerformed method from an action
listener that retrieves text from a text area:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String text = textNovel.getText();
if (text.contains(“All work and no play”))

JOptionPane.showMessageDialog(textNovel,
“Can’t you see I’m working?”,
“Going Crazy”,

JOptionPane.ERROR_MESSAGE);
}

}

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 546

Book VI
Chapter 3

Getting Input from
the User

Using Text Areas 547

Here, a message box is displayed if the text contains the string All work
and no play.

Notice that in addition to the getText method, the JTextArea class has
methods that let you add text to the end of the text area’s current value
(append), insert text in the middle of the value (insert), and replace text
(replace). You can use these methods to edit the value of the text area.

Two of the JTextArea methods are used to control how lines longer than
the width of the text area are handled. If you call setLineWrap with a value
of true, lines that are too long to display are automatically wrapped to the
next line. And if you call setWrapStyleWord with a value of true, any
lines that are wrapped split between words instead of in the middle of a
word. You usually use these two methods together:

textItinerary = new JTextArea(10, 20);
textItinerary.setLineWrap(true);
textItinerary.setWrapStyleWord(true);

The JScrollPane class
Text areas aren’t very useful without scroll bars. To create a text area with
a scroll bar, you use the JScrollPane class, whose constructors and fields
are listed in Table 3-4. Note that this table doesn’t show any methods for the
JScrollPane class. The JScrollPane class does have methods (plenty
of them, in fact). But none of them are particularly useful for ordinary pro-
gramming, so I didn’t include any of them in the table.

Table 3-4 Essential JScrollPane Constructors and Fields
Constructor Description

JScrollPane((Component view) Creates a scroll pane for the specified
component.

JScrollPane(Component, int Creates a scroll pane for the specified
vert, int hor) component with the specified policy for the

vertical and horizontal scroll bars.

Field Description

VERTICAL_SCROLLBAR_ALWAYS Always adds a vertical scroll bar.

VERTICAL_SCROLLBAR_AS_NEEDED Adds a vertical scroll bar if necessary.

VERTICAL_SCROLLBAR_NEVER Never adds a vertical scroll bar.

HORIZONTAL_SCROLLBAR_ALWAYS Always adds a horizontal scroll bar.

HORIZONTAL_SCROLLBAR_AS_NEEDED Adds a horizontal scroll bar if necessary.

HORIZONTAL_SCROLLBAR_NEVER Never adds a horizontal scroll bar.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 547

Using Check Boxes548

The usual way to create a scroll pane is to use the second constructor. You
use the first parameter of this constructor to specify the component you
want to add scroll bars to. For example, to add scroll bars to a textNovel
text area, you specify textNovel as the first parameter.

The second parameter tells the scroll pane whether or not to create a vertical
scroll bar. The value you specify for this parameter should be one of the first
three fields listed in Table 3-4. If you always want the scroll pane to show a ver-
tical scroll bar, specify VERTICAL_SCROLLBAR_ALWAYS. If you want to see
the vertical scroll bar only when the text area contains more lines that can
be displayed at once, specify VERTICAL_SCROLLBAR_AS_NEEDED. Then,
the vertical scroll bar is only shown when it’s needed. Finally, if you never
want to see a vertical scroll bar, specify VERTICAL_SCROLLBAR_NEVER.

The third parameter uses the three HORIZONTAL_SCROLLBAR constants to
indicate whether the scroll pane includes a horizontal scroll bar always,
never, or only when necessary.

Thus, the following code adds scroll bars to a text area. The vertical scroll bar
is always shown, but the horizontal scroll bar is shown only when needed:

JScrollPane scroll = new JScrollPane(textNovel,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);

Use the JScrollPane class with other types of components besides text
areas. As you see in the next chapter, scroll panes are often used with list
controls as well.

Using Check Boxes
A check box is a control that the user can click to either check or uncheck.
Check boxes are usually used to let the user specify Yes or No to an option.
Figure 3-3 shows a frame with three check boxes.

To create a check box, you use the JCheckBox class. Its favorite construc-
tors and methods are shown in Table 3-5.

Figure 3-3:
A frame
with three
check
boxes.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 548

Book VI
Chapter 3

Getting Input from
the User

Using Check Boxes 549

Table 3-5 Notable JCheckBox Constructors and Methods
Constructor Description

JCheckBox() Creates a new check box that is initially unchecked.

JCheckBox(String text) Creates a new check box that displays the specified
text.

JCheckBox(String text, Creates a new check box with the specified text.
boolean selected) The boolean parameter determines whether the

check box is initially checked (true) or unchecked
(false).

Method Description

void addActionListener Adds an ActionListener to listen for action
(ActionListener listener) events.

void addItemListener Adds an ItemListener to listen for item events.
(ItemListener listener)

String getText() Gets the text displayed by the check box.

Boolean isSelected() Returns true if the check box is checked, false
if the check box is not checked.

void setSelected(boolean Checks the check box if the parameter is true;
value) unchecks it if the parameter is false.

void setText(String text) Sets the check box text.

void setToolTipText Sets the tooltip text that’s displayed if the user rests
(String text) the mouse over the check box for a few moments.

As with any Swing component, if you want to refer to the component in both
the frame class constructor and a listener, you have to declare class variables
to refer to the check box components, like this:

JCheckBox pepperoni, mushrooms, anchovies;

Then, you can use statements like these in the frame constructor to create
the check boxes and add them to a panel (in this case, panel1):

pepperoni = new JCheckBox(“Pepperoni”);
panel1.add(pepperoni);

mushrooms = new JCheckBox(“Mushrooms”);
panel1.add(mushrooms);

anchovies = new JCheckBox(“Anchovies”);
panel1.add(anchovies);

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 549

Using Check Boxes550

Notice that I didn’t specify the initial state of these check boxes in the con-
structor. As a result, they’re initially unchecked. If you want to create a
check box that is initially checked, call the constructor like this:

Pepperoni = new JCheckBox(“Pepperoni”, true);

In an event listener, you can test the state of a check box by using the
isSelected method, and you can set the state of a check box by calling its
setSelected method. For example, here’s an actionPerformed method
that displays a message box and unchecks all three check boxes when the
user clicks the OK button:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String msg = “”;
if (pepperoni.isSelected())

msg += “Pepperoni\n”;
if (mushrooms.isSelected())

msg += “Mushrooms\n”;
if (anchovies.isSelected())

msg += “Anchovies\n”;
if (msg.equals(“”))

msg = “You didn’t order any toppings.”;
else

msg = “You ordered these toppings:\n” +
msg;

JOptionPane.showMessageDialog(buttonOK,
msg, “Your Order”,
JOptionPane.INFORMATION_MESSAGE);

pepperoni.setSelected(false);
mushrooms.setSelected(false);
anchovies.setSelected(false);

}
}

Here, the name of each topping selected by the user is added to a text string.
For example, if you select Pepperoni and Anchovies, the following message
is displayed:

You ordered these toppings:
Pepperoni
Anchovies

If you want, you can add event listeners to check boxes to respond to events
generated when the user clicks the check box. Check boxes support both
action listeners and item listeners. The difference between them is subtle:

✦ An action event is generated whenever the user clicks a check box to
change its state.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 550

Book VI
Chapter 3

Getting Input from
the User

Using Radio Buttons 551

✦ An item event is generated whenever the state of the check box is
changed, whether as a result of being clicked by the user or because
the program called the setSelected method.

Suppose your restaurant has anchovies on the menu, but you refuse to actu-
ally make pizzas with anchovies on them. Here’s an actionPerformed
method from an action listener that displays a message if the user tries to
check the Anchovies check box and unchecks the box:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == anchovies)
{

JOptionPane.showMessageDialog(anchovies,
“We don’t do anchovies here.”,
“Yuck!”,
JOptionPane.WARNING_MESSAGE);

anchovies.setSelected(false);
}

}

Only add a listener to a check box if you need to provide immediate feedback
to the user when he or she checks or unchecks the box. In most applications,
you wait until the user clicks a button to actually examine the state of any
check boxes on the frame.

Using Radio Buttons
Radio buttons are similar to check boxes, but with a crucial difference: Radio
buttons travel in groups, and a user can select only one radio button in each
group at a time. When you click a radio button to select it, whatever radio
button was previously selected is automatically deselected. Figure 3-4 shows
a frame with three radio buttons.

To work with radio buttons, you use two classes. First, you create the radio
buttons themselves with the JRadioButton class, whose constructors and
methods are shown in Table 3-6. Then, you create a group for the buttons

Figure 3-4:
A frame
with three
radio
buttons.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 551

Using Radio Buttons552

with the ButtonGroup class. You must add the radio buttons themselves
to a panel so they are displayed and to a button group so they’re properly
grouped with other buttons.

Table 3-6 Various JRadioButton Constructors and Methods
Constructor Description

JRadioButton() Creates a new radio button with no text.

JRadioButton(String text) Creates a new radio button with the specified text.

Method Description

void addActionListener Adds an ActionListener to listen for action
(ActionListener listener) events.

void addItemListener Adds an ItemListener to listen for item events.
(ItemListener listener)

String getText() Gets the text displayed by the radio button.

Boolean isSelected() Returns true if the radio button is selected,
false if the radio button is not selected.

void setSelected(boolean Selects the radio button if the parameter is true.
value)

void setText(String text) Sets the radio button text.

void setToolTipText Sets the tooltip text that’s displayed if the user
(String text) rests the mouse over the radio button for a few

moments.

The usual way to create a radio button is to declare a variable to refer to the
button as a class variable so it can be accessed anywhere in the class. For
example

JRadioButton small, medium, large;

Then, in the frame constructor, you call the JRadioButton constructor to
create the radio button:

small = new JRadioButton(“Small”);

You can then add the radio button to a panel in the usual way.

To create a button group to group radio buttons that work together, just call
the ButtonGroup class constructor:

ButtonGroup group1 = new ButtonGroup();

Then, call the add method of the ButtonGroup to add each radio button to
the group:

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 552

Book VI
Chapter 3

Getting Input from
the User

Using Borders 553

group1.add(small);
group1.add(medium);
group1.add(large);

Note that button groups have nothing to do with how radio buttons appear on
the frame. The buttons can appear anywhere on the frame, even in different
panels. (I show you how to visually group radio buttons and other components
by using borders in the next section, cleverly named “Using Borders.”)

Where button groups really come in handy is when you have more than one
set of radio buttons on a form. For example, suppose that in addition to
choosing the size of the pizza, the user can also choose the style of crust —
thin or thick. In that case, you use a total of five radio buttons and two
button groups. The constructor code that creates the radio buttons might
look something like this:

ButtonGroup size = new ButtonGroup();
ButtonGroup crust = new ButtonGroup();

small = new JRadioButton(“Small”);
medium = new JRadioButton(“Medium”);
large = new JRadioButton(“Large”);
size.add(small);
size.add(medium);
size.add(large);

thin = new JRadioButton(“Thin Crust”);
thick = new JRadioButton(“Thick Crust”);
crust.add(thin);
crust.add(thick);

(To keep this example simple, I omitted the statements that add the radio
buttons to the panel.)

Strictly speaking, you don’t have to create a button group if all the radio but-
tons on the frame are in the same group. In that case, Swing creates a default
group and adds all the radio buttons to it. However, because it’s only a few
extra lines of code, I suggest you always create a button group even when
you have only one group of radio buttons.

Using Borders
A border is a decorative element that visually groups components by drawing
a line around them. Figure 3-5 shows a frame that shows some radio buttons
and check boxes inside borders.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 553

Using Borders554

You can apply a border to any object that inherits JComponent, but the
usual technique is to apply the border to a panel and add any components
you want to appear within the border to the panel. To create a border, you
call one of the static methods listed in Table 3-7. Each of these methods
creates a border with a slightly different visual style. You then apply the
Border object to a panel by calling the panel’s setBorder method.

The BorderFactory class is in the javax.swing package, but the Border
interface that defines the resulting border objects is in javax.swing.
border. Thus, you need to include this import statement at the beginning
of the class — in addition to importing javax.swing.* — if you plan on
using borders:

import javax.swing.border.*;

Table 3-7 BorderFactory Methods for Creating Borders
Method Description

Border createBevelBorder Creates a bevel border of the specified type.
(int type) The type parameter can be BevelBorder.

LOWERED or BevelBorder.RAISED.

Border createEmptyBorder Creates an empty border that occupies the
(int top, int left, int space indicated by the parameters.
bottom, int right)

Border createEtchedBorder() Creates an etched border.

Border createLineBorder() Creates a line border.

Border Creates a lowered bevel border.
createLoweredBevelBorder()

Border Creates a raised beveled border.
createRaisedBevelBorder()

Border createTitledBorder Creates a titled etched border.
(String title)

Border createTitledBorder Creates a titled border from the specified
(Border b, String title) border.

Figure 3-5:
A frame
with
borders.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 554

Book VI
Chapter 3

Getting Input from
the User

Using Borders 555

All the methods listed in Table 3-7 are static methods. As a result, you don’t
have to create an instance of the BorderFactory class to call these
methods.

For example, here’s a snippet of code that creates a panel, creates a titled
border, and applies the border to the panel:

JPanel sizePanel = new JPanel();
Border b1 = BorderFactory.createTitledBorder(“Size”);
sizePanel.setBorder(b1);

Then, any components you add to sizePanel appears within this border.

The last method listed in Table 3-7 needs a little explanation. It simply
adds a title to a border created by any of the other created methods of the
BorderFactory class. For example, you can create a raised bevel border
with the title Options like this:

Border b = BorderFactory.createRaisedBevelBorder();
b = BorderFactory.createTitledBorder(b, “Options”);

The Factory Pattern
The BorderFactory class is an example of
a very common design pattern called the Factory
pattern. In short, when you use the Factory pat-
tern, you don’t use constructors to create
objects. Instead, you use a factory class that
has factory methods that create objects for you.

One benefit of the Factory pattern is that the
users of the factory class don’t need to know
what type of object is actually created. For
example, Swing actually defines several differ-
ent classes for borders, all of which implement
the Border interface. If you have to use con-
structors to create border objects, you have to
know about all the border classes. By creating
a BorderFactory class that returns
Border objects, you only have to know about
the BorderFactory class and its methods.

The designers of the Java API could have cre-
ated a Border class (instead of an interface)
that lets you specify what type of border to
create via a parameter passed to the construc-
tor. However, that approach had many prob-
lems. For starters, the Border class would be
complicated because it would have to imple-
ment every type of border. But more impor-
tantly, adding a new type of border later on is
difficult. With the Factory pattern, you can
create a new border type easily by (1) creating
a class that implements the Border interface
for the new border, and (2) adding a method to
the BorderFactory class to create the
new border type.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 555

Designing a Pizza-Ordering Program556

Designing a Pizza-Ordering Program
To give you an idea of how borders work together with radio buttons and
check boxes, Listing 3-2 presents the complete code for the program that
created the frame that was shown in Figure 3-5. When the user clicks the OK
button, this program displays a message box summarizing the user’s order.
For example, if the user orders a medium pizza with pepperoni and mush-
rooms, the following message is displayed:

You ordered a medium pizza with the following toppings:
Pepperoni
Mushrooms

If you order a pizza with no toppings, the message looks something like this:

You ordered a medium pizza with no toppings.

LISTING 3-2:THE PIZZA ORDER PROGRAM

import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;

public class Pizza extends JFrame
{

public static void main(String [] args)
{

new Pizza();
}

private JButton buttonOK; ➞ 12
private JRadioButton small, medium, large;
private JCheckBox pepperoni, mushrooms, anchovies;

public Pizza()
{

this.setSize(320,200);
this.setTitle(“Order Your Pizza”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

ButtonListener bl = new ButtonListener();

JPanel mainPanel = new JPanel(); ➞ 24

JPanel sizePanel = new JPanel(); ➞ 26
Border b1 = ➞ 27

BorderFactory.createTitledBorder(“Size”);
sizePanel.setBorder(b1); ➞ 29

ButtonGroup sizeGroup = new ButtonGroup(); ➞ 31

small = new JRadioButton(“Small”); ➞ 33
small.setSelected(true);

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 556

Book VI
Chapter 3

Getting Input from
the User

Designing a Pizza-Ordering Program 557

sizePanel.add(small);
sizeGroup.add(small);

medium = new JRadioButton(“Medium”); ➞ 38
sizePanel.add(medium);
sizeGroup.add(medium);

large = new JRadioButton(“Large”); ➞ 42
sizePanel.add(large);
sizeGroup.add(large);

mainPanel.add(sizePanel); ➞ 46

JPanel topPanel = new JPanel(); ➞ 48
Border b2 =

BorderFactory.createTitledBorder(“Toppings”);
topPanel.setBorder(b2);

pepperoni = new JCheckBox(“Pepperoni”); ➞ 53
topPanel.add(pepperoni);

mushrooms = new JCheckBox(“Mushrooms”);
topPanel.add(mushrooms);

anchovies = new JCheckBox(“Anchovies”);
topPanel.add(anchovies);

mainPanel.add(topPanel); ➞ 62

buttonOK = new JButton(“OK”); ➞ 64
buttonOK.addActionListener(bl);
mainPanel.add(buttonOK);

this.add(mainPanel); ➞ 68

this.setVisible(true);
}

private class ButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String tops = “”; ➞ 79
if (pepperoni.isSelected())

tops += “Pepperoni\n”;
if (mushrooms.isSelected())

tops += “Mushrooms\n”;
if (anchovies.isSelected())

tops += “Anchovies\n”;

String msg = “You ordered a “; ➞ 87
if (small.isSelected())

msg += “small pizza with “;
if (medium.isSelected())

msg += “medium pizza with “;
if (large.isSelected())

continued

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 557

Designing a Pizza-Ordering Program558

LISTING 3-2 (CONTINUED)

msg += “large pizza with “;

if (tops.equals(“”)) ➞ 95
msg += “no toppings.”;

else
msg += “the following toppings:\n”

+ tops;
JOptionPane.showMessageDialog(➞ 100

buttonOK, msg, “Your Order”,
JOptionPane.INFORMATION_MESSAGE);

pepperoni.setSelected(false); ➞ 104
mushrooms.setSelected(false);
anchovies.setSelected(false);
small.setSelected(true);

}
}

}
}

I cover everything in this program in this chapter (or in previous chapters),
so I just hit the highlights here:

➞12 The components that are added to the frame are declared as class
variables so both the constructor and the actionPerformed
method of the action event listener can access them.

➞24 This line creates mainPanel, the first of three panels that the pro-
gram uses. This panel contains the other two panels, which use
borders to visually group their components.

➞26 This line creates sizePanel, the panel used to hold the radio but-
tons that let the user pick the pizza’s size.

➞27 The BorderFactory class is used to create a titled border with the
word Size as its title.

➞29 The titled border is attached to the size panel.

➞31 A button group is created for the radio buttons.

➞33 The Small radio button is created. Notice that this button’s set
Selected method is called. As a result, Small is the default size for
a pizza order. Notice also that the radio button is added to both the
sizePanel panel and the size button group.

➞38 The Medium radio button is created and added to the panel and the
button group.

➞42 The Large radio button is created and added to the panel and the
button group.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 558

Book VI
Chapter 3

Getting Input from
the User

Using Sliders 559

➞ 46 The size panel is added to the main panel.

➞ 48 A new panel named topPanel is created to hold the topping check
boxes. Like the size panel, this panel is also given a titled border.

➞ 53 The Pepperoni, Mushrooms, and Anchovies check boxes are created
and added to the panel.

➞ 62 The toppings panel is added to the main panel.

➞ 64 The OK button is created and added directly to the main panel.
Because this button isn’t in a border, it doesn’t need to be added
to a separate panel like the radio buttons and check boxes do.

➞ 68 The main panel is added to the frame. The frame is now complete
and can be made visible.

➞ 79 In the actionPerformed method of the action listener, a string
named tops is constructed with the toppings that the user selected.

➞ 87 Next, a string named msg is constructed with the pizza size. These
lines build a string that says You ordered a size pizza with
, where size is replaced by small, medium, or large depending on
which radio button the user selected.

➞ 95 This if statement finishes the msg string by adding no toppings
if the user didn’t pick any toppings, or the tops string if the user did
pick toppings.

➞100 This line uses JOptionPane to show a message box that displays
the user’s order.

➞104 Finally, these lines reset the controls so the application is ready to
accept a new order.

Using Sliders
As Figure 3-6 shows, a slider is a component that lets a user pick a value from
a set range (say, from 0 to 50) by moving a knob. Sliders are a convenient
way to get numeric input from the user when the input falls within a set
range of values.

Figure 3-6:
A frame
with a
slider.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 559

Using Sliders560

To create a slider control, you use the JSlider class. Table 3-8 shows its
constructors and methods.

Table 3-8 Selected JSlider Constructors and Methods
Constructor Description

JSlider() Creates a new slider. The min and max values
default to 0 and 100, and the initial value is set
to 50.

JSlider(int min, int max) Creates a new slider with the specified minimum
and maximum values. The initial value is halfway
between min and max.

JSlider(int min, int max, Creates a new slider with the specified minimum,
int value) maximum, and initial values.

JSlider(int orientation, Creates a new slider with the specified minimum,
int min, int max, int maximum, and initial values. The orientation can
value) be either JSlider.HORIZONTAL or

JSlider.VERTICAL.

Method Description

void addChangeListener Adds a ChangeListener to listen for change
(ChangeListener listener) events.

int getValue() Gets the value indicated by the current position of
the knob.

void setInvert(bolean If true, inverts the slider’s direction so the max
value) value is on the left and the min value is on the

right.

void setMajorTickSpacing Sets the interval for major tick marks. The marks
(int value) aren’t shown unless setPaintTicks(true)

is called.

void setMinimum(int value) Sets the minimum value.

void setMaximum(int value) Sets the maximum value.

void setMinorTickSpacing Sets the interval for minor tick marks. The marks
(int value) aren’t shown unless setPaintTicks(true)

is called.

setOrientation(int Sets the orientation. Allowed values are
orientation) JSlider.HORIZONTAL and JSlider.

VERTICAL.

void setPaintLabels If true, tick labels are shown.
(boolean value)

void setSnapToTicks If true, the value returned by the getValue
(boolean value) method is rounded to the nearest tick mark.

void setToolTipText Sets the tooltip text that’s displayed if the user
(String text)rests the mouse over the
slider for a few moments.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 560

Book VI
Chapter 3

Getting Input from
the User

Using Sliders 561

To create a barebones slider, just call the JSlider constructor. You can
create a slider that ranges from 0 to 100 like this:

slider = new JSlider();

Here, the slider variable is declared as a class variable of type JSlider.

If you want to specify the minimum and maximum values, use this
constructor:

slider = new JSlider(0, 50);

Here, the slider lets the user choose a value from 0 to 50. The initial position
of the knob is 25, midway between the minimum and maximum values.

To set a different initial value, use this constructor:

slider = new JSlider(0, 0, 50);

Here, the slider ranges from 0 to 50, and the initial value is 0.

You usually want to add at least some adornments to the slider to make it
more usable. The slider shown in Figure 3-6 has minimum and maximum tick
marks with labels visible. Here’s the code used to create it:

slider = new JSlider(0, 50, 0);
slider.setMajorTickSpacing(10);
slider.setMinorTickSpacing(1);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
panel1.add(slider);

Note: Even if you set the major and minor tick spacing values, the tick marks
won’t display unless you call setPaintTicks with the parameter set to
true. The setPaintLabels method shows the labels along with the tick
marks. And the setSnapToTicks method rounds the value to the nearest
tick mark.

To get the value of the slider, you use the getValue method. For example,
here’s the actionPerformed method for the action listener attached to
the OK button in Figure 3-6:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

int level = slider.getValue();
JOptionPane.showMessageDialog(slider,

“Remember, this is for posterity.\n”
+ “Tell me...how do you feel?”,

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 561

Using Sliders562

“Level “ + level,
JOptionPane.INFORMATION_MESSAGE);

}
}

Here, a message box is displayed when the user clicks the OK button. The
current setting of the slider component is retrieved and stored in an int
variable named level, which is then used to create the title for the message
box.

You can also add an event listener that reacts whenever the user changes the
value of the slider. To do that, you use the addChangeListener method.
The parameter must be an object that implements the ChangeListener
interface, which defines a single method named stateChanged. Here’s an
example of a class that can be used to react to slider changes:

private class SliderListener implements ChangeListener
{

public void stateChanged(ChangeEvent e)
{

if (slider.getValue() == 50)
{

JOptionPane.showMessageDialog(slider,
“No! Not 50!”,
“The Machine”,
JOptionPane.WARNING_MESSAGE);

}
}

}

To wire an instance of this class to the slider, use this method:

slider.addChangeListener(new SliderListener());

Then, the stateChanged method is called whenever the user moves the
knob to another position. It checks the value of the slider and displays a
message box if the user has advanced the slider all the way to 50.

41_58961X bk06ch03.qxd 3/29/05 3:43 PM Page 562

Chapter 4: Choosing from a List

In This Chapter
� Combo boxes

� Lists

� Spinners

� Trees

A whole category of Swing components is designed to let the user
choose one or more items from a list. This chapter presents four such

controls. The first three — JList, JComboBox, and JSpinner — are
straightforward. The fourth — JTree — is a bit more complicated, but
worth the effort.

If you put a JTree control on a frame, your friends will surely think you’re
some kind of guru. They’ll start pestering you with questions and asking for
your help. As a result, use this component only if your application really
needs it — and if you feel up to the technical challenge of figuring out how
it works.

Using Combo Boxes
A combo box is a combination of a text field and a drop-down list from which
the user can choose a value. If the text field portion of the control is editable,
the user can enter a value into the field or edit a value retrieved from the
drop-down list. However, making the text field uneditable is common. Then,
the user must pick one of the values from the list. Figure 4-1 shows a frame
with a simple combo box.

Figure 4-1:
A frame
with a
combo box.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 563

Using Combo Boxes564

You use the JComboBox class to create combo boxes. Table 4-1 lists the
most frequently used constructors and methods of this class.

Table 4-1 Common JComboBox Constructors and Methods
Constructor Description

JComboBox() Creates an empty combo box.

JComboBox(Object[] items) Creates a combo box and fills it with the
values in the array.

JComboBox(Vector[] items) Creates a combo box and fills it with the
values in the vector.

Method Description

void addActionListener Adds an action listener to the combo box.
(ActionListener listener)

void addItem(Object item) Adds the item to the combo box.

void addItemListener Adds an item listener to the combo box.
(ItemListener listener)

Object getItemAt(int index) Returns the item at the specified index.

int getItemCount() Returns the number of items in the combo
box.

int getSelectedIndex() Returns the index of the selected item.

Object getSelectedItem() Returns the selected item.

void insertItemAt(Object Inserts an item at a specified index.
item, int index)

Boolean isEditable() Indicates whether or not the combo box’s text
field is editable.

void removeAllItems() Removes all items from the combo box.

void removeItem(Object item) Removes the specified item.

void removeItemAt(int index) Removes the item at the specified index.

void setEditable(boolean Specifies whether or not the combo box’s text
value) field is editable.

void setMaximumRowCount Sets the number of rows displayed when the
(int count) combo box list is dropped down.

void setSelectedIndex(int Selects the item at specified index. Throws
index) IllegalArgumentException if the

index is less than zero or greater than the
number of items in the combo box.

void setSelectedItem Selects the specified item. Throws
(Object item) IllegalArgumentException if the

item is not in the combo box.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 564

Book VI
Chapter 4

Choosing from
 a List

Using Combo Boxes 565

Creating combo boxes
Creating a combo box is easy. You have three constructors to choose from.
The first creates an empty combo box:

JComboBox combo1 = new JComboBox();

Then, you can use the addItem to add items to the combo box:

combo1.addItem(“Bashful”);
combo1.addItem(“Doc”);
combo1.addItem(“Dopey”);
combo1.addItem(“Grumpy”);
combo1.addItem(“Happy”);
combo1.addItem(“Sleepy”);
combo1.addItem(“Sneezy”);

Alternatively, you can create a combo box and initialize its contents from an
array. For example:

String[] theSeven = {“Bashful”, “Doc”, “Dopey”, “Grumpy”,
“Happy”, “Sleepy”, “Sneezy”};

JComboBox combo1 = new JComboBox(theSeven);

Or, if you have an existing Vector object with the data you want to display:

JComboBox combo1 = new JComboBox(vector1);

If the data you want to display is in an array list or other type of collection,
use the toArray method to convert the collection to an array, and then
pass the array to the JComboBox constructor:

JComboBox combo1 = new JComboBox(arraylist1.toArray());

You can add any kind of object you want to a combo box. The combo box
calls the toString method of each item to determine the text to display in
the drop-down list. For example, suppose you have an array of Employee
objects. If you create a combo box from this array, the string returned by
each employee’s toString method is displayed in the combo box.

By default, the user is not allowed to edit the data in the text field portion
of the combo box. If you want to allow the user to edit the text field, call
setEditable(true). Then, the user can type a value that’s not in the
combo box.

To remove items from the combo box, use one of the remove methods.
If you know the index position of the item you want to remove, call the
removeItemAt method and pass the index number as a parameter.
Otherwise, if you have the object you want to remove, call removeItem
and pass the object.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 565

Using Combo Boxes566

To remove all the items in a combo box, call removeAllItems. For example,
suppose you have a combo box named custCombo that’s filled with Customer
objects read from a file, and you need to periodically refresh this combo box
to make sure it has all the current customers. Here’s a method that does that:

private void fillCustomerCombo()
{

ArrayList<Customer> customers = getCustomers();
custCombo.removeAllItems();
for (Customer c : customers)

custCombo.addItem(c);
}

In this example, a method named getCustomers is called to get an
ArrayList of customer objects from the file. Then, all the items currently
in the combo box are deleted, and an enhanced for loop is used to add the
customers to the combo box.

Getting items from a combo box
To get the item selected by the user, you use the getSelectedItem
method. Unfortunately, this method returns an Object type, so you must
cast the returned value to the appropriate type before you can use it. For
example, here’s the actionPerformed method from the event listener for
the program that created the combo box frame that was shown in Figure 4-1:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String s = (String)combo1.getSelectedItem();
JOptionPane.showMessageDialog(combo1,

“You picked “ + s,
“Your Favorite”,
JOptionPane.INFORMATION_MESSAGE);

}
}

Here, the getSelectedItem method retrieves the selected item, casts it to
a String, and saves it in a String variable named s. Then, a JOptionPane
message box is shown to display the user’s selection.

If you prefer, you can get the index of the selected item by calling the
getSelectedIndex method. You might use this method if the combo
box contains string values that correspond to objects stored in an array or
a collection. Then, you can use the retrieved index value to get the actual
object from the collection.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 566

Book VI
Chapter 4

Choosing from
 a List

Using Lists 567

Handling combo box events
When the user selects an item from a combo box, an action event is gener-
ated. In most applications, you simply ignore this event. That’s because you
don’t usually need to do anything immediately when the user selects an
item. Instead, the selected item is processed when the user clicks a button.

If you want to provide immediate feedback when the user selects an item, you
can handle the action event in the usual way: Create an ActionListener
that handles the event in an actionPerformed method, and then call the
addActionListener method of the combo box to add the action listener.
The following action listener class displays a message box that says My
favorite too! if the user picks Dopey:

private class ComboListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == combo1)
{

String s =
(String)combo1.getSelectedItem();

if (s.equals(“Dopey”))
JOptionPane.showMessageDialog(combo1,

“He’s my favorite too!”,
“Good Choice”,

JOptionPane.INFORMATION_MESSAGE);
}

}
}

Combo boxes also generate item events when the user selects an item. In
fact, the combo box generates two item events when the user selects an
item, which can be a little confusing. The first event is generated when the
previously selected item is deselected. Then, when the new item is selected,
another item event is generated. In most cases, you handle combo box action
events rather than item events.

Using Lists
A list is a powerful Swing component that displays lists of objects within a
box. Depending on how the list is configured, the user can be allowed to
select one item from the list or multiple list items. In addition, you have
amazing control over how the items in the list are displayed, although this
isn’t always an advantage. Lists are almost always used in conjunction with
scroll panes (covered in the previous chapter) to allow the user to scroll the
contents of the list. Figure 4-2 shows a sample frame with a list component.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 567

Using Lists568

Lists and combo boxes have several important differences:

✦ A list doesn’t have a text field the user can use to edit the selected item.
Instead, the user must select items directly from the list.

✦ The list doesn’t drop down. Instead, the list items are displayed in a box
whose size you can specify.

✦ The list doesn’t provide a scroll bar, so you almost always add the list
component to a scroll pane so the user can scroll through the list.

✦ Lists allow you to select more than one item. By default, a list compo-
nent lets you select any combination of items in the list. However, you
can configure the list to allow the selection of a single range of adjacent
values or just a single value.

To select multiple items in a list, hold down the Ctrl key and click the
items you want to select. To select a range of items, click the first item,
and then hold down the Shift key and click the last item.

✦ You can’t directly change the values in a list after you create the list. If
you want to create a list whose values you can change, you must take a
few extra steps as I describe in the section “Changing list items” later in
this chapter.

You use the JList class to create combo boxes. Table 4-2 lists the most fre-
quently used constructors and methods of this class.

Table 4-2 Routine JList Constructors and Methods
Constructor Description

JList() Creates an empty list.

JList(ListModel list) Creates a list that uses the specified list model.

JList(Object[] items) Creates a list and fills it with the values in the
array.

JList(Vector[] items) Creates a list and fills it with the values in the
vector.

void clearSelection() Clears all selections.

Figure 4-2:
A frame
with a list.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 568

Book VI
Chapter 4

Choosing from
 a List

Using Lists 569

Method Description

int getSelectedIndex() Returns the index of the first selected item, or –1
if no items are selected.

int[] getSelectedIndexes() Returns an array with the index of each selected
item. The array is empty if no items are selected.

Object getSelectedValue() Returns the first selected item, or null if no
items are selected.

Object[] getSelected Returns an array with all the selected items. The
Values() array is empty if no items are selected.

boolean isSelectedIndex Returns true if the item at the specified index is
(int index) selected.

boolean isSelectionEmpty() Returns true if no items are selected.

void setFixedCellHeight Sets the height of each row.
(int height)

void setFixedCellWidth Sets the width of each row.
(int width)

void setSelectedIndex(int Selects the item at the specified index.
index)

void setSelectedIndices Selects the items at the indices specified in the
(int[] indices) array.

void setSelectionMode Sets the selection mode. Allowable values are:
(int mode) ListSelectionModel.SINGLE_

SELECTION, ListSelectionModel.
SINGLE_INTERVAL_SELECTION, and
ListSelectionModel.MULTIPLE_
INTERVAL_SELECTION.

void setVisibleRowCount Sets the number of rows displayed by the list.
(int count)

Creating a list
To create a list and specify its items, you pass an array to the JList con-
structor. Then, you call the setVisibleRowCount method to set the
number of rows you want to be visible, add the list to a scroll pane, and add
the scroll pane to a panel that you can later add to the frame. For example

String[] toppings = {“Pepperoni”, “Sausage”,
“Linguica”,

“Canadian Bacon”, “Salami”,
“Tuna”,

“Olives”, “Mushrooms”, “Tomatoes”,
“Pineapple”, “Kiwi”, “Gummy

Worms”};
list1 = new JList(toppings);
list1.setVisibleRowCount(5);
JScrollPane scroll = new JScrollPane(list1);

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 569

Using Lists570

For more information about the JScrollPane class, including how to spec-
ify what scroll bars you want it to display, refer to Book VI, Chapter 3.

To control the type of selections the user can make, use the setSelection
Mode method. You can pass this method one of three fields defined by the
ListSelectionModel class:

✦ ListSelectionModel.SINGLE_SELECTION: The user can select
only one item at a time.

✦ ListSelectionModel.SINGLE_INTERVAL_SELECTION: The user
can select multiple items provided that they are all within a single range.

✦ ListSelectionModel.MULTIPLE_INTERVAL_SELECTION: The
user can select any combination of items.

For example, this statement restricts the list to a single selection:

list1.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

Note that the default is to allow any combination of multiple selections.

Getting items from a list
For a list that allows only a single selection, you can retrieve the selected
item by calling the getSelectedValue method. You have to cast the value
to the appropriate type before you use it. For example:

String topping = (String)list1.getSelectedValue();

If the list allows multiple selections, the getSelectedValue method
returns just the first selected item. To get all the selections, you have to use
the getSelectedValues method instead. This method returns an array
of objects that includes each item selected by the user. When you retrieve
these objects, you have to cast each one to the appropriate type — Java
doesn’t provide any way to cast the entire array.

For example, you can use the following actionPerformed method in an
action listener for the list box shown in Figure 4-2:

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String s = (String)combo1.getSelectedItem();
JOptionPane.showMessageDialog(combo1,

“You picked “ + s,
“Your Favorite”,

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 570

Book VI
Chapter 4

Choosing from
 a List

Using Lists 571

JOptionPane.INFORMATION_MESSAGE);
}

}

Here, the getSelectedItem method retrieves the selected item, casts it to
a String, and saves it in a String variable named s. Then, a JOptionPane
message box is shown to display the user’s selection.

If you prefer, you can get the index of the selected item by calling the
getSelectedIndex method. You might use this method if the combo box
contains string values that correspond to objects stored in an array or a col-
lection. Then, you can use the retrieved index value to get the actual object
from the collection.

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

Object[] toppings = list1.getSelectedValues();
String msg =

“You selected the following toppings:\n”;
for (Object topping : toppings)

msg += (String)topping + “\n”;
JOptionPane.showMessageDialog(list1,

msg,
“Your Pizza”,
JOptionPane.INFORMATION_MESSAGE);

list1.clearSelection();
}

}

Here, the getSelectedValues method returns an array that contains
the toppings selected by the user. Then, an enhanced for loop is used to
build a string that lists each selected topping on a separate line. Then the
JOptionPane class is used to display the msg string in a message box.

Changing list items
By default, the items in a JList component can’t be changed after you
create the list. If you want to create a list whose items can be changed, you
must use another class named DefaultListModel to create an object
called a list model that contains the items you want displayed in the JList
component. Then, you pass the list model object to the JList constructor.
The list model is responsible for managing the list that’s displayed by the
JList component. As a result, you can use the list model’s methods to add
or remove items. The JList component then automatically updates itself to
reflect the list changes. Table 4-3 shows the most commonly used construc-
tors and methods of the DefaultListModel class.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 571

Using Lists572

Table 4-3 Useful DefaultListModel Constructors and Methods
Constructor Description

DefaultListModel() Creates a new list model object.

Method Description

void add(Object element, Adds an element at the specified position.
int index)

void addElement(Object Adds an element to the end of the list.
element))

void clear() Removes all elements from the list.

boolean Contains(Object Returns true if the specified element is in the
element) list.

Object firstElement() Returns the first element in the list.

Object get(int index) Returns the element at the specified location.

boolean isEmpty() Returns true if the list is empty.

Object lastElement() Returns the last element in the list.

void remove(int index) Removes the element from the specified position
in the list.

void removeElement(Object Removes the specified element from the list.
element)

int size() Returns the number of elements in the list.

Object[] toArray() Returns an array containing each element in the
list.

When you create the default data model, it’s empty. But you can call the add
or addElement methods to add elements to the list. For example:

String[] values = {“Pepperoni”, “Sausage”, “Linguica”,
“Canadian Bacon”, “Salami”, “Tuna”,
“Olives”, “Mushrooms”, “Tomatoes”,
“Pineapple”, “Kiwi”, “Gummy Worms”};

DefaultListModel model = new DefaultListModel();
for (String value : values)

model.addElement(value);

Here, the elements from the values array are added to the list model. Then,
when you create the list control, pass the list model to the JList constructor:

list = new JList(model);

You can remove an element from the list model by calling the remove or
removeElement methods. And to remove all the elements from the model,
call the clear method.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 572

Book VI
Chapter 4

Choosing from
 a List

Using Spinners 573

Using Spinners
A spinner is a text field that has two little arrows next to it. The user can
click one of these arrows to increase or decrease the value in the text field.
Usually, the text field contains a number, so clicking one of the little arrows
increments or decrements the number. However, you can also create a spin-
ner that displays data taken from an array or a collection. Figure 4-3 shows a
frame with three spinners arranged as a simple time picker.

To create a spinner control, you use the JSpinner class, whose constructors
and methods are shown in Table 4-4. Note that the second constructor accepts
an object of type SpinnerModel as a parameter. This table also shows con-
structors for two classes that implement the SpinnerModel interface.

Table 4-4 JSpinner and Related Classes
Constructor Description

JSpinner() Creates a default spinner. The default spinner lets
the user choose an integer that has an initial
value of zero and no minimum or maximum
values.

JSlider(SpinnerModel Creates a spinner using the specified
model) SpinnerModel object.

Method Description

void addChangeListener Adds a ChangeListener to listen for change
(ChangeListener listener) events.

int getValue() Gets the value.

void setToolTipText(String Sets the tooltip text that’s displayed if the user
ext) rests the mouse over the slider for a few

moments.

Constructors for SpinnerModel Classes Description

SpinnerNumberModel(int Creates a number spinner model that lets the
init, int min, int max, user select integer values from min to maxwith
int step) an increment of step. The initial value is set to

init.

(continued)

Figure 4-3:
A frame
with three
spinners.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 573

Using Spinners574

Table 4-4 (continued)
Constructors for SpinnerModel Classes Description

SpinnerNumberModel(double Creates a number spinner model that lets the
init, double min, double user select double values from min to maxwith
max, double step) an increment of step. The initial value is set to

init.

SpinnerListModel(Object[] Creates a list spinner model using the values from
values) the specified array.

SpinerListModel(List Creates a list spinner model using the values from
collection) the specified collection. The collection must

implement the List interface.

You can create a default spinner that lets the user select integer values like
this:

JSpinner spinner = new JSpinner();

This spinner starts with a value of zero and increases or decreases the value
by one each time the user clicks one of the spinner’s arrows. You can retrieve
the current value of the spinner at any time like this:

int value = spinner.getValue();

For most spinners, you want to use the second constructor, which requires
that you first create an object that implements the SpinnerModel inter-
face. Table 4-4 lists constructors for two classes that implement Spinner.
The first, SpinnerNumberModel, creates numeric spinner controls that let
you control the initial value, minimum and maximum values, and the step
value that’s added or subtracted each time the user clicks one of the arrows.

Here’s how you can use the SpinnerNumberModel to create the first spin-
ner in Figure 4-3, which accepts integers from 1 to 12, starting with 1:

JSpinner hours = new JSpinner(
new SpinnerNumberModel(1, 1, 12, 1));

Here’s the code for the second spinner in Figure 4-3, which lets the user pick
numbers from 0 to 59:

JSpinner minutes = new JSpinner(
new SpinnerNumberModel(0, 0, 59, 1));

You can also build a spinner control that selects values from a list by using the
SpinnerListModel class. The constructor for this class accepts either an
array or an object that implements the List interface. The ArrayList class

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 574

Book VI
Chapter 4

Choosing from
 a List

Using Trees 575

implements this interface, which means you can use SpinnerListModel
to create a spinner that selects items from an ArrayList object.

Here’s the code for the third spinner in Figure 4-3, which lets the user choose
am or pm:

String[] ampmString = {“am”, “pm”};
ampm = new JSpinner(

new SpinnerListModel(ampmString));

In this example, the SpinnerListModel uses an array of strings with two
elements: am and pm.

Using Trees
A tree is a fancy Swing component that displays hierarchical data in outline
form, which we computer nerds refer to as a tree. Trees are created from the
JTree class.

The type of tree you’re probably most familiar with is the directory structure
of your disk drive. Figure 4-4 shows a Swing frame that has a tree control in
it. In this example, I used a tree control to represent a few of my favorite TV
shows along with shows that were spun off from them.

Tree controls are probably the most difficult of all Swing controls to work
with. To cover them completely, I’d have to devote a full chapter of 30 pages
or more. In the few short pages that remain in this chapter, then, I’m just
going to present the basics: how to create a tree component such as the one
shown in Figure 4-4 and how to find out which element the user has selected.

Figure 4-4:
A frame
with a tree.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 575

Using Trees576

Before I get into the mechanics of how to create a tree control, you need to
know a few terms that describe the elements in the tree itself:

✦ Node: Each element in the tree is called a node. Nodes in a tree must
be created from a class that implements the TreeNode interface. If you
want, you can create your own class that implements TreeNode. For
most purposes, however, you can use the DefaultMutableTreeNode
class. (Unfortunately, you have to type that class name a lot when you
work with tree controls.)

✦ Root node: The starting node for a tree. Every tree component must
have one and only one root node. When you create a tree component,
you pass the root node to the JTree constructor.

✦ Child node: The nodes that appear immediately below a given node are
called that node’s child nodes. A node can have more than one child.

✦ Parent node: The node immediately above a given node is called that
node’s parent. Every node except the root node must have one and only
one parent.

✦ Sibling nodes: Nodes that are children of the same parent.

✦ Leaf node: A node that doesn’t have any children. These nodes repre-
sent the end of a branch.

✦ Path: A node and all of its ancestors — that is, its parent, its parent’s
parent, and so on — all the way back to the root.

✦ Expanded node: A node whose children are visible.

✦ Collapsed node: A node whose children are hidden.

Building a tree
Before you can actually create a tree control, you must build the tree it dis-
plays. The easiest way to do that is to use the DefaultMutableTreeNode
class, the details of which are shown in Table 4-5.

The DefaultMutableTreeNode class implements the TreeNode inter-
face. As a result, you can use DefaultMutableTreeNode objects for any
of the methods listed in this table that call for TreeNode objects.

Table 4-5 The DefaultMutableTreeNode Class
Constructor Description

DefaultMutableTreeNode() Creates an empty tree node.

DefaultMutableTreeNode Creates a tree node with the specified user
(Object userObject) object.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 576

Book VI
Chapter 4

Choosing from
 a List

Using Trees 577

Method Description

void add(TreeNode child) Adds a child node.

TreeNode getFirstChild() Gets the first of this node’s children.

DefaultMutableTreeNode Gets the next sibling.
getNextSibling()

TreeNode getParent() Gets this node’s parent.

Object getUserObject() Gets the user object for this node.

The DefaultMutableTreeNode class provides three basic characteris-
tics for each node:

✦ The user object, which contains the data represented by the node. In
my example, I use strings for the user objects. However, you can use
objects of any type you wish for the user object. The tree control calls
the user object’s toString method to determine what text to display
for each node. The easiest way to set the user object is to pass it via the
DefaultMutableTreeNode constructor.

✦ The parent of this node, unless the node happens to be the root.

✦ Any children of this node, unless the node happens to be a leaf node.
You create child nodes by calling the add method.

The DefaultMutableTreeNode class has many more methods for navi-
gating the tree than the ones shown here. However, given a root node, you
can use the getFirstChild and getNextSibling methods to “walk”
the entire tree and access each node.

In this section, I build a tree that lists spin-off shows from three popular tele-
vision shows of the past:

✦ The Andy Griffith Show, which had two spin-offs: Gomer Pyle, U.S.M.C.
and Mayberry R.F.D.

✦ All In the Family, which directly spawned four spin-offs: The Jeffersons,
Maude, Gloria, and Archie Bunker’s Place. In addition, two of these spin-
offs had spin-offs of their own, involving the maids: The Jeffersons’ maid
became the topic of a show called Checking In, and Maude’s maid became
the main character in Good Times.

✦ Happy Days, which spun off Mork and Mindy, Laverne and Shirley, and
Joanie Loves Chachi.

You can take many different approaches to building trees, most of which
involve some recursive programming. For more information about recursive
programming, see Book V, Chapter 4. I’m going to avoid recursive program-
ming in this section to keep things simple. However, that means you’ll have
to hard-code some of the details of the tree into the program. Most real

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 577

Using Trees578

programs that work with trees need some type of recursive programming to
build the tree.

The first step when creating a tree is to declare a DefaultMutableTree
Node variable for each node that isn’t a leaf node:

DefaultMutableTreeModel andy, archie, happy,
george, maude;

These can be local variables in the frame constructor because after you get
the tree set up, you won’t need these variables any more. You see why you
don’t need variables for the leaf nodes in a moment.

Next, I create the root node:

DefaultMutableTreeNode root =
new DefaultMutableTreeNode(“Famous Spinoffs”);

Now, to simplify the task of creating all the other nodes, I create a helper
method called makeShow:

private DefaultMutableTreeNode makeShow(String title,
DefaultMutableTreeNode parent)

{
DefaultMutableTreeNode show;
show = new DefaultMutableTreeNode(title);
parent.add(show);
return show;

}

This method accepts a string and another node as parameters and returns a
node whose user object is set to the string parameter. The returned node is
also added to the parent node as a child. Thus, you can call this method to
both create a new node and place the node in the tree.

Now I create some nodes. First, the nodes for The Andy Griffith Show and its
spin-offs:

andy = makeShow(“The Andy Griffith Show”, root);
makeShow(“Gomer Pyle, U.S.M.C.”, andy);
makeShow(“Mayberry R.F.D.”, andy);

Here, makeShow is called to create a node for The Andy Griffith Show, with
the root node specified as its parent. This node returned by this method is
saved in the andy variable. Then, makeShow is called twice to create the
spin-off shows, this time specifying andy as the parent node.

Because neither Gomer Pyle or Mayberry R.F.D. had spin-off shows, I don’t
need to pass these nodes as the parent parameter to the makeShow method.
That’s why I don’t bother to create a variable to reference these nodes.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 578

Book VI
Chapter 4

Choosing from
 a List

Using Trees 579

Next, I need to create nodes for All In the Family and its spin-offs:

archie = makeShow(“All In the Family”, root);
george = makeShow(“The Jeffersons”, archie);
makeShow(“Checking In”, george);
maude = makeShow(“Maude”, archie);
makeShow(“Good Times”, maude);
makeShow(“Gloria”, archie);
makeShow(“Archie Bunker’s Place”, archie);

In this case, both The Jeffersons and Maude have child nodes of their own.
As a result, variables are required for these two shows so they can be passed
as the parent parameter to makeShow when I create the nodes for Checking
In and Good Times.

Finally, here’s the code that creates the nodes for Happy Days and its spin-offs:

happy = makeShow(“Happy Days”, root);
makeShow(“Mork and Mindy”, happy);
makeShow(“Laverne and Shirley”, happy);
makeShow(“Joanie Loves Chachi”, happy);

The complete tree is successfully created in memory, so I can get on with the
task of creating a JTree component to show off the tree.

Creating a JTree component
You use the JTree class to create a tree component that displays the nodes
of a tree. Table 4-6 shows the key constructors and methods of this class.

Table 4-6 Ordinary Constructors and Methods of the JTree Class
Constructor Description

void JTree() Creates an empty tree. Not very useful if
you ask me.

void JTree(TreeNode root) Creates a tree that displays the tree that
starts at the specified node.

Method Description

void addTreeSelectionListener Adds the specified listener to listen for
(TreeSelectionListener tree selection events.
listener)

Object Gets the node that is currently selected.
getLastSelectedPathComponent()

TreeSelectionModel Gets the selection model for the tree.
getSelectionModel() See the text for what you can do with the

TreeSelectionModel object.

void setVisibleRowCount Sets the number of rows visible in the
(int count) display.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 579

Using Trees580

The first step when creating a JTree component is to declare a JTree vari-
able as a class instance variable so you can access the constructor and
other methods:

JTree tree1;

Then, in the frame constructor, you call the JTree constructor to create the
tree component, passing the root node of the tree you want it to display as a
parameter:

tree1 = new JTree(root);

By default, the user is allowed to select multiple nodes from the tree. To
restrict the user to a single selection, use this strange incantation:

tree1.getSelectionModel().setSelectionMode(
TreeSelectionModel.SINGLE_TREE_SELECTION);

Here, the getSelectionModel method is called to get a TreeSelection
Model object that determines how the user can select nodes in the tree. This
class provides a method named setSelectionMode that lets you set the
selection mode. To limit the tree to a single node selection, you must pass
this method the TreeSelectionModel.SINGLE_TREE_SELECTION field.
(I think they could have saved us all a lot of work by providing setSingle
TreeSelection method for the JTree class, but nobody asked me.)

You can control the size of the tree component by calling the setVisible
RowCount method. For example

tree1.setVisibleRowCount(12);

Here, the tree is just large enough to show 12 rows at a time.

Finally, you need to add the tree component to a scroll pane so the user can
scroll the tree if it doesn’t fit in the space provided. Then, you should add
the scroll pane to a panel that is in turn added to the frame:

JScrollPane scroll = new JScrollPane(tree1);
panel1.add(scroll);

That’s it! The tree component now appears as shown earlier in Figure 4-4.

Getting the selected node
The easiest way to determine the currently selected node in a tree control
is to call the getLastSelectedPathComponent method. This method
returns an object, so you want to cast it to the correct type. For example

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 580

Book VI
Chapter 4

Choosing from
 a List

Using Trees 581

Object o = tree1.getLastSelectedPathComponent();
DefaultMutableTreeNode show = (DefaultMutableTreeNode) o;

Here, the selected node is retrieved and stored in the Object variable o.
Then, it’s cast to a DefaultMutableTreeNode object.

You can use this method in an action event listener to retrieve the selected
node when the user clicks a button. But what if your program needs to
respond immediately when the user selects a node? For example, the frame
shown in Figure 4-4 has a label beneath the list box. This label is updated with
the title of the selected show whenever the user selects a show in the tree.
To do that, you need to install a listener to listen for tree selection events.

To create a tree selection listener, you provide a class that implements the
TreeSelectionListener interface. This interface provides a single
method named valueChanged, which receives a TreeSelectionEvent
object as a parameter. Here’s a sample TreeSelectionListener class
that simply sets the value of a label named showName to the value of the
user object of the selected item:

private class TreeListener
implements TreeSelectionListener

{
public void valueChanged(TreeSelectionEvent e)
{

Object o = tree1.getLastSelectedPathComponent();
DefaultMutableTreeNode show;
show = (DefaultMutableTreeNode) o;
String title = (String)show.getUserObject();
showName.setText(title);

}
}

Then, you can install an instance of this class to listen for tree selection events
with this statement:

tree1.addTreeSelectionListener(new TreeListener());

The JTree class provides many other methods for retrieving the nodes that
are selected. In addition, you can add listeners that listen for tree selection
events that are generated when the user selects nodes. These events let you
create applications that display data for the selected node immediately
when the user selects a node. If you want to use these features, check out
the API documentation for the JTree class.

Putting it all together
Whew! That was a lot of information to digest. To put it all together, Listing
4-1 shows the complete program that created the frame shown in Figure 4-4.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 581

Using Trees582

This program lets the user select a show from the tree. Then, the title of the
selected show is displayed in the label beneath the tree.

LISTING 4-1:THE SPIN-OFF PROGRAM

import javax.swing.*;
import java.awt.event.*;
import javax.swing.tree.*;
import javax.swing.event.*;

public class SpinOffs extends JFrame
{

public static void main(String [] args)
{

new SpinOffs();
}

private JTree tree1; ➞ 13
private DefaultTreeModel model;
private JLabel showName;

public SpinOffs()
{

this.setSize(225,325);
this.setTitle(“Famous Spinoffs”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel1 = new JPanel();

DefaultMutableTreeNode root, andy, archie, ➞ 25
happy, george, maude;

root = ➞ 28
new DefaultMutableTreeNode(“Famous Spin-offs”);

andy = makeShow(“The Andy Griffith Show”, root); ➞ 31
makeShow(“Gomer Pyle, U.S.M.C.”, andy);
makeShow(“Mayberry R.F.D.”, andy);

archie = makeShow(“All In the Family”, root); ➞ 35
george = makeShow(“The Jeffersons”, archie);
makeShow(“Checking In”, george);
maude = makeShow(“Maude”, archie);
makeShow(“Good Times”, maude);
makeShow(“Gloria”, archie);
makeShow(“Archie Bunker’s Place”, archie);

happy = makeShow(“Happy Days”, root); ➞ 43
makeShow(“Mork and Mindy”, happy);
makeShow(“Laverne and Shirley”, happy);
makeShow(“Joanie Loves Chachi”, happy);

tree1 = new JTree(root); ➞ 48

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 582

Book VI
Chapter 4

Choosing from
 a List

Using Trees 583

tree1.getSelectionModel().setSelectionMode(➞ 50
TreeSelectionModel.SINGLE_TREE_SELECTION);

tree1.setVisibleRowCount(12);
tree1.addTreeSelectionListener(new TreeListener());

JScrollPane scroll = new JScrollPane(tree1); ➞ 55
panel1.add(scroll);

showName = new JLabel();
panel1.add(showName);
this.add(panel1);
this.setVisible(true);

}

private DefaultMutableTreeNode makeShow(➞ 64
String title, DefaultMutableTreeNode parent)
{

DefaultMutableTreeNode show;
show = new DefaultMutableTreeNode(title);
parent.add(show);
return show;

}

private class TreeListener ➞ 73
implements TreeSelectionListener
{

public void valueChanged(TreeSelectionEvent e)
{

Object o = tree1.getLastSelectedPathComponent();
DefaultMutableTreeNode show;
show = (DefaultMutableTreeNode) o;
String title = (String)show.getUserObject();
showName.setText(title);

}
}

}

All the code in this program has been shown already in this chapter, so I just
briefly point out the highlights here:

➞13 The tree and list models are defined as class instance variables.

➞25 DefaultMutableTreeNode variables are defined for the root node
and each show that has spin-off shows.

➞28 The root node is created with the text Famous Spin-offs.

➞31 These lines create the nodes for The Andy Griffith Show and its
spin-offs.

➞35 These lines create the nodes for All In the Family and its spin-offs.

➞43 These lines create the nodes for Happy Days and its spin-offs.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 583

Using Trees584

➞48 This line creates the JTree component, specifying root as the root
node for the tree.

➞50 These lines configure the JTree component so it allows only a single
selection, shows 12 rows at a time, and has a tree selection listener.

➞55 The JTree component is added to a scroll pane, which is then added
to the frame.

➞64 The makeShow method creates a node from a string and adds the
node to the node passed as the parent parameter.

➞73 The TreeListener class handles the valueChanged event to dis-
play the title of the selected show in the showName label.

42_58961X bk06ch04.qxd 3/29/05 3:42 PM Page 584

Chapter 5: Using Layout Managers

In This Chapter
� Flow layout

� Border layout

� Box layout

� Grid layout

� GridBag layout

Controlling the layout of components on a frame is one of the most
difficult aspects of working with Swing. In fact, it can be downright

exasperating. Sometimes the components almost seem to have minds of
their own. They get stubborn and refuse to budge. They line up on top
of each other when you want them to be side by side. You make a slight
change to a label or text field, and the whole frame seems to rearrange itself.
At times you’ll want to put your fist through the monitor.

I recommend against putting your fist through your monitor. You’ll make a
mess, cut your hand, have to spend money on a new monitor, and when you
get your computer working again, the components still don’t line up the way
you want them to be.

The problem isn’t with the components, it’s with the layout managers that
are responsible for determining where each component appears in its frame
or panel. In this chapter, you find out how to work with Swing’s seven layout
managers. This chapter takes the mystery out of Swing layout so you have
complete control over where components are placed.

Introducing Layout Managers
Understanding layout managers is the key to creating Swing frames that are
attractive and usable. Swing provides seven different layout managers for
you to work with (five are described in the following list):

✦ Flow: This is the default layout manager for panels. It lays out compo-
nents one after the other until it runs out of room. Then, it starts a new
row of components.

✦ Border: This is the default layout manager for frames. It divides the con-
tainer into five regions, called North, South, East, West, and Center.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 585

Introducing Layout Managers586

When you add a component, you can specify which region you want to
place the component in.

✦ Box: This layout manager arranges components into either a single row
or a single column, depending on what alignment you specify when you
create the layout manager.

✦ Grid: This layout manager is ideal when you want to create a grid of
identically sized components.

✦ GridBag: This layout manager uses a more flexible grid than the Grid
layout manager. With GridBag, each of the rows or columns can be a dif-
ferent size, a component can span two or more rows or columns, and
you can tell the layout manager what to do if the component is smaller
or larger than the space allotted for it.

Figure 5-1 shows frames arranged with each of these layout managers.

In addition to these five layout managers, Java provides a few additional
ones. The Card layout manager lets you create tabbed layouts, but this man-
ager has been largely replaced by other components that do the same thing
more effectively. And the Spring layout manager uses a weird concept called
springs to let you position components. This layout manager isn’t intended
to be hand-coded. Instead, it’s designed to be used by code generators that
create GUI code for you. Neither of these layout managers are covered in
this book.

Figure 5-1:
The five
layout
managers.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 586

Book VI
Chapter 5

Using Layout
M

anagers
Using Flow Layout 587

In many cases, the best approach to creating complex frame layouts is to use
a combination of layout managers. For example, you might create a panel
with buttons that appear at the bottom of the frame. This panel would use
Flow layout. Then, you can add this panel to the South region of the frame,
which uses Border layout by default.

To set the layout manager for a panel or frame, you use the setLayout
method. For example, here’s how you create a panel and set GridBag as its
layout manager:

JPanel panel1 = new JPanel();
panel1.setLayout(new GridBagLayout());

If you want to use Flow layout with a panel or Border layout with a frame,
you don’t have to do anything because those are the defaults.

Using Flow Layout
Because Flow layout is the default layout manager for panels, you’re already
familiar with how it works. The components are laid out in a single row if
possible. If a component doesn’t fit on the current row, a new row is started.

By itself, the Flow layout manager isn’t very useful. You’ll probably use it
mostly for small panels that consist of a few components, such as a row of
buttons that is then added to a larger panel that uses one of the other layout
managers.

Table 5-1 lists the constructors of the FlowLayout class, which you can use
to create a new Flow layout manager.

Table 5-1 FlowLayout Constructors
Constructor Description

FlowLayout() Creates a Flow layout manager with centered alignment
and no gaps.

FlowLayout(int align) Creates a Flow layout manager with the specified align-
ment. The align parameter can be FlowLayout.
LEFT, FlowLayout.CENTER, or FlowLayout.
RIGHT.

FlowLayout(int align, Creates a Flow layout manager with the specified align-
int hgap, int vgap) ment. The int parameters specify the size (in pixels) of

gaps that are inserted between elements to space
things out a bit.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 587

Using Border Layout588

By default, the rows are centered. You can specify left alignment for a panel
like this:

JPanel panel1 = new JPanel();
panel1.setLayout(new FlowLayout(FlowLayout.LEFT));

To specify right alignment, use this statement instead:

panel1.setLayout(new FlowLayout(FlowLayout.RIGHT));

You can also specify gaps that are inserted between each component. For
example

panel1.setLayout(new FlowLayout(FlowLayout.LEFT, 20, 15));

Here, the horizontal gap is set to 20, and the vertical gap is set to 15.
Figure 5-2 shows a panel with six buttons created with these settings.

Using Border Layout
The Border layout manager carves up a frame or panel into five regions:
North, South, East, West, and Center, as shown in Figure 5-3. Then, when
you add a component to the frame or panel, you can specify which of these
regions the component goes in.

Border layout is the default for frames. To create a panel with Border layout,
use one of the constructors of the BorderLayout class that’s shown in
Table 5-2. For example

JPanel panel1 = new JPanel();
panel1.setLayout(new BorderLayout());

Figure 5-2:
Flow layout
with left
alignment
and gaps.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 588

Book VI
Chapter 5

Using Layout
M

anagers
Using Border Layout 589

Table 5-2 Border Layout Constructors and Fields
Constructor Description

BorderLayout() Creates a Border layout manager with no gaps.

BorderLayout(int Creates a Border layout manager with the specified horizontal
hgap, int vgap) and vertical gaps.

Field Description

NORTH The North region (at the top of the container).

SOUTH The South region (at the bottom of the container).

WEST The West region (at the left of the container).

EAST The East region (at the right of the container).

CENTER The Center region.

When you add a component to a panel or frame that uses the Border layout
manager, you can specify the region to place the component in by using one
of the BorderLayout fields, as in this example:

panel1.add(new JLabel(“Welcome!”), BorderLayout.NORTH);

Here, the label is added to the North region.

Here are a few additional important points to know about Border layout:

✦ If you don’t specify the region when you add a component, the compo-
nent is placed in the center.

Center

North

South

EastWest

Figure 5-3:
How Border
layout
carves
things up.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 589

Using Box Layout590

✦ When the Border layout manager determines the size of each region, it
first determines the size for the regions on the edges — North, South,
East, and West. Then, whatever space remains is given to the center.

✦ The Border layout manager automatically resizes the components in
each region to completely fill up the region. If you don’t want that to
happen, place the components into separate panels that use Flow
layout, and then add those panels to the Border layout regions.

✦ If you add two or more components to the same region of a Border layout
panel or frame, the last one in wins the fight for space; the others aren’t
visible at all. To add more than one component to a region, you need to
first add the components to a panel, and then add the panel to the Border
layout region.

Using Box Layout
You can use the Box layout to create a panel that contains a single row or
column of components. If the components are arranged in a single row, the
box is called a horizontal box. If the components are stacked in a column, the
box is a vertical box.

Although you can apply the Box layout directly to a panel, it’s much more
common to use the Box class, which is similar to a panel but defaults to Box
layout rather than Flow layout. In addition, the Box class has several static
methods that are useful for laying out components in the box. Table 5-3 lists
the methods of this class.

Table 5-3 The Box and Dimension Classes
Box Methods Description

static Component Creates a glue component. This component
createGlue() forces the components on any side of it as far

away from each other as possible.

static Box Creates a horizontal box.
createHorizontalBox()

static Component Creates a horizontal glue component. This com-
createHorizontalGlue() ponent forces the components on either side of it

as far away from each other as possible.

static Component Creates a horizontal strut component that places
createHorizontalStrut the specified amount of space between the
(int width) components on either side of it.

static createRigidArea Creates an area with a fixed size.
(Dimension d)

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 590

Book VI
Chapter 5

Using Layout
M

anagers
Using Box Layout 591

Box Methods Description

static Box Creates a vertical box.
createVerticalBox()

static Component Creates a vertical glue component. This compo-
createVerticalGlue () nent forces the components above and below it

as far away from each other as possible.

static Component Creates a vertical strut component that places
createVerticalStrut(int the specified amount of space between the
width) components above and below it.

Dimension Constructor Description

Dimension(int width, int Creates a new Dimension object with the
height) specified width and height.

Here’s an example that creates a horizontal box and adds three buttons to it:

Box box1 = Box.createHorizontalBox();
box1.add(new JButton(“Accept”));
box1.add(new JButton(“Cancel”));
box1.add(new JButton(“Close”));

The real power of Box layouts is the use of struts, rigid area, and glue:

✦ A strut is a component that inserts a specified amount of space
between components. You can create a strut by calling the
createHorizontalStrut or createVerticalStrut methods,
depending on which type of strut you want to create. For example,
suppose you want the three buttons in the previous example to be
separated by 20 pixels, and you want 20 pixels of blank space on
either end of the box as well. This code does the trick:

Box box1 = Box.createHorizontalBox();

box1.add(Box.createHorizontalStrut(20));
box1.add(new JButton(“Accept”));
box1.add(Box.createHorizontalStrut(20));
box1.add(new JButton(“Cancel”));
box1.add(Box.createHorizontalStrut(20));
box1.add(new JButton(“Close”));
box1.add(Box.createHorizontalStrut(20));

✦ A rigid area is like a strut, but spaces things out both horizontally and
vertically. For example

box1.add(new JButton(“Accept”));
box1.add(Box.createRigidArea(new Dimension(20,

40)));
box1.add(new JButton(“Cancel”));

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 591

Using Grid Layout592

Here, I used a rigid area that’s 20 by 40 pixels to separate the Accept
button from the Cancel button. One side effect of this rigid area is that
it increases the height of the box itself to 40 pixels. Empty space is left
above and below the buttons.

✦ Glue is similar to a strut, but it pushes components as far away from
each other as possible within the bounds of the box itself. For example,
this code uses glue to move the third button as far away from the first
two buttons as possible based on the width of the box:

Box box1 = Box.createHorizontalBox();

box1.add(Box.createHorizontalStrut(20));
box1.add(new JButton(“Accept”));
box1.add(Box.createRigidArea(new Dimension(20,

40)));
box1.add(new JButton(“Cancel”));

box1.add(Box.createHorizontalGlue());

box1.add(new JButton(“Close”));
box1.add(Box.createHorizontalStrut(20));

Now, if you add this Box layout to the South region of a frame, the buttons
appear as shown in Figure 5-4.

Using Grid Layout
The Grid layout is designed for panels that need to have a set number of
components all equally sized and arranged into a grid. You probably won’t
use it much, but if you need to create something that looks like a calculator
or a phone, this is the layout manager you need. Table 5-4 lists the construc-
tors of the GridLayout class, which you use to create a grid layout.

Figure 5-4:
Using Box
layout to
arrange
buttons.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 592

Book VI
Chapter 5

Using Layout
M

anagers
Using GridBag Layout 593

Table 5-4 The GridLayout Constructor
Constructor Description

GridLayout() Creates a grid layout that arranges components in
a single row. This is equivalent to GridLayout
(1, 0).

GridLayout(int rows, Creates a grid layout with the specified number of
int columns) rows and columns. If one of the parameters is zero, the

grid expands to fill as many rows or columns as neces-
sary. (You can’t specify zero for both parameters.)

GridLayout(int rows, Creates a grid layout with the specified number of
int columns, int hgap, rows and columns with gaps of the specified size
int vgap) between the rows and columns.

To create a panel with Grid layout, you call the GridLayout constructor to
specify the size of the grid. One of the parameters can be zero to allow the
grid to expand to however many rows or columns are necessary to hold all
the components you add to the panel.

For example, here’s code that creates the Grid layout panel that resembles a
phone and was shown earlier in Figure 5-1:

JPanel panel1 = new JPanel();
panel1.setLayout(new GridLayout(0,3));

panel1.add(new JButton(“7”));
panel1.add(new JButton(“8”));
panel1.add(new JButton(“9”));
panel1.add(new JButton(“4”));
panel1.add(new JButton(“5”));
panel1.add(new JButton(“6”));
panel1.add(new JButton(“1”));
panel1.add(new JButton(“2”));
panel1.add(new JButton(“3”));
panel1.add(new JButton(“*”));
panel1.add(new JButton(“0”));
panel1.add(new JButton(“#”));

As you add components to a panel with Grid layout, the components are
dropped into the grid’s cells row by row, working across each row from left
to right. As each row is filled, a new row is started.

Using GridBag Layout
The GridBag layout manager is the layout manager you’ll probably use most
to lay out complicated panels. Like the Grid layout manager, GridBag lets
you carve up a panel into a grid. However, the grid has the following special
features:

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 593

Using GridBag Layout594

✦ The rows and columns don’t all have to be the same size. Instead, GridBag
automatically adjusts the width of each column and the height of each
row based on the components you add to the panel.

✦ You can specify which cell you want each component to go in. You can
control each component’s position on the panel.

✦ You can create components that span multiple rows or columns. For
example, you can create a button that is two columns wide or a list box
that is four rows high.

✦ You can tell GridBag to stretch a component to fill the entire space allotted
to it if the component isn’t already big enough to fill the entire area. You
can specify that this stretching be done horizontally, vertically, or both.

✦ If a component doesn’t fill its allotted area, you can tell the GridBag how
you want the component positioned within the area. For example, com-
ponents can be left or right aligned.

The following sections describe the ins and outs of working with GridBag
layouts.

Sketching out a plan
The first step when preparing to create a GridBag panel is to draw a sketch
of how you want the components on the panel to appear. Then, slice the
panel into rows and columns and number the rows and columns starting
with zero in the top left corner. Figure 5-5 shows such a sketch, prepared
with my own hand.

After you have the panel sketched out, make a list of the components, their x
and y coordinates on the grid, their alignment, and whether the component
spans more than one row or column. For example

Component x y Alignment Spans

Label “Name” 0 0 right

Label “Phone” 0 1 right

Label “Address” 0 2 right

Name text field 1 0 left 2

Phone text field 1 1 left

Address text field 1 2 left

Size box 0 3 left

Style box 1 3 left

Toppings box 2 3 left

Button box 2 4 right

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 594

Book VI
Chapter 5

Using Layout
M

anagers
Using GridBag Layout 595

After you lay out the grid, you can write the code to add each component to
its proper place.

Adding components to a GridBag
Before you can add components to a panel using the GridBag layout, you
must first specify GridBag as the panel’s layout manager. You do that by call-
ing the setLayout method, passing a new GridBagLayout object as a
parameter:

JPanel panel1 = new JPanel();
panel1.setLayout(new GridBagLayout());

When a panel uses the GridBag layout, the add method accepts two param-
eters: the component to add and a GridBagConstraints object that
specifies where to place the component in the grid. The trick of using the
GridBag layout is figuring out how to set the GridBagConstraints values
to get each component to go where you want it to go. Table 5-5 lists the
fields of the GridBagConstraints class.

Figure 5-5:
Sketching
out a panel.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 595

Using GridBag Layout596

Table 5-5 The GridBagContraints Class
Field Description

int gridx The x position of the component.

int gridy The y position of the component.

int gridwidth The number of columns spanned by the component. The default is 1.

int gridheight The number of rows spanned by the component. The default is 1.

double weightx A value that gives the grid layout a hint on how to apportion space
for the component’s width.

double weighty A value that gives the grid layout a hint on how to apportion space
for the component’s height.

Insets insets An Insets object that indicates how much space to use as
padding around each component. The Insets class has a simple
constructor: Insets(int top, int left, int
bottom, int right).

int anchor A constant that indicates where to place the component if it doesn’t
fill the space. Values can be any of the following fields of the Grid
BagConstraints class: CENTER, NORTH, NORTHEAST,
EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, and
NORTHWEST.

int fill A constant that indicates whether to stretch the object to fill
available space. Values can be any of the following fields of
the GridBagConstraints class: NONE, HORIZONTAL,
VERTICAL, or BOTH.

A few of these fields need some extra explanation:

✦ The weightx and weighty fields give the GridBag layout manager a
hint about how to adjust the size of the columns and rows. If you set
one of these values to zero, the row or column remains fixed in size. A
common technique is to set both of these parameters to 100, and then
adjust them if you think the layout could benefit from some tweaking.

✦ The insets field lets you provide some padding around components.
You set this field to an Insets object. For example, assuming the
GridBagConstraints object is named gc, this statement provides
5 pixels of space on each side of the component and sets the insets
field like this:

gc.insets = new Insets(5, 5, 5, 5);

✦ By default, components are stretched to fill the cells of the grid. This is
rarely what you want, so you usually want to set the fill field to change
this behavior.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 596

Book VI
Chapter 5

Using Layout
M

anagers
Using GridBag Layout 597

✦ You also want to set the anchor field to indicate where you want the
component placed if it doesn’t fill the cell or cells allotted to it.

Working with GridBagConstraints
To create a GridBagConstraint object, you call the GridBagConstraint
constructor, and then set any of the fields that you want to vary from the
default values. For example, here’s code that creates a GridBagConstraint
object to add the name text field that is shown earlier in Figure 5-5:

GridBagConstraints nameConstraints
= new GridBagConstraints();

nameConstraints.gridx = 1;
nameConstraints.gridy = 0;
nameConstraints.gridwidth = 2;
nameConstraints.gridheight = 1;
nameConstraints.weightx = 100.0;
nameConstraints.weighty = 100.0;
nameConstraints.insets = new Insets(5, 5, 5, 5);
nameConstraints.anchor = GridBagConstraints.WEST;
nameConstraints.fill = GridBagConstraints.NONE;

Then, you can call the add method to add the name text field to the panel:

panel1.add(name, nameConstraints);

Obviously, this approach to controlling constraints is going to require a lot
of coding. You have two common alternatives to creating a new constraint
object for every component you add to the panel. The first is to create a
single constraint object and reuse it for all the components in the panel.
Then, you simply change the fields that need to be changed for each compo-
nent. For example, here’s code that adds all three text fields using a single
constraint object:

GridBagConstraints gc = new GridBagConstraints();
gc.gridx = 0;
gc.gridy = 0;
gc.gridwidth = 1;
gc.gridheight = 1;
gc.weightx = 100.0;
gc.weighty = 100.0;
gc.insets = new Insets(5, 5, 5, 5);
gc.anchor = GridBagConstraints.WEST;
gc.fill = GridBagConstraints.NONE;

gc.gridy = 0;
gc.gridwidth = 2;

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 597

Using GridBag Layout598

add(name, gc);
gc.gridy = 1;
gc.gridwidth = 1;
add(phone, gc);
gc.gridy = 2;
gc.gridwidth = 2;
add(address, gc);

Here, the first group of statements creates a GridBagConstraints object
named gc and sets its values to the defaults that I want to apply to most of
the components in the panel. Then, the second group of statements sets the
gridy and gridwidth fields before adding each text field to the panel.

The second option is to create a helper method that you can call, passing
just the values that vary for each component. For example, here’s a method
named addItem that adds a component and left aligns it within the speci-
fied cells:

private void addItem(JPanel p, JComponent c, int x, int y,
int width, int height, int align)

{
GridBagConstraints gc = new GridBagConstraints();
gc.gridx = x;
gc.gridy = y;
gc.gridwidth = width;
gc.gridheight = height;
gc.weightx = 100.0;
gc.weighty = 100.0;
gc.insets = new Insets(5, 5, 5, 5);
gc.anchor = align;
gc.fill = GridBagConstraints.NONE;
p.add(c, gc);

}

Then, you can call this method to add a component to the panel. You must
pass the panel and the component, its x and y position, and its width and
height. For example, here’s how you add the name text field:

addItem(panel1, name, 0, 1, 2, 1,
GridBagConstraints.WEST);

A GridBag layout example
Listing 5-1 shows the code for a program that displays the frame that I drew
in Figure 5-5, and Figure 5-6 shows how this frame appears when the pro-
gram is run. As you can see, the final appearance of this frame is pretty close
to the way I sketched it out at McDonald’s. I could probably fix a few minor
variations with a little tweaking.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 598

Book VI
Chapter 5

Using Layout
M

anagers
Using GridBag Layout 599

LISTING 5-1:THE PIZZA ORDER APPLICATION

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class Pizza extends JFrame
{

public static void main(String [] args)
{

new Pizza();
}

JTextField name, phone, address;
JRadioButton small, medium, large, thick, thin;
JCheckBox pepperoni, mushrooms, anchovies;
JButton okButton, closeButton;

public Pizza()
{

this.setTitle(“Pizza Order”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel1 = new JPanel();
panel1.setLayout(new GridBagLayout()); ➞ 23

addItem(panel1, new JLabel(“Name:”), ➞ 25
0, 0, 1, 1, GridBagConstraints.EAST);

addItem(panel1, new JLabel(“Phone:”),
0, 1, 1, 1, GridBagConstraints.EAST);

addItem(panel1, new JLabel(“Address:”),
0, 2, 1, 1, GridBagConstraints.EAST);

name = new JTextField(20);
phone = new JTextField(10);
address = new JTextField(20);

addItem(panel1, name, 1, 0, 2, 1, ➞ 36
GridBagConstraints.WEST);

addItem(panel1, phone, 1, 1, 1, 1,

continued

Figure 5-6:
The Pizza
Order
application
in action.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 599

Using GridBag Layout600

LISTING 5-1 (CONTINUED)

GridBagConstraints.WEST);
addItem(panel1, address, 1, 2, 2, 1,

GridBagConstraints.WEST);

Box sizeBox = Box.createVerticalBox(); ➞ 43
small = new JRadioButton(“Small”);
medium = new JRadioButton(“Medium”);
large = new JRadioButton(“Large”);
ButtonGroup sizeGroup = new ButtonGroup();
sizeGroup.add(small);
sizeGroup.add(medium);
sizeGroup.add(large);
sizeBox.add(small);
sizeBox.add(medium);
sizeBox.add(large);
sizeBox.setBorder(

BorderFactory.createTitledBorder(“Size”));
addItem(panel1, sizeBox, 0, 3, 1, 1,

GridBagConstraints.NORTH);

Box styleBox = Box.createVerticalBox(); ➞ 59
thin = new JRadioButton(“Thin”);
thick = new JRadioButton(“Thick”);
ButtonGroup styleGroup = new ButtonGroup();
styleGroup.add(thin);
styleGroup.add(thick);
styleBox.add(thin);
styleBox.add(thick);
styleBox.setBorder(

BorderFactory.createTitledBorder(“Style”));
addItem(panel1, styleBox, 1, 3, 1, 1,

GridBagConstraints.NORTH);

Box topBox = Box.createVerticalBox(); ➞ 72
pepperoni = new JCheckBox(“Pepperoni”);
mushrooms = new JCheckBox(“Mushrooms”);
anchovies = new JCheckBox(“Anchovies”);
ButtonGroup topGroup = new ButtonGroup();
topGroup.add(pepperoni);
topGroup.add(mushrooms);
topGroup.add(anchovies);
topBox.add(pepperoni);
topBox.add(mushrooms);
topBox.add(anchovies);
topBox.setBorder(

BorderFactory.createTitledBorder(“Toppings”));
addItem(panel1, topBox, 2, 3, 1, 1,

GridBagConstraints.NORTH);

Box buttonBox = Box.createHorizontalBox(); ➞ 88
okButton = new JButton(“OK”);
closeButton = new JButton(“Close”);
buttonBox.add(okButton);
buttonBox.add(Box.createHorizontalStrut(20));
buttonBox.add(closeButton);

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 600

Book VI
Chapter 5

Using Layout
M

anagers
Using GridBag Layout 601

addItem(panel1, buttonBox, 2, 4, 1, 1,
GridBagConstraints.NORTH);

this.add(panel1);
this.pack();
this.setVisible(true);

}

private void addItem(JPanel p, JComponent c,
int x, int y, int width, int height, int align)

{
GridBagConstraints gc = new GridBagConstraints();
gc.gridx = x;
gc.gridy = y;
gc.gridwidth = width;
gc.gridheight = height;
gc.weightx = 100.0;
gc.weighty = 100.0;
gc.insets = new Insets(5, 5, 5, 5);
gc.anchor = align;
gc.fill = GridBagConstraints.NONE;
p.add(c, gc);

}
}

Note that this application doesn’t include any event listeners, so the buttons
don’t do anything other than demonstrate how to use the GridBag layout.
The following paragraphs point out the highlights:

➞23 This line creates a GridBag layout manager for the panel.

➞25 These lines add the labels to the panel.

➞36 These lines add the text fields to the panel.

➞43 These lines use a vertical Box object to create the radio buttons that
let the user select the size.

➞59 These lines use a vertical Box object to create the radio buttons that
let the user select the crust style.

➞72 These lines use a vertical Box object to create the check boxes that
let the user select check boxes.

➞88 These lines use a horizontal Box object to hold the OK and Close
buttons.

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 601

Book VI: Swing602

43_58961X bk06ch05.qxd 3/29/05 3:41 PM Page 602

Book VII

Web Programming

44_58961X pt07.qxd 3/29/05 3:40 PM Page 603

Contents at a Glance
Chapter 1: Creating Applets ..605

Chapter 2: Creating Servlets ..613

Chapter 3: Using Java Server Pages..633

Chapter 4: Using JavaBeans ..647

44_58961X pt07.qxd 3/29/05 3:40 PM Page 604

Chapter 1: Creating Applets

In This Chapter
� Looking at applets

� Creating an applet

� Creating HTML to display applets

� Testing applets with the applet viewer

An applet is not a small piece of fruit. Rather, it’s a Java application
that’s designed to run in a browser window on an Internet user’s com-

puter. When an Internet user visits a Web page that contains an applet, the
Java applet class is downloaded to the user’s computer and run there. The
applet takes over a portion of the page and, within that space, can do any-
thing it wants.

Applets are, at least in most cases, Swing applications. As a result, every-
thing that’s covered in Book VI applies to applets. In this chapter, you create
applets that include Swing components. Then, you add an applet to a Web
page so anyone who views the page can use it.

Understanding Applets
An applet is similar to a Swing application, with several crucial differences:

✦ Instead of extending the JFrame class, applets extend the JApplet
class. Both JFrame and JApplet provide a “space” for your Swing
application to operate in:

• With JFrame, that space is a window that’s managed by the host
operating system’s windowing system.

• With JApplet, the space is a rectangular area of a Web page that’s
managed by a Web browser.

✦ Stand-alone Swing applications are started when the JVM calls the static
main method. Thus, a Swing application typically starts by creating an
instance of the class that extends JFrame. In contrast, the browser auto-
matically creates an instance of the class that extends JApplet when the
applet is started. As a result, applets don’t have a static main method.
Instead, a method named init is called to get the applet started. As a
result, the init method is where you put the code that you’d put in the
constructor for a class that extends JFrame.

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 605

The JApplet Class606

✦ Stand-alone Swing methods need a way to let the user shut them down.
Typically, Swing applications include an Exit button or an Exit menu
command. Applets don’t. An applet remains alive as long as the page
that contains it is displayed.

✦ Applets aren’t displayed in windows; they’re displayed in a region of a
Web page. As a result, you can’t set the text for an applet’s title bar, and
you can’t set the DefaultCloseOperation, because there’s no Close
button for the user to click. In addition, the user can’t resize the applet.

✦ For security reasons, applets are prohibited from doing certain things. In
particular, an applet is not allowed to do anything that affects the client
computer’s file system, including reading or writing files, or running pro-
grams on the client computer.

Other than these differences and restrictions, an applet works pretty much
the same as a Swing application. In fact, the Swing components inside the
applet look and behave exactly like they do in a stand-alone Swing applica-
tion. Thus, applets let you create Swing applications and run them on any
computer, anywhere in the world. Right?

Would that it were so. Unfortunately, the company that makes the world’s
most popular Web browser, whose name I won’t mention but whose initials
are MICROSOFT, hasn’t played nice with Sun. Or maybe Sun hasn’t played
nice with Microsoft. Who knows. Either way, the result has been a mess
when it comes to whether or not users’ computers can run applets, and if
they can, what version of Java they support. Users can download the Java
plug-in from Sun, but the download is large, and most users either don’t
want to take the time, don’t understand the process, or don’t trust it.

As a result, applets aren’t the best way to create Web-based applications that
you expect to be used by the masses. The biggest sites on the Internet, such
as eBay and Amazon, are not implemented with applets; instead, they’re built
using tools such as servlets and Java Server Pages as described in the other
chapters of Book VII.

The JApplet Class
As I’ve already mentioned, an applet extends the JApplet class rather than
the JFrame class. For the most part, the JApplet class works pretty much
the same as the JFrame class. As a result, you can add panels and other
components to it, create menus, doodle on it, and so on. Table 1-1 lists the
most commonly used methods of the JApplet class.

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 606

Book VII
Chapter 1

Creating Applets

Looking At a Sample Applet 607

Table 1-1 Useful JApplet Constructors and Methods
Constructor Description

JApplet() Creates a new applet. You don’t usually need
to call the JApplet constructor because it’s
called automatically when the browser loads
the applet.

Method Description

void add Adds the specified component to the applet.
(Component c)

void destroy() Called by the browser to inform the applet that
its memory is about to be reclaimed by the
JVM. Most applets don’t need to override this
method.

void init() Called by the browser to inform the applet that
it has been loaded. This method takes the
place of the JFrame constructor for a Swing
application.

void setLayout Sets the layout manager used to control how
(LayoutManager layout) components are arranged when the applet is

displayed. The default is the Border Layout
manager.

void setLocation Sets the x and y position of the applet
(int x, int y) on-screen. The top left corner of the screen

is 0, 0.

void setLocationRelativeTo Centers the applet on-screen if the parameter
(Component c) is null.

void setSize(int width, Sets the size of the applet to the specified
int height) width and height.

void setJMenuBar Sets the menu for this applet.
(JMenuBar menu)

void start() Called by the browser to inform the applet to
start its execution.

void stop() Called by the browser when the applet tem-
porarily leaves view. Override this method if
you need to stop activities while the applet is
hidden.

Looking At a Sample Applet
To see how a complete applet works, Listing 1-1 shows the complete code
for an applet that lets the user order a pizza in one of three sizes (Small,
Medium, and Large) with one of three toppings (Pepperoni, Mushrooms,
and Anchovies). Figure 1-1 shows this applet in action on a Web page.

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 607

Looking At a Sample Applet608

LISTING 1-1:THE PIZZA ORDER APPLET

import javax.swing.*;
import java.awt.event.*;
import javax.swing.border.*;

public class PizzaApplet extends JApplet ➞ 5
{

private JButton buttonOK;
private JRadioButton small, medium, large;

private JCheckBox pepperoni, mushrooms, anchovies;

public void init() ➞ 12
{

this.setSize(320,200); ➞ 14

ButtonListener bl = new ButtonListener();

JPanel mainPanel = new JPanel();

JPanel sizePanel = new JPanel();
Border b1 =
BorderFactory.createTitledBorder(“Size”);
sizePanel.setBorder(b1);

ButtonGroup sizeGroup = new ButtonGroup();

Figure 1-1:
The pizza
applet in
action.

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 608

Book VII
Chapter 1

Creating Applets

Looking At a Sample Applet 609

small = new JRadioButton(“Small”);
small.setSelected(true);
sizePanel.add(small);
sizeGroup.add(small);

medium = new JRadioButton(“Medium”);
sizePanel.add(medium);
sizeGroup.add(medium);

large = new JRadioButton(“Large”);
sizePanel.add(large);
sizeGroup.add(large);

mainPanel.add(sizePanel);

JPanel topPanel = new JPanel();
Border b2 =

BorderFactory.createTitledBorder(“Toppings”);
topPanel.setBorder(b2);

pepperoni = new JCheckBox(“Pepperoni”);
topPanel.add(pepperoni);

mushrooms = new JCheckBox(“Mushrooms”);
topPanel.add(mushrooms);

anchovies = new JCheckBox(“Anchovies”);
topPanel.add(anchovies);

mainPanel.add(topPanel);

buttonOK = new JButton(“OK”);
buttonOK.addActionListener(bl);
mainPanel.add(buttonOK);

this.add(mainPanel);

this.setVisible(true);
}

private class ButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == buttonOK)
{

String tops = “”;
if (pepperoni.isSelected())

tops += “Pepperoni\n”;
if (mushrooms.isSelected())

tops += “Mushrooms\n”;

continued

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 609

Looking At a Sample Applet610

LISTING 1-1 (CONTINUED)

if (anchovies.isSelected())
tops += “Anchovies\n”;

String msg = “You ordered a “;
if (small.isSelected())

msg += “small pizza with “;
if (medium.isSelected())

msg += “medium pizza with “;
if (large.isSelected())

msg += “large pizza with “;

if (tops.equals(“”))
msg += “no toppings.”;

else
msg += “the following toppings:\n”

+ tops;
JOptionPane.showMessageDialog(buttonOK,

msg, “Your Order”,
JOptionPane.INFORMATION_MESSAGE);

pepperoni.setSelected(false);
mushrooms.setSelected(false);
anchovies.setSelected(false);
small.setSelected(true);

}
}

}
}

This is an applet version of a Swing program that is in Book VI, Chapter 3. For
the details on how the Swing components work, you can refer to that chapter.
Here, I just want to point out a few details that are specific to applets:

➞ 5 The class extends JApplet instead of JFrame.

➞12 The init method is overridden, and the code that ordinarily is in
the constructor for the JFrame class is placed in the init method.

➞14 The setSize method is called to set the size of the applet.
Several methods that appeared in the Swing version of this
program, however, are removed. In particular, the setTitle and
setDefaultCloseAction methods are deleted, because those
methods don’t apply to applets. From the rest of this method, how-
ever, you can see that most of this code is exactly the same as it is
for a stand-alone Swing application.

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 610

Book VII
Chapter 1

Creating Applets

Testing an Applet 611

Creating an HTML Page for an Applet
To run an applet, you must create an HTML page that includes an APPLET
tag that specifies the name of the applet and the size of the region you want
to let the applet run inside. The APPLET tag also includes text that’s dis-
played if the Web browser isn’t capable of running the applet.

The basic form of the APPLET tag is this:

<APPLET code=”classname” width=width height=height>
Text to display if applet can’t be loaded

</APPLET>

For example, here’s the HTML file that I used to display the page shown in
Figure 1-1:

<html>
<head>
<title>The Pizza Applet</title>

</head>
<body>
<H1>Welcome to the Pizza Applet!</H1>
<APPLET code=”PizzaApplet” width=”300” height=”180”>
Sorry, your browser isn’t able to run Java applets.
</APPLET>

</body>
</html>

Testing an Applet
Java comes with a special program called the applet viewer that lets you
quickly run an applet after you compile it. Figure 1-2 shows the pizza applet
displayed in the applet viewer.

Figure 1-2:
The pizza
applet
displayed in
the applet
viewer.

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 611

Testing an Applet612

If you’re using TextPad, you can invoke the viewer by pressing Ctrl+3 after
you compile the applet. From a command prompt, you must first create an
HTML file as described in the previous section. Then, navigate to the direc-
tory that contains the HTML file and type this command:

appletviewer filename

For example, to display the pizza applet with an HTML file named
PizzaApplet.html, use this command:

Appletviewer PizzaApplet.html

45_58961X bk07ch01.qxd 3/29/05 3:40 PM Page 612

Chapter 2: Creating Servlets

In This Chapter
� Looking at servlets

� Downloading, installing, and configuring Tomcat

� Creating simple servlets

� Working with forms to get data from the user

Servlets are one of the most popular ways to develop Web applications
today. Many of the best-known Web sites on the Internet are powered

by servlets. In this chapter, I give you just the basics: what a servlet is, how
to set up your computer so you can code and test servlets, and how to
create a simple servlet. The next two chapters build on this chapter with
additional Web programming techniques.

Understanding Servlets
Before you can understand what a servlet is and how it works, you need to
understand the basics of how Web servers work. Web servers use a net-
working protocol called HTTP to send Web pages to users. (HTTP stands
for HyperText Transfer Protocol, but that won’t be on the test.) With HTTP,
a client computer uses a URL to request a document that’s located on the
server computer. HTTP uses a request/response model, which means that
client computers (Web users) send request messages to HTTP servers,
which in turn send response messages back to the clients.

A basic HTTP interaction works something like this:

1. Using a Web browser program running on a client computer, you
specify the URL of a file that you want to access.

In some cases, you actually type in the URL of the address. But most of
the time, you click a link that specifies the URL.

2. Your Web browser sends an HTTP request message to the server com-
puter indicated by the URL.

The request includes the name of the file that you want to retrieve.

3. The server computer receives the file request, retrieves the requested
file, and sends the file back to you in the form of an HTTP response
message.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 613

Using Tomcat614

4. The Web browser receives the file, interprets the HTML it contains,
and displays the result on-screen.

The most important thing to note about normal Web interactions is that they
are static. By that I mean that the contents of the file sent to the user is always
the same. If the user requests the same file 20 times in a row, the same page
displays 20 times.

In contrast, a servlet provides a way for the content to be dynamic. A servlet
is simply a Java program that extends the javax.servlet.Servlet
class. The Servlet class enables the program to run on a Web server in
response to a user request, and output from the servlet is sent back to the
Web user as an HTML page.

With servlets, Steps 1, 2, and 4 of the preceding procedure are the same. It’s
the fateful third step that sets servlets apart. If the URL specified by the user
refers to a servlet rather than a file, Step 3 goes more like this:

3. The server computer receives the servlet request, locates the Java
program indicated by the request, runs it, and returns the output
from the program in the form of an HTTP response message.

In other words, instead of sending the contents of a file, the server sends the
output generated by the servlet program. Typically, the servlet program gen-
erates some HTML that’s displayed by the browser.

Servlets are designed to get their work done quickly, and then end. Each
time a servlet runs, it processes one request from a browser, generates one
page that’s sent back to the browser, and then ends. The next time that user
or any other user requests the same servlet, the servlet is run again.

Using Tomcat
Unfortunately, you can’t just run servlet programs on any old computer. First,
you have to install a special program called a servlet engine to turn your com-
puter into a server that’s capable of running servlets. The best-known servlet
engine is called Tomcat, and it’s available free from the Apache Software
Foundation at jakarta.apache.org/tomcat.

Tomcat can also work as a basic Web server. In actual production environ-
ments, Tomcat is usually used in combination with a specialized Web server,
such as Apache’s HTTP Server.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 614

Book VII
Chapter 2

Creating Servlets

Using Tomcat 615

Installing and configuring Tomcat
Installing Tomcat isn’t rocket science, but it’s not as easy as making toast.
Here are the steps you can follow to set up Tomcat 5.5 on a Windows XP
system:

1. Download the Tomcat Zip file.

You find the Zip file on the Apache Web site. Although Apache also offers
an executable setup file for installing Tomcat, I suggest you download
the Zip file instead.

2. Extract the contents of the Zip file by right-clicking the file and choos-
ing Extract All. Then, specify c:\ as the location to extract the files to.

I know you don’t want to clutter up your root directory with a bunch
of files, but the Tomcat Zip file contains a single folder named jakarta-
tomcat-5.5.4 (the version number may vary), so only this one folder is
created. After all the files are extracted, rename this folder to something
a little easier to type. I suggest c:\tomcat.

3. Create an environment variable named JAVA_HOME that points to the
location of your JDK.

To create an environment variable, open the Control Panel, double-click
the System icon, click the Advanced Tab, and then click Environment
Variables. Then, click New and create a variable named JAVA_HOME.
The value of this variable needs to be the complete path to your JDK
installation folder. For example: c:\Program Files\Java\jdk1.5.0.

A common mistake is to set this variable to the bin directory or to the
directory for the JRE, not the JDK. If Tomcat doesn’t start up later,
double-check the JAVA_HOME directory.

4. Copy the servlet-api.jar file to the jre\lib\ext folder in your
JDK root.

For example, if your JDF is installed in c:\Program Files\Java\
jdk1.5.0, copy this file to c:\Program Files\Java\jdk1.5.0\
jre\lib\ext.You find the servlet-api.jar file in c:\tomcat\
common\lib, assuming you extracted the Tomcat files to c:\tomcat.

If you skip this step or copy the servlet-api.jar file to the wrong
place, you can’t compile your servlet programs. If you get compiler mes-
sages complaining that the javax.servlet package doesn’t exist,
double-check that you performed this step right.

5. Edit the context.xml configuration file and add reloadable=
”true” to the <context> tag.

The context.xml file is located in c:\tomcat\conf. The second
line is initially this:

<Context>

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 615

Using Tomcat616

Change it to:

<Context reloadable=”true”>

6. Modify the web.xml file to enable the invoker servlet.

Like context.xml, the web.xml file is located in c:\tomcat\conf.
It contains two groups of lines that configure a Tomcat feature called the
invoker servlet that you need to modify. These lines are initially com-
mented out to disable the invoker servlet; all you have to do is remove
the comment lines that appear before and after each group of lines.

The first group you want to de-comment looks like this:

<!--
<servlet>

<servlet-name>invoker</servlet-name>
<servlet-class>

org.apache.catalina.servlets.InvokerServlet
</servlet-class>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
-->

Simply remove the first (<!--) and last (-->) of these lines.

The second group looks like this:

<!--
<servlet-mapping>

<servlet-name>invoker</servlet-name>
<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>
-->

Once again, you must remove the first and last line so these lines aren’t
treated as comments.

You can quickly find these lines by searching for the word invoker.

7. Create the classes directory.

By default, Tomcat looks for the class files for your servlets in the direc-
tory c:\tomcat\webapps\ROOT\WEB-INF\classes. Unfortunately,
the classes directory is missing. So you must navigate to c:\tomcat\
webapps\ROOT\WEB-INF and create the classes directory. (Of course,
the c:tomcat part of these paths varies if you installed Tomcat in some
other location.)

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 616

Book VII
Chapter 2

Creating Servlets

Using Tomcat 617

Starting and stopping Tomcat
After you install and configure Tomcat, you can start it by opening a command
window, changing to the c:\tomcat\bin directory, and typing startup. A
batch file runs that starts Tomcat. When Tomcat starts, it opens up a second
command window that displays various status messages. Figure 2-1 shows
both of these windows in action.

You know that Tomcat has successfully started up when you see a line such
as the following indicating how long the startup took:

INFO: Server startup in 2817 ms

If the Tomcat window appears for a few seconds, and then an exception mes-
sage flies by quickly and the window closes, the most likely problem is that
you already have a Web server running on your system and that server has
already laid claim to the port Tomcat wants to use for HTTP communication.
The solution to that problem is to edit the server.xml file in c:\tomcat\
conf and look for this tag:

<Connector port=”8080” ... />

Change the port number from 8080 to some other number, such as 18080.
Later, when you display servlets in a browser window, you have to specify
this number as the HTTP port number instead of 8080.

Figure 2-1:
Starting up
Tomcat.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 617

Using Tomcat618

You don’t need to shut down Tomcat once you start it up unless you make a
change to one of its configuration files. If you do, you can shut down Tomcat
by running the shutdown batch file from the c:\tomcat\bin directory.
Then, you can run the startup batch file to get Tomcat going again.

Testing Tomcat
To find out if you have installed Tomcat correctly, you can try running the
test servlets that are automatically installed when you install Tomcat. Open
a browser window and type this address:

http://localhost:8080/servlets-examples/index.html

(If you changed the port number by editing the server.xml file, use the
port number you specified instead of 8080.) The page shown in Figure 2-2
appears. If it doesn’t, go to the earlier section “Installing and configuring
Tomcat” and double-check that you did each step correctly.

Note: If you scroll down this page, you find links to a variety of sample
servlets you can run along with links to each servlet’s source code. By all
means play around with these samples to get an idea of how servlets work
and what you can do with them.

Figure 2-2:
Testing
Tomcat.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 618

Book VII
Chapter 2

Creating Servlets

Creating a Simple Servlet 619

Creating a Simple Servlet
Okay, enough of the configuration stuff; now you can start writing some
code. The following sections go over the basics of creating a simple Hello,
World! type servlet.

Importing the servlet packages
Most servlets need access to at least three packages — javax.servlet,
javax.servlet.http, and java.io. As a result, you usually start with
these import statements:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Depending on what other processing your servlet does, you may need addi-
tional import statements.

Extending the HttpServlet class
To create a servlet, you write a class that extends the HttpServlet class.
Table 2-1 lists six methods you can override in your servlet class.

Table 2-1 The HttpServlet Class
Method When Called Signature

doDelete HTTP DELETE request public void doDelete(Http
ServletRequest request,
HttpServletResponse response)
throws IOException,
ServletException

doGet HTTP GET request public void doGet(HttpServlet
Request request, HttpServlet
Response response) throws
IOException, ServletException

doPost HTTP POST request public void doPost(HttpServlet
Request request, HttpServlet
Response response) throws
IOException, ServletException

doPut HTTP PUT request public void doPut(HttpServlet
Request request, HttpServlet
Response response) throws
IOException, ServletException

init() First time servlet is run public void init() throws
ServletException

destroy() Servlet is destroyed public void destroy()

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 619

Creating a Simple Servlet620

Most servlets override at least the doGet method. This method is called by
the servlet engine when a user requests the servlet by typing its address
into the browser’s address bar or by clicking a link that leads to the servlet.

Two parameters are passed to the doGet method:

✦ An HttpServletRequest object that represents the incoming request
from the user. You use the request parameter primarily to retrieve
data entered by the user into form fields. You find out how to do that
later in this chapter.

✦ An HttpServletResponse object that represents the response that is
sent back to the user. You use the response parameter to compose the
output that is sent back to the user. You find out how to do that in the
next section.

Printing to a Web page
One of the main jobs of most servlets is writing HTML output that’s sent
back to the user’s browser. To do that, you first call the getWriter method
of the HttpServletResponse class. This returns a PrintWriter object
that’s connected to the response object. Thus, you can use the familiar
print and println methods to write HTML text.

For example, here’s a doGet method for a simple HelloWorld servlet:

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

PrintWriter out = response.getWriter();
out.println(“Hello, World!”);

}

Here, the PrintWriter object returned by response.getWriter() is
used to send a simple text string back to the browser. If you run this servlet,
the browser displays the text Hello, World!.

Responding with HTML
In most cases, you don’t want to send simple text back to the browser.
Instead, you want to send formatted HTML. To do that, you must first tell the
response object that the output is in HTML format. You can do that by call-
ing the setContentType method, passing the string “text/html” as the
parameter. Then, you can use the PrintWriter object to send HTML. For
example, Listing 2-1 shows a basic HelloWorld servlet that sends an HTML
response.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 620

Book VII
Chapter 2

Creating Servlets

Creating a Simple Servlet 621

LISTING 2-1:THE HELLOWORLD SERVLET

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class HelloWorld extends HttpServlet
{

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>HelloWorld</title>”);
out.println(“</head>”);
out.println(“<body>”);
out.println(“<h1>Hello, World!</h1>”);
out.println(“</body>”);
out.println(“</html>”);

}
}

Here, the following HTML is sent to the browser (I added indentation to
show the HTML’s structure):

<html>
<head>
<title>HelloWorld</title>

</head>
<body>
<h1>Hello, World!</h1>

</body>
</html>

When run, the HelloWorld servlet produces the page shown in Figure 2-3.

Obviously, you need a solid understanding of HTML to write servlets. If
HTML is like a foreign language, you need to pick up a good HTML book,
such as HTML 4 For Dummies by Ed Tittel and Natanya Pitts, before you go
much further. For your reference, Table 2-2 summarizes all the HTML tags
that I use in this book.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 621

Creating a Simple Servlet622

Table 2-2 Just Enough HTML to Get By
HTML tag Description

<html>, </html> Marks the start and end of an HTML document.

<head>, </head> Marks the start and end of the head section of an HTML
document.

<title>, </title> A title element. The text between the start and end tags is
shown in the title bar of the browser window.

<body>, </body> Marks the start and end of the body section of an HTML
document. The content of the document is provided
between these tags.

<h1>, </h1> The text between these tags is formatted as a level-1
heading.

<h2>, </h2> The text between these tags is formatted as a level-2
heading.

<h3>, </h3> The text between these tags is formatted as a level-3
heading.

<form action=”url”, Marks the start of a form. The action attribute specifies
method=”method”> the name of the page, servlet, or JSP the form is posted to.

The method attribute can be GET or POST; it indicates
the type of HTTP request sent to the server.

</form> Marks the end of a form.

<input type=”type”, Creates an input field. Specify type=”text” to create a
name=”name”> text field or type=”submit” to create a Submit button.

The name attribute provides the name you use in the pro-
gram to retrieve data entered by the user.

 A non-breaking space.

Figure 2-3:
The
HelloWorld
servlet
displayed in
a browser.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 622

Book VII
Chapter 2

Creating Servlets

An Improved HelloWorld Servlet 623

Running a Servlet
So how exactly do you run a servlet? First, you must move the compiled
class file into a directory that Tomcat can run the servlet from. For testing
purposes, you can move the servlet’s class file to c:\tomcat\webapps\
ROOT\WEB-INF\classes. Then, type an address like this one in your
browser’s address bar:

http://localhost:8080/servlet/HelloWorld

You may also want to override the doPost method. This method is called if
the user requests your servlet from a form. In many cases, you’ll just call
doGet from the doPost method, so that both get and post requests are
processed in the same way.

As you know, the doGet method is called whenever the user enters the
address of your servlet in the address bar or clicks a link that leads to your
servlet. But many — if not most — servlets are associated with HTML forms,
which provide fields the user can enter data into. The normal way to send
form data from the browser to the server is with an HTTP POST request, not
a GET request.

If you want a servlet to respond to POST requests, you can override the
doPost method instead of, or in addition to, the doGet method. Other than
the method name, doPost has the same signature as doGet. In fact, it’s not
uncommon to see servlets in which the doPost method simply calls doGet,
so that both POST and GET requests are processed identically. To do that,
code the doPost method like this:

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

doGet(request, response);
}

An Improved HelloWorld Servlet
The HelloWorld servlet that is shown earlier in Listing 2-1 isn’t very interest-
ing because it always sends the same text. Essentially, it is a static servlet,
which pretty much defeats the purpose of using servlets in the first place.
You could just as easily have provided a static HTML page.

Listing 2-2 shows the code for a more dynamic HelloWorld servlet. This ver-
sion randomly displays one of six different greetings. It uses the random
method of the Math class to pick a random number from 1 to 6, and then

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 623

An Improved HelloWorld Servlet624

uses this number to decide which greeting to display. It also overrides the
doPost method as well as the doGet method, so posts and gets are han-
dled identically.

LISTING 2-2:THE HELLOSERVLET SERVLET

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class HelloServlet extends HttpServlet
{

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
String msg = getGreeting();
out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>HelloWorld Servlet</title>”);
out.println(“</head>”);
out.println(“<body>”);
out.println(“<h1>”);
out.println(msg);
out.println(“</h1>”);
out.println(“</body>”);
out.println(“</html>”);

}
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException

{
doGet(request, response);

}

private String getGreeting()
{

String msg = “”;
int rand = (int)(Math.random() * (6)) + 1;
switch (rand)
{

case 1:
return “Hello, World!”;

case 2:
return “Greetings!”;

case 3:
return “Felicitations!”;

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 624

Book VII
Chapter 2

Creating Servlets

Getting Input from the User 625

case 4:
return “Yo, Dude!”;

case 5:
return “Whasssuuuup?”;

case 6:
return “Hark!”;

}
return null;

}
}

Getting Input from the User
If a servlet is called by an HTTP GET or POST request that came from a form,
you can call the getParameter method of the request object to get the
values entered by the user into each form field. For example

String name = request.getParameter(“name”);

Here, the value entered into the form input field named name is retrieved
and assigned to the String variable name.

Working with forms
As you can see, retrieving data entered by the user in a servlet is easy.
The hard part is creating a form that the user can enter the data into. There
are two basic approaches to doing that. One is to create the form using a
separate HTML file. For example, Listing 2-3 shows an HTML file named
InputServlet.html that displays the form shown in Figure 2-4.

LISTING 2-3:THE INPUTSERVLET.HTML FILE

<html>
<head>
<title>Input Servlet</title>

</head>
<body>
<form action=”/servlet/InputServlet” method=”post”>
Enter your name:
<input type=”text” name=”Name”>

<input type=”submit” value=”Submit”>

</form>
</body>

</html>

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 625

Getting Input from the User626

The action attribute in the form tag of this form specifies that /servlet/
InputServlet is called when the form is submitted, and the method attrib-
ute indicates that the form is submitted via a POST rather than a GET request.

The form itself consists of an input text field named name and a Submit button.
Nothing fancy; just enough to get some text from the user and send it to a
servlet.

The InputServlet servlet
Listing 2-4 shows a servlet that can retrieve the data from the form shown in
Listing 2-3.

LISTING 2-4:THE INPUTSERVLET SERVLET

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class InputServlet extends HttpServlet
{

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

String name = request.getParameter(“Name”);

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>Input Servlet</title>”);
out.println(“</head>”);

Figure 2-4:
A simple
input form.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 626

Book VII
Chapter 2

Creating Servlets

Using Classes in a Servlet 627

out.println(“<body>”);
out.println(“<h1>”);
out.println(“Hello “ + name);
out.println(“</h1>”);
out.println(“</body>”);
out.println(“</html>”);

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException
{

doGet(request, response);
}

}

As you can see, this servlet really isn’t that much different than the first
HelloWorld servlet from Listing 2-1. The biggest difference is that it retrieves
the value entered by the user into the name field and uses it in the HTML
that’s sent to the response PrintWriter object. For example, if the user
enters Calvin Coolidge into the name input field, the following HTML is
generated:

<html>
<head>
<title>HelloWorld</title>

</head>
<body>
<h1>Hello Calvin Coolidge</h1>

</body>
</html>

Thus, the message Hello Calvin Coolidge is displayed on the page.

Although real-life servlets do a lot more than just parrot back information
entered by the user, most of them follow this surprisingly simple structure,
with a few variations of course. For example, real-world servlets validate
input data and display error messages if the user enters incorrect data or
omits important data. And most real-world servlets retrieve or update data
in files or databases. Even so, the basic structure is pretty much the same.

Using Classes in a Servlet
When you develop servlets, you often want to access other classes you’ve
created, such as IO classes that retrieve data from files or databases, utility
or helper classes that provide common functions such as data validation,
and perhaps even classes that represent business objects such as customers
or products. To do that, all you have to do is save the class files in the

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 627

Using Classes in a Servlet628

classes directory of the servlet’s home directory that, for the purposes of
this chapter, is c:\tomcat\webapps\ROOT\WEB-INF\classes.

To illustrate a servlet that uses several classes, Figure 2-5 shows the output
from a servlet that lists movies read from a text file. This servlet uses three
classes:

✦ Movie: A class that represents an individual movie.

✦ MovieIO: A class that has a static public method named getMovies.
This method returns an ArrayList object that contains all the movies
read from the file.

✦ ListFiles: The main servlet class. It calls the MovieIO.getMovies
class to get an ArrayList of movies, and then displays the movies on
the page.

The code for the Movie class is shown in Listing 2-5. As you can see, this
class doesn’t have much: It defines three public fields (title, year, and
price) and a constructor that lets you create a new Movie object and ini-
tialize the three fields. Note that the price field isn’t used by this servlet.

LISTING 2-5:THE MOVIE CLASS

public class Movie
{

public String title;
public int year;

Figure 2-5:
The
ListMovies
servlet.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 628

Book VII
Chapter 2

Creating Servlets

Using Classes in a Servlet 629

public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

Listing 2-6 shows the MovieIO class. This class uses the file I/O features
that are presented in Book VIII, Chapter 2 to read data from a text file. The
text file uses tabs to separate the fields, and contains these lines:

It’s a Wonderful Life➪1946➪14.95
The Great Race➪1965➪12.95
Young Frankenstein➪1974➪16.95
The Return of the Pink Panther➪1975➪11.95
Star Wars➪1977➪17.95
The Princess Bride➪1987➪16.95
Glory➪1989➪14.95
Apollo 13➪1995➪19.95
The Game➪1997➪14.95
The Lord of the Rings:The Fellowship of the Ring➪

2001➪19.95

Here, the arrows represent tab characters in the file. I’m not going to go over
the details of this class here, except to point out that getMovies is the only
public method in the class, and it’s static so you don’t have to create an
instance of the MovieIO class to use it. For the details on how this class
works, refer to Book VIII, Chapter 2.

LISTING 2-6:THE MOVIEIO CLASS

import java.io.*;
import java.util.*;

public class MovieIO
{

public static ArrayList<Movie> getMovies()
{

ArrayList<Movie> movies = new ArrayList<Movie>();
BufferedReader in =

getReader(“c:\\data\\movies.txt”);
Movie movie = readMovie(in);
while (movie != null)
{

movies.add(movie);
movie = readMovie(in);

continued

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 629

Using Classes in a Servlet630

LISTING 2-6 (CONTINUED)

}
return movies;

}

private static BufferedReader getReader(String name)
{

BufferedReader in = null;
try
{

File file = new File(name);
in = new BufferedReader(

new FileReader(file));
}
catch (FileNotFoundException e)
{

System.out.println(“The file doesn’t exist.”);
System.exit(0);

}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return in;

}

private static Movie readMovie(BufferedReader in)
{

String title;
int year;
double price;
String line = “”;
String[] data;

try
{

line = in.readLine();
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}

if (line == null)
return null;

else
{

data = line.split(“\t”);
title = data[0];

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 630

Book VII
Chapter 2

Creating Servlets

Using Classes in a Servlet 631

year = Integer.parseInt(data[1]);
price = Double.parseDouble(data[2]);
return new Movie(title, year, price);

}
}

}

Listing 2-7 shows the code for the ListMovie servlet class.

LISTING 2-7:THE LISTMOVIE SERVLET CLASS

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ListMovies extends HttpServlet
{

public void doGet(HttpServletRequest request, ➞ 8
HttpServletResponse response)

throws IOException, ServletException
{

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
String msg = getMovieList();
out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>List Movies Servlet</title>”);
out.println(“</head>”);
out.println(“<body>”);
out.println(“<h1>Some of My Favorites</h1>”);
out.println(“<h3>”);
out.println(msg);
out.println(“</h3>”);
out.println(“</body>”);
out.println(“</html>”);

}

public void doPost(HttpServletRequest request, ➞ 28
HttpServletResponse response)

throws IOException, ServletException
{

doGet(request, response);
}

private String getMovieList() ➞ 35
{

String msg = “”;
ArrayList<Movie> movies = MovieIO.getMovies();

continued

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 631

Using Classes in a Servlet632

LISTING 2-7 (CONTINUED)

for (Movie m : movies)
{

msg += m.year + “: “;
msg += m.title + “
”;

}
return msg;

}
}

The following paragraphs describe what each of its methods do:

➞ 8 The doGet method calls the getMovieList method to get a string
that contains a list of all the movies separated by break tags. Then, it
uses a series of out.println statements to write HTML that dis-
plays this list.

➞28 The doPost method simply calls the doGet method. That way, the
servlet works whether it is invoked by a GET or POST request.

➞35 The getMovieList method calls the MovieIO.getMovies
method to get an ArrayList that contains all the movies read from
the file. Then, it uses an enhanced for loop to retrieve each Movie
object. Each movie’s year and title is added to the msg string, sepa-
rated by
 tags.

46_58961X bk07ch02.qxd 3/29/05 3:39 PM Page 632

Chapter 3: Using Java
Server Pages

In This Chapter
� Understanding how servlets work

� Using page directives

� Trying out expressions

� Putting scriptlets to work

� Devising declarations

� Comprehending classes

In the previous chapter, you discover how to create servlets that write
HTML data directly to a page by using the PrintWriter object accessed

through response.out. Although this technique works, it has one major
drawback: You have to manually compose the HTML as a bunch of string
literals. If the HTML has an error, you don’t know about it until you run the
servlet to see how it looks. And hand-crafting HTML in out.println state-
ments certainly isn’t the most efficient way to create attractive Web pages.

That’s where Java Server Pages, usually called JSP for short, come in. A JSP
is an HTML file that has Java servlet code embedded in it in special tags.
When you run a JSP, all the HTML is automatically sent as part of the response,
along with any HTML that’s created by the Java code you embed in the JSP
file. As a result, JSP spares you the chore of writing all those out.println
statements.

In this chapter, you find out how to create basic Java Server Pages. Then, in
the next chapter, I show you how to incorporate special Java classes called
JavaBeans into your JSP pages.

Understanding Java Server Pages
A Java Server Page is an HTML document that’s saved in a file with the
extension .jsp instead of .htm or .html. Unlike servlet class files, you
can store a JSP file in any directory that’s available to the Web server.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 633

Understanding Java Server Pages634

The first time a user requests a JSP file, the JSP file is run through a transla-
tor program that converts the file into a Java servlet program and compiles
it. All the HTML from the original JSP file is converted to out.print state-
ments that send the HTML to the response, and the Java statements from
the JSP file are incorporated into the servlet program. Then, the servlet
program is executed and the results sent back to the browser.

Note that this translation occurs only once, the first time someone requests
the JSP. After that, the servlet itself is run directly whenever a user requests
the JSP.

Enough of the concept, now on to the code. When you create a JSP, you
intermix special JSP elements with your normal HTML. You can include four
types of JSP elements:

✦ Directives: A directive is an option setting that affects how the servlet is
constructed from a JSP page. Directives let you do things such as specify
what import statements the servlet requires, specify whether the
servlet is thread-safe, and include other source files in the servlet.

✦ Expressions: An expression can be any Java expression. The expression is
evaluated, converted to a string (if necessary) and the result is inserted
into the document. Expressions assume the following form:

<%= expression %>

✦ Scriptlets: A scriptlet is a sequence of Java statements that are inserted
directly into the servlet code generated for the JSP. You can do just
about anything you want in a scriptlet, including if statements, looping,
and calling other methods. You can even use out.println to add
output to the page; the output is inserted in the page at the location
where the scriptlet appears. Scriptlets have the following form:

<% statements %>

✦ Declarations: A declaration is Java code that is placed in the servlet
class outside of any methods. You use declarations to create class vari-
ables or define methods that can be called by scriptlets or expressions.
Declarations take on this form:

<%! statements %>

The remaining sections of this chapter show you how to create JSP pages
that incorporate each of these elements.

Unfortunately, the current version of Tomcat (5.5.4) doesn’t support the new
features of Java 1.5 unless you jump through a bunch of extra configuration
hoops. Because jumping through hoops can be dangerous, I avoid using Java
1.5 features in this chapter. Hopefully, the next version of Tomcat will work
better with Java 1.5.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 634

Book VII
Chapter 3

Using Java Server
Pages

Using Page Directives 635

Using Page Directives
A page directive is a JSP element that sets options that determine how the
JSP is converted to a servlet. The basic format of a page directive is this:

<%@ page attribute=value %>

The attribute can be any of the attributes listed in Table 3-1. (There are a few
other attributes besides these, but they’re rarely used.)

Table 3-1 Commonly Used Page Directive Attributes
Name Description

import=”package.class” Adds an import statement to the servlet so you
can use classes in other JSP elements without
having to fully qualify them.

content-Type=”MIME-type“ Lets you specify the type of document created by the
servlet. The default is text/html. You rarely need
to change this.

isThreadSafe=”boolean” If true, the servlet is assumed to be thread-safe. If
false, implements SingleThreadModel
is added to the servlet class declaration so that the
thread runs in the single thread model. The default is
true.

session=”boolean” If true, the servlet uses session management. The
default is true.

buffer=”size” Specifies the size of the buffer used by the out vari-
able. The default depends on the server, but is never
smaller than 8K.

errorPage=”URL” Specifies the name of an error page that is displayed
if this servlet throws an uncaught exception.

isErrorPage=”boolean” If true, this page is an error page for some other
JSP page. The default is false.

The page directive you use most is import, as it lets you import the packages
for API classes so you can use them in expression, scriptlet, and declaration
elements. For example, here’s a page directive that imports the java.util
package:

<%@ page import=”java.util.*” %>

You can place page directives anywhere you want in a JSP document, but I
suggest you place them at or near the top.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 635

Using Expressions636

Using Expressions
A JSP expression is any Java expression that evaluates to a string. Actually,
the expression doesn’t have to evaluate directly. For example, here’s how
you can use the java.util.Date class to display the current date and
time:

<%=new java.util.Date()%>

This expression creates a new instance of the java.util.Date() class,
which represents the current date and time. The toString() method is
implicitly called to convert this object to a string.

If you include a page import directive, you can omit the qualification on
this expression. For example:

<%@ page import=”java.util” %>
<%=new Date()%>

To do more interesting things with expressions, you can use predefined vari-
ables, which are also known as implicit objects. These are Java variables that
are available to expressions, scriptlets, or declarations throughout a JSP
page. Table 3-2 lists the JSP implicit objects you use most often.

Table 3-2 Implicit Objects
Name Description

out Used to write data to the response, equivalent to
response.getWriter() in a servlet.

request The request object, equivalent to the request parameter in
the doGet or doPostmethod of a servlet.

response The response object, equivalent to the response parameter
in the doGet or doPostmethod of a servlet.

session Used to manage sessions. Equivalent to
request.getSession() in a servlet.

The implicit objects work the same as their corresponding objects do in
servlets. For example, the response object is actually just the response
parameter that’s passed to the doGet or doPost method.

The implicit object you use most in expressions is the request object.
In particular, you use its getParameter method to get values entered
by the user in forms. For example, here’s an expression that displays the
value entered in an input field named Name:

<%= request.getParameter(“Name”)%>

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 636

Book VII
Chapter 3

Using Java Server
Pages

Using Expressions 637

The value of the Name field is inserted wherever this expression occurs in
the JSP file. For example, here’s a simple JSP named InputJSP.jsp that
displays an input text box and a button. When the user clicks the button,
whatever text he or she entered in the input field is displayed beneath the
button:

<html>
<head>
<title>Input JSP</title>

</head>
<body>
<form action=”InputJSP.jsp” method=”post”>
Enter some text:
<input type=”text” name=”Text”>

<input type=”submit” value=”Submit”>

</form>

<h3>You entered:
<%= request.getParameter(“Text”)%></h3>

</body>
</html>

The HTML for this JSP defines a form that contains an input text field named
Text and a Submit button. When the user clicks the Submit button, an HTTP
POST request is sent to the server to request InputJSP.jsp. Any text
entered by the user is sent along with the request. When the servlet is run,
the text is retrieved by the expression request.getParameter(“Text”)
and displayed beneath the button. Figure 3-1 shows this servlet in action.

Note: Expressions can also call methods that you add to the JSP with decla-
ration elements. You see examples of how to do that later in this chapter, in
the section “Using Declarations.”

Figure 3-1:
InputJSP
in action.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 637

Using Scriptlets638

Using Scriptlets
A scriptlet is a statement or group of statements that’s inserted directly into
the servlet at the point where the out.print statements that create the
surrounding HTML are generated. In short, scriptlets let you add your own
code to the code that renders the page.

Scriptlets follow this basic form:

<% statements... %>

For example, here’s a JSP named DateJSP.jsp that uses the DateFormat
class to format the date and display it on the page:

<html>
<%@ page import=”java.text.*” %>
<%@ page import=”java.util.*” %>
<head>
<title>Date JSP</title>

</head>
<body>
<h1>
Today is
<%

DateFormat df = DateFormat.getDateInstance(
DateFormat.FULL);

Date today = new Date();
String msg = df.format(today);
out.println(msg);

%>
</h1>
<h1>Have a nice day!</h1>

</body>
</html>

This JSP begins with a pair of page import directives to import the
java.text and java.util packages. Then, the following Java statements
are inserted right between the lines that generate the text Today is and
Have a nice day!:

DateFormat df
= DateFormat.getDateInstance(DateFormat.FULL);

Date today = new Date();
String msg = df.format(today);
out.println(msg);

These lines create a string variable named msg, and then use out.println
to write the string to the response output. As a result, the formatted date is
inserted between <h1>Today is </h1>and <h1>Have a nice day!
</h1>. Figure 3-2 shows a page generated by this JSP.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 638

Book VII
Chapter 3

Using Java Server
Pages

Using Scriptlets 639

Note: Scriptlets don’t have to add anything to the HTML output. In many
cases, they perform functions such as writing information to a file. For exam-
ple, suppose you have a JSP that gets data from a form that includes input
text fields named FirstName and LastName. Suppose also that you have a
class named CustFile with a static method named writeCustomer that
accepts a first and last name as parameters and writes them to a file. Here’s
a scriptlet that gets the first and last names and calls the writeCustomer
method to write the name to the customer file:

<% String firstName =
request.getParameter(“FirstName”);
String lastName = request.getParameter(“LastName”);
CustFile.writeCustomer(firstName, lastName);

%>

If you want, you can get pretty tricky with scriptlets. No rule says you have
to complete block statements such as if or while statements within a
single scriptlet. If you leave a block open at the end of a scriptlet, any HTML
that follows is generated by out.print statements that are included in the
block. The only restriction is that you must eventually end the block with
another scriptlet.

For example, here’s a scriptlet named LoopyJSP.jsp that repeats a line 12
times on the page by including the line in the block of a for loop:

<html>
<head>
<title>Can’t you see I’m trying to work here?</title>

</head>
<body>
<% for (int i = 0; i < 12; i++)

{
%>
All work and no play makes Jack a dull boy.

<%

}

Figure 3-2:
DateJSP
in action.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 639

Using Declarations640

%>
</body>

</html>

If you run this scriptlet, the page appears as shown in Figure 3-3.

Obviously, this sort of programming structure is prone to error. I suggest you
avoid it whenever you can.

Using Declarations
A declaration is code that is included in the servlet but outside of any method.
Declarations are used to create class variables or methods that can be used in
expressions, scriptlets, or other declarations. Declarations follow this format:

<%! statements... %>

You can place declarations anywhere you want in a JSP.

Here’s a servlet that declares a static class field named count that’s incre-
mented each time the page is displayed:

<html>
<%@ page import=”java.text.*” %>
<%@ page import=”java.util.*” %>

<head>
<title>Counter JSP</title>

</head>

Figure 3-3:
LoopyJSP
.jsp doing
its thing.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 640

Book VII
Chapter 3

Using Java Server
Pages

Using Declarations 641

<body>
<h1>
This JSP has been displayed <%= count++ %>
time.</h1>

</body>
</html>

<%!
private static int count = 1;
%>

In this servlet, the count variable is declared by the declaration element at
the end of the JSP document:

<%!
private static int count = 1;
%>

Then, the expression in the body of the document displays and increments
the count variable:

<%= count++ %>

When run, the JSP displays the number of times the page has been displayed
since the server started.

Here’s another example, this time declaring a method that’s called in an
expression:

<html>
<%@ page import=”java.text.*” %>
<%@ page import=”java.util.*” %>
<head>
<title>Date JSP</title>

</head>
<body>
<h1>
Today is <%= getDate() %></h1>

<h1>Have a nice day!</h1>
</body>

</html>

<%!
private String getDate()
{

DateFormat df =
DateFormat.getDateInstance(DateFormat.FULL);

Date today = new Date();
return df.format(today);

}
%>

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 641

Using Classes642

The declaration at the end of this document declares a method that returns
the current date as a string. Then, the expression <%= getDate() %> is
used to insert the date into the document.

Using Classes
Most JSP applications are complicated enough that they need additional
classes to keep their code manageable. For example, you want to create classes
that handle the application’s file or database I/O, and you may want to create
classes to represent business objects such as Products or Customers.

Setting up Tomcat to work with classes can be a little tricky, but it’s easy if
you follow these simple guidelines:

✦ Contain all classes in packages. Choose a nice package name for your
application, and then add a package statement to the beginning of each
class file.

✦ Store the class files (not necessarily the source files) in the WEB-INF\
classes\package\ directory beneath the directory the JSP pages are
stored in. For example, if you’re storing your JSP pages in c:\tomcat\
webapps\ROOT\Movies and the package name you’re using is movie,
save the class files in the following directory:

C:\tomcat\webapps\ROOT\Movies\WEB-INF\classes\movie

✦ If you prefer, you can save your class files in c:\tomcat\shared\
classes\package, where package is the name of your package.
Then, the classes are available to any JSP or servlet.

✦ Any JSP that uses one of your classes has to include a page directive
that imports the package. For example

<%@ page import=”movie.*” %>

✦ Add the directory you saved the packages in to your ClassPath environ-
ment variable. Note that you want to add the directory that contains the
packages, not the directory that contains the classes themselves. That’s
because the Java compiler uses the package name to find the package
directory. So, if you put your classes in the shared\classes directory,
you need to add c:\tomcat\shared\classes to your ClassPath.

To illustrate how a JSP can use classes, Figure 3-4 shows a JSP that lists the
movies in the movies.txt file.

The JSP file that displayed this page is shown in Listing 3-1. The JSP file itself
is stored in c:\tomcat\webapps\ROOT.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 642

Book VII
Chapter 3

Using Java Server
Pages

Using Classes 643

LISTING 3-1: LISTMOVIES.JSP

<!doctype html public “-//W3C//DTD HTML 4.0
Transitional//EN”>
<%@ page import=”movie.*” %> ➞ 3
<%@ page import=”java.util.*” %>
<html>
<head>
<title>List Movies: The Servlet</title>

</head>
<body>
<h1>Some of My Favorites</h1>
<h3>
<%= getMovieList() %> ➞ 12

</h3>
</body>

</html>

<%!
private String getMovieList() ➞ 18
{

String msg = “”;
ArrayList movies = MovieIO.getMovies(); ➞ 21
for (int i = 0; i < movies.size(); i++) ➞ 22
{

Movie m = (Movie)movies.get(i); ➞ 24
msg += m.year + “: “;
msg += m.title + “
”;

}
return msg; ➞ 28

}
%>

Following is an explanation of the key lines in this JSP:

➞ 3 The JSP includes two page directives that import the movie and
java.util packages.

➞12 An expression is used to call the getMovieList method, which
returns the list of movies to be displayed as a string.

➞18 The getMovieList method is defined in a declaration.

➞21 The getMovies method of the MovieIO class is called to retrieve
an ArrayList that contains all the movies from the movies.txt
file. Notice that I didn’t specify a type for the ArrayList class.
That’s because Tomcat can’t handle the syntax required for generic
types without extra configuration work.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 643

Using Classes644

➞22 An old-fashioned for loop is used rather than an enhanced for loop
to get the movies from the ArrayList. Again, this is to avoid using
Java 1.5 features.

➞24 The Movie objects are retrieved from the ArrayList and the year
and title is added to the msg string. Notice that the objects retrieved
from the ArrayList must be cast to Movie objects.

➞28 The finished msg string is returned.

Listing 3-2 shows the Movie class. There’s nothing special to note here,
other than the package statement that places the Movie class in the
movie package. The class file that’s compiled from this .java file is saved
in c:\tomcat\shared\classes\movie.

LISTING 3-2: MOVIE.JAVA

package movie;

public class Movie
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

Figure 3-4:
The
ListMovies
JSP in
action.

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 644

Book VII
Chapter 3

Using Java Server
Pages

Using Classes 645

this.title = title;
this.year = year;
this.price = price;

}
}

Finally, the MovieIO class is shown in Listing 3-3. This class reads the
movies from a text file. For a detailed explanation of how this class works,
jump forward to Book VIII, Chapter 2. Notice that this class, like the Movie
class, includes a package statement that dumps the MovieIO class into
the movie package. The class file compiled from this java file is saved in
c:\tomcat\shared\classes\movie.

LISTING 3-3: MOVIEIO.JAVA

package movie;

import java.io.*;
import java.util.*;

public class MovieIO
{

public static ArrayList<Movie> getMovies()
{

ArrayList<Movie> movies = new ArrayList<Movie>();
BufferedReader in =

getReader(“g:\\data\\movies.txt”);
Movie movie = readMovie(in);
while (movie != null)
{

movies.add(movie);
movie = readMovie(in);

}
return movies;

}

private static BufferedReader getReader(String name)
{

BufferedReader in = null;
try
{

File file = new File(name);
in = new BufferedReader(

new FileReader(file));
}
catch (FileNotFoundException e)
{

System.out.println(“The file doesn’t exist.”);

continued

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 645

Using Classes646

LISTING 3-3 (CONTINUED)

System.exit(0);
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return in;

}

private static Movie readMovie(BufferedReader in)
{

String title;
int year;
double price;
String line = “”;
String[] data;

try
{

line = in.readLine();
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}

if (line == null)
return null;

else
{

data = line.split(“\t”);
title = data[0];
year = Integer.parseInt(data[1]);
price = Double.parseDouble(data[2]);
return new Movie(title, year, price);

}
}

}

47_58961X bk07ch03.qxd 3/29/05 3:39 PM Page 646

Chapter 4: Using JavaBeans

In This Chapter
� What is a JavaBean?

� Creating your own JavaBean classes

� Using JavaBeans in JSP pages

� Creating a simple shopping cart with session scope

A JavaBean is a special type of Java class that you can use in several
interesting ways to simplify program development. Some beans, such

as Swing components, are designed to be visual components that you can
use in a GUI editor to quickly build user interfaces. Other beans, known as
Enterprise JavaBeans, are designed to run on special EJB servers and can
run the data access and business logic for large Web applications.

In this chapter, I look at a more modest type of JavaBean that’s designed to
simplify the task of building Java Server Pages. In a nutshell, you can use the
simple JavaBeans to build Java Server Pages without writing any Java code
in the JSP itself. JavaBeans let you access Java classes by using special
HTML-like tags in the JSP page.

What Is a JavaBean?
Simply put, a JavaBean is any Java class that conforms to the following rules:

✦ It must have an empty constructor. That is, a constructor that accepts
no parameters. If the class doesn’t have any constructors at all, it quali-
fies because the default constructor has no parameters. But if the class
has at least one constructor that accepts one or more parameters, it
must also have a constructor that has no parameters to qualify as a
JavaBean.

✦ It must have no public instance variables. All the instance variables
defined by the class must be either private or protected.

✦ It must provide methods named getProperty and setProperty to
get and set the value of any properties the class provides, except for
boolean properties that use isProperty to get the property value.
The term property isn’t really an official Java term. In a nutshell (or
should it be, in a beanpod?), a property is any value of an object that
can be retrieved by a get method (or an is method if the property is

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 647

Looking Over a Sample Bean648

boolean) or set with a set method. For example, if a class has a prop-
erty named lastName, it should use a method named getLastName
to get the last name and setLastName to set the last name. Or, if the
class has a boolean property named taxable, the method to set it is
called setTaxable, and the method to retrieve it is isTaxable.

Note that a class doesn’t have to have any properties to be a JavaBean,
but if it does, the properties have to be accessed according to this
naming pattern. Also, not all properties must have both a get and a
set accessor. A read-only property can have just a get accessor, and a
write-only property can have just a set accessor.

The property name is capitalized in the methods that access it, but the
property name itself isn’t. Thus, setAddress sets a property named
address, not Address.

That’s all there is to it. More advanced beans can also have other char-
acteristics that allow them to have a visual interface so they can be used
drag-and-drop style in an IDE. And some beans implement an interface that
allows their state to be written to an output stream so they can be re-created
later. But those features are optional; any class that meets the three criteria
stated here is a bean and can be used as a bean in JSP pages.

You’ve already seen plenty of classes that have methods with names like
getCount and setStatus. These names are part of a design pattern
called the Accessor pattern, which is covered in Book III, Chapter 2. Thus,
you’ve seen many examples of beans throughout this book, and you’ve prob-
ably written many bean classes yourself already.

Any class that conforms to this pattern is a bean. There’s no JavaBean
class you have to extend, nor is there a Bean interface you have to imple-
ment to be a bean. All a class has to do to be a bean is stick to the pattern.

Looking Over a Sample Bean
Listing 4-1 shows a sample JavaBean class named Triangle that calculates
the Pythagorean Theorem, which calculates the long side of a right triangle
if you know the length of the two short sides. This class defines three prop-
erties: sideA and sideB represent the two short sides of the triangle, and
sideC represents the long side. The normal way to use this bean is to first
use the setSideA and setSideB methods to set the sideA and sideB
properties to the lengths of the short sides, and then use the getSideC
method to get the length of the long side.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 648

Book VII
Chapter 4

Using JavaBeans

Looking Over a Sample Bean 649

In case you can’t remember way back to high school, the long side is equal
to the square root of the first short side squared plus the second short side
squared.

LISTING 4-1:THE TRIANGLE BEAN

package calculators; ➞ 1

public class Triangle
{

private double sideA; ➞ 5
private double sideB;

public Triangle() ➞ 8
{

this.sideA = 0.0;
this.sideB = 0.0;

}

public String getSideA() ➞ 14
{

return Double.toString(this.sideA);
}

public void setSideA(String value) ➞ 19
{

try
{

this.sideA = Double.parseDouble(value);
}
catch (Exception e)
{

this.sideA = 0.0;
}

}

public String getSideB() ➞ 31
{

return Double.toString(this.sideB);
}

public void setSideB(String value) ➞ 36
{

try
{

this.sideB = Double.parseDouble(value);
}
catch (Exception e)
{

this.sideB = 0.0;

continued

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 649

Looking Over a Sample Bean650

LISTING 4-1 (CONTINUED)

}
}

public String getSideC() ➞ 48
{

if (sideA == 0.0 || sideB == 0.0)
return “Please enter both sides.”;

else
{

Double sideC;
sideC = Math.sqrt(

(sideA * sideA) + (sideB * sideB));
return Double.toString(sideC);

}
}

}

The following paragraphs point out the highlights of this bean class:

➞ 1 As with most servlet classes, this bean is part of a package. In this
case, the package is named calculators. (I’m assuming that if you
need a bean to calculate the Pythagorean Theorem, you probably
want other beans to calculate derivatives, prime numbers, Demlo
numbers, and the like. You can put those beans in this package too.)

➞ 5 This class uses a pair of instance variables to keep track of the two
short sides. As per the rules for JavaBeans, these instance variables
are declared as private.

➞ 8 A constructor with no parameters is declared. (Strictly speaking, this
constructor doesn’t have to be explicitly coded here, because the
default constructor does the trick, and the two instance variables
are initialized to their default values of zero automatically.)

➞14 The getSideA method returns the value of the sideA property as a
string.

➞19 The setSideA method lets you set the value of the sideA property
with a string. This method uses a try/catch statement to catch the
exceptions that are thrown if the string can’t be parsed to a double.
If the string is invalid, the sideA property is set to zero.

➞31 The getSideB method returns the value of the sideB property as a
string.

➞36 The setSideB method sets the value of the sideB property from a
string. Again, a try/catch statement catches any exceptions and
sets the property to zero if the string can’t be parsed to a double.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 650

Book VII
Chapter 4

Using JavaBeans

Using Beans with JSP Pages 651

➞48 The getSideC method calculates the length of the long side, and
then returns the result as a string. However, if either of the values is
zero, the method assumes that the user hasn’t entered any data, so it
returns an error message instead. (That’s a reasonable assumption,
because none of the sides of a triangle can be zero.) Notice that there
is no setSideC method. As a result, sideC is a read-only property.

For an interesting anecdote about the Pythagorean Theorem and The Wizard
of Oz, refer to Book III, Chapter 2.

Using Beans with JSP Pages
To work with a bean in a JSP page, you add special tags to the page to create
the bean, set its properties, and retrieve its properties. Table 4-1 lists these
tags, and the following sections describe the details of using each one.

Table 4-1 JSP Tags for Working with Beans
Tag Description

<jsp:useBean id=”name” Establishes a reference to the bean and
class=”package.class” /> creates an instance if necessary. The name

specified in the id attribute is used by the
other tags to refer to the bean.

<jsp:getProperty name=”name” Retrieves the specified property from the
property=”property” /> bean identified by the name attribute.

<jsp:setProperty name=”name” Sets the specified property to the value
property=”property” value= specified in the value attribute.
”value” />

<jsp:setProperty name=”name” Sets the specified property to the value of the
property=”property” param= parameter specified in the param attribute.
”parameter” /> The parameter is usually the name of a

form field.

<jsp:setProperty name= Sets all the properties defined by the bean to
”name” property=”* “ /> corresponding parameter values, provided a

parameter with the correct name exists.

Creating bean instances
To include a bean in a JSP page, you add a special jsp:useBean tag to the
page. In its simplest form, this tag looks like this:

<jsp:useBean id=”name” class=”package.Class” />

The id attribute provides the name that you use elsewhere in the JSP to
refer to the bean, and the class attribute provides the name of the class,

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 651

Using Beans with JSP Pages652

qualified with the package name. For example, here’s a jsp:useBean tag to
use the Triangle bean:

<jsp:useBean id=”triangle” class=”calculators.Triangle”
/>

The jsp:useBean tag creates an instance of the bean by calling the empty
constructor if an instance doesn’t already exist. However, if the bean already
exists, the existing instance is used instead.

Here are a few additional things you should know about the jsp:useBean tag:

✦ The jsp:useBean tag can appear anywhere in the JSP document, but it
must appear before any other tag that refers to the bean.

✦ This and all bean tags are case sensitive, so be sure to code them
exactly as shown. <jsp:usebean.../> won’t work.

✦ If Tomcat complains that it can’t find your bean when you run the JSP,
double-check the package and class name — they’re case sensitive too —
and make sure the bean is stored in a directory under WEB-INF\classes
that’s named the same as the package. For example, store the Triangle
bean’s class file in WEB-INF\classes\calculators.

✦ The jsp:useBean element can have a body that contains
jsp:setProperty tags that initialize property values. Then, the
element is formed more like normal HTML, with proper start and end
tags. For example:

<jsp:useBean id=”t1” class=”calculators.Triangle” >
<jsp:setProperty name=”t1” property=”sideA”

value=”3.0” >
<jsp:setProperty name=”t1” property=”sideB”

value=”3.0” >
</jsp:useBean>

Don’t worry about the details of the jsp:setProperty tags just yet.
Instead, just make a note that they’re executed only if a new instance of
the bean is actually created by the jsp:useBean tag. If an instance of
the bean already exists, the jsp:setProperty tags are not executed.

✦ The jspuseBean tag also has a scope attribute, which I explain later
in this chapter, in the section “Scoping Your Beans.”

Getting property values
To get the value of a bean’s property, you use the jsp:getProperty tag.
The form of this tag is straightforward:

<jsp:getProperty name=”name” property=”property” />

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 652

Book VII
Chapter 4

Using JavaBeans

Using Beans with JSP Pages 653

For example, here’s a tag that gets the sideC property from the Triangle
bean created in the previous section:

<jsp:getProperty name=”triangle” property=”sideC” />

The name attribute must agree with the value you specify in the id attrib-
ute in the jsp:useBean tag that created the bean. And the property
attribute is used to determine the name of the getter method — in this case,
getSideC.

Remember to begin the property name with a lowercase letter. If you specify
property=”SideC”, you get an error message from the server when you
run the page.

In most cases, you use jsp:getProperty to insert the value of a property
into a page. However, you can also use it to specify the value of an attribute
for some other tag in the JSP document. For example:

<input type=”text” name=”sideA”
value=”<jsp:getProperty name=”triangle”

property=”sideA” />” >

Here, the value of the sideA property is retrieved and used for the value
attribute of an input field named sideA. As a result, when this input field is
sent to the browser, its initial value is the value from the Triangle bean.

Be extra careful to match up the quotation marks and the open and close
brackets for the tags. In this example, the entire jsp:getProperty tag is
enclosed within the quotation marks that indicate the value of the input field’s
value attribute. The right bracket that appears at the very end closes the
input element itself.

Setting property values
To set a property value, you can use one of several variations of the jsp:
setProperty tag. If you want to set the property to a literal string, you
write the tag like this:

<jsp:setProperty name=”triangle”
property=”sideA”
value=”4.0” />

Here, the name attribute must match up to the id attribute from the jsp:
useBean tag that created the bean, the property attribute is used to
determine the name of the setter method (in this case, setSideA), and
the value attribute provides the value to be set.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 653

Using Beans with JSP Pages654

I put this tag on three lines only because it’s too long to fit within the margins
of this page on one line. In actual practice, most JSP developers string these
tags out on a single line unless they get really long, which doesn’t happen
often.

Although this form of the jsp:setProperty tag is useful, the param form
is more useful. It lets you set the property to the value entered by the user
into a form field or passed to the JSP by way of a query string. For example,
if your JSP contains a form that has an input field named FirstSide, you
can assign that field’s value to the sideA property like this:

<input type=”text” name=”FirstSide” >
<jsp:setProperty name=”triangle”

property=”sideA”
param=”FirstSide” />

Here, if the user enters a value into the FirstSide field, that value is
assigned to the bean’s sideA property.

In the previous example, I purposely used a name other than sideA for the
input field so you wouldn’t be confused by the fact that the property and
param attributes specify the same value. In actual practice, you usually give
the input field the same name as the property it’s associated with, like this:

<input type=”text” name=”sideA” >
<jsp:setProperty name=”triangle”

property=”sideA”
param=”sideA” />

If your input fields have names that are identical to the property names, you
can assign all of them to their corresponding properties with one tag, like this:

<jsp:setProperty name=”triangle” property=”*” />

Here, the asterisk (*) in the property attribute indicates that all properties
that have names identical to form fields (or query string parameters) are
automatically assigned. For forms that have a lot of fields, this form of the
jsp:setProperty tag can save you a lot of coding.

A JSP page that uses a bean
So that you can see how these tags work together, Listing 4-2 shows a com-
plete JSP page that uses the bean that was presented in Listing 4-1. This page
displays two text input fields and a button. When the user enters the lengths
of a triangle’s two short sides in the fields and clicks the button, the page
displays the sideC property of the bean to show the length of the third
side. Figure 4-1 shows how this page appears when it is run.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 654

Book VII
Chapter 4

Using JavaBeans

Using Beans with JSP Pages 655

LISTING 4-2:THE TRIANGLE.JSP PAGE

<html>
<jsp:useBean id=”triangle” ➞ 2

class=”calculators.Triangle” />
<jsp:setProperty name=”triangle” property=”*” /> ➞ 4
<head>
<title>Right Triangle Calculator</title>

</head>
<body>
<h1>The Right Triangle Calculator</h1>
<form action=”Triangle.jsp” method=”post”> ➞ 10
Side A:
<input type=”text” name=”sideA” ➞ 12

value=”<jsp:getProperty
name=”triangle”
property=”sideA” />” >

Side B:
<input type=”text” name=”sideB” ➞ 18

value=”<jsp:getProperty
name=”triangle”
property=”sideB” />” >

Side C:
<jsp:getProperty name=”triangle” ➞ 24

property=”sideC” />

<input type=”submit” value=”Calculate” > ➞ 27

</form>
</body>

</html>

Figure 4-1:
The
Triangle.jsp
page
displayed in
a browser.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 655

Scoping Your Beans656

The following paragraphs explain the key lines in this JSP:

➞ 2 The jsp:useBean tag creates an instance of the calculators.
Triangle bean and names it triangle.

➞ 4 The jsp:setProperty tag sets the sideA and sideB properties
to the corresponding input fields named sideA and sideB.

➞10 The form tag creates a form that posts back to the same JSP file
using the HTTP POST method.

➞12 The first of two input text fields. This one is named sideA, and its
initial value is set to the value of the bean’s sideA property.

➞18 The second input text field is named sideB. Its initial value is set to
the value of the bean’s sideB property.

➞24 This line is where the sideC property is retrieved, thus calculating the
length of side C of the triangle based on the length of sides A and B.
The result is simply inserted into the document.

➞27 The Submit button submits the form so the Triangle bean can do
its thing.

Scoping Your Beans
The scope of a JavaBean indicates how long the bean is kept alive. You spec-
ify the scope by using the scope attribute on the jsp:useBean tag. The
scope attribute can have any of the four values listed in Table 4-2.

Table 4-2 Scope Settings
Scope Explanation

page The bean is associated with the current page. This means that every
time the user requests the page, a new bean is created. Then, when
the page is sent back to the browser, the bean is destroyed. Thus,
each round trip to the server creates a new instance of the bean.

request Similar to page, but the bean is available to other pages that are
processed by the same request. This scope is useful for applications
that use several different servlets or JSPs for a single request.

session The bean is associated with a user’s session. The first time the user
requests a page from the application, a bean is created and associ-
ated with the user. Then, the same bean is used for other subsequent
requests by the same user.

application A single copy of the bean is used by all users of the application.

The default scope is page, which means that the bean is created and
destroyed each time the user requests a new page. However, session scope

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 656

Book VII
Chapter 4

Using JavaBeans

Scoping Your Beans 657

can be very useful for Web applications that need to keep track of information
about a user from one page to the next. The best known example of that is a
shopping cart, in which a user can select items he or she wants to purchase.
The contents of the shopping cart can be kept in a session bean.

A shopping cart application
Figure 4-2 shows a simple shopping cart application in which the user has the
option to purchase three of my recent books by clicking one of the three but-
tons. When the user clicks a button, an item is added to the shopping cart. If
the user has already added the book to the cart, the quantity is increased by
one. In the figure, the user has clicked the button for Networking All-in-One
Desk Reference For Dummies twice and Networking For Dummies once.

The following paragraphs describe the key techniques that make this shop-
ping cart work:

✦ The shopping cart itself is a JavaBean that has just two public methods:
setBook, which adds a book to the shopping cart, and getList, which
returns a string that shows the shopping cart items nicely formatted in
an HTML table.

✦ The shopping cart class contains an inner class that represents a Book
object. To keep the application simple, the Book class has the three titles
hard-coded into it. In a real shopping cart program, you use a file or data-
base instead of hard-coding these values.

Figure 4-2:
A super
simple
shopping
cart
application.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 657

Scoping Your Beans658

✦ The list of products that appears at the top of the page is actually three
separate forms, one for each product. Each of these forms specifies a
parameter passed via a query string to the JSP on the server. The name
of this parameter is book, and its value is the code of the book the user
ordered. This parameter is bound to the book property of the shopping
cart bean, so when the user clicks one of the buttons, the setBook
method is called with the value passed via the book parameter. That’s
how the shopping cart knows which book the user ordered.

✦ Beneath the list of books, the JSP uses a jsp:getProperty tag to get
the list property, which displays the shopping cart.

The shopping cart page
Listing 4-3 shows the JSP for the shopping cart page.

LISTING 4-3: BUYMYBOOK.JSP

<html>
<jsp:useBean id=”cart” class=”books.BookCart” ➞ 2

scope=”session”/>
<jsp:setProperty name=”cart” property=”*” /> ➞ 4
<head>
<title>Buy My Books!</title>

</head>
<body>
<h1>Which of my books do you want to buy?</h1>
<form action=”BuyMyBook.jsp?book=netfd” ➞ 10

method=”post”>
<input type=”submit” value=”Buy” >
Networking For Dummies

</form>
<form action=”BuyMyBook.jsp?book=netaio” ➞ 15

method=”post”>
<input type=”submit” value=”Buy” >
Networking All-in-One Desk Reference For Dummies

</form>
<form action=”BuyMyBook.jsp?book=wordaio” ➞ 21

method=”post”>
<input type=”submit” value=”Buy” >
Word 2003 All-In-One Desk Reference For Dummies

</form>

<h2>Your cart contains:</h2>
<jsp:getProperty name=”cart” property=”list” /> ➞ 28

</body>
</html>

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 658

Book VII
Chapter 4

Using JavaBeans

Scoping Your Beans 659

The following paragraphs describe the JSP’s most important lines:

➞ 2 The jsp:useBean tag loads the books.BookCart JavaBean, speci-
fying that it has session scope. Thus, the bean isn’t deleted after each
page is requested. Instead, the user works with the same bean instance
for his or her entire session.

➞ 4 The parameter properties are set. The first time the user displays the
BuyMyBook.jsp page, there are no parameters, so this method
doesn’t do anything. But when the user clicks one of the three form
buttons, a book parameter is added to the end of the URL that’s
posted to the server, so the cart’s setBook method is called. This
causes one copy of the selected book to be added to the cart.

➞10 This is the form for the first book. Each book has its own form, with a
Submit button labeled “Buy” and a book title. The action attribute
specifies that when the Submit button is clicked, the form is posted
to BuyMyBook.jsp with the book parameter set to netfd.

➞15 The second book form. This one specifies netaio as the book
parameter value.

➞21 The form for the third book. This one specifies wordaio as the value
of the book parameter.

➞28 After the forms for each of the books, a jsp:getProperty tag calls
the getList method of the bean. This returns a string that contains
an HTML table that displays the current contents of the shopping cart.

The BookCart JavaBean
Now that you’ve seen the JSP for the shopping cart application, take a look
at the Java code for the BookCart bean. It’s shown in Listing 4-4.

LISTING 4-4:THE BOOKCART JAVABEAN

package books; ➞ 1

import java.util.ArrayList;
import java.text.NumberFormat;

public class BookCart
{

private ArrayList<Book> cart; ➞ 8

private NumberFormat cf
= NumberFormat.getCurrencyInstance();

public BookCart() ➞ 13
{

cart = new ArrayList<Book>();

continued

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 659

Scoping Your Beans660

LISTING 4-4 (CONTINUED)

}

public void setBook(String code) ➞ 18
{

boolean found = false;
for (Book b : cart)

if (b.getCode().equals(code))
{

b.addQuantity(1);
found = true;

}
if (!found)

cart.add(new Book(code));
}

public String getList() ➞ 31
{

String list = “<table border=2>”;
list +=”<tr><td>Title</td><td>Qty</td>”

+ “<td>Price</td><td>Total</td></tr>”;
double total = 0.0;
for (Book b : cart)
{

list += “<tr><td>” + b.getTitle() + “</td>”
+ “<td>” + b.getQuantity() + “</td>”
+ “<td>” + cf.format(b.getPrice()) + “</td>”
+ “<td>” + cf.format(b.getTotal()) + “</td>”
+ “</tr>”;

total += b.getTotal();
}
list +=”<tr><td></td><td></td><td>Total:</td>”

+ “<td>” + cf.format(total) + “</td></tr>”;
list += “</table>”;
return list;

}

private class Book ➞ 52
{

private String code; ➞ 54
private int quantity;

public Book(String code) ➞ 57
{

this.code = code;
this.quantity = 1;

}

public String getCode() ➞ 63
{

return this.code;
}

public String getTitle() ➞ 68
{

if (code.equals(“netfd”))

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 660

Book VII
Chapter 4

Using JavaBeans

Scoping Your Beans 661

return “Networking For Dummies”;
else if (code.equals(“netaio”))

return “Networking All-in-One Desk “
+ “Reference For Dummies”;

else if (code.equals(“wordaio”))
return “Word 2003 All-in-One Desk “

+ “Reference For Dummies”;
else

return “Unknown book”;
}

public double getPrice() ➞ 82
{

if (code.equals(“netfd”))
return 24.99;

else if (code.equals(“netaio”))
return 34.99;

else if (code.equals(“wordaio”))
return 29.99;

else
return 0.0;

}

public int getQuantity() ➞ 94
{

return this.quantity;
}

public void addQuantity(int qty) ➞ 99
{

this.quantity += qty;
}

public double getTotal() ➞ 104
{

return this.quantity * this.getPrice();
}

}
}

The following paragraphs describe the bean’s high points:

➞ 1 The BookCart class lives in the books package.

➞ 8 The shopping cart itself is kept inside the BookCart bean as a pri-
vate array list of Book items.

➞13 To be a JavaBean, you need a no-parameter constructor. This one
simply initializes the cart array list.

➞18 The setBook method is called to add a book to the shopping cart.
The book’s code is passed as a parameter. This method first looks at
all the books in the array list to see if the user has already added a
book with this code. If so, that book’s addQuantity method is called
to increase the order quantity for that book by 1. If not, a new book
with the specified code is created and added to the cart.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 661

Scoping Your Beans662

➞ 31 This method builds a string that contains all the books in the cart
presented as an HTML table. If you’re not familiar with HTML tables,
all you really need to know is that the <tr> and </tr> tags mark the
start and end of each row, and the <td> and </td> tags mark the start
and end of each cell within the row. The table includes one row for
each book in the cart. Each row contains cells for the title, quantity,
price, and total. If you compare the code in this method with the
actual table shown in Figure 4-2, you can get an idea of the HTML
that’s actually created by this method.

Notice also that the loop that builds each table row keeps a running
total for the entire shopping cart, which is displayed in a separate
row at the bottom of the table. Also, a row of headings is displayed
at the start of the table.

➞ 52 The Book class is defined as an inner class so it can represent books
in the array list.

➞ 54 The Book class only stores two items of information for each book:
the book code and the quantity, which represents the number of
books ordered by the user. The other values are calculated by the
methods that return them.

➞ 57 The constructor accepts a book code and initializes the instance
fields. Notice that the quantity is initialized to 1.

➞ 63 The getCode method simply returns the code variable.

➞ 68 The getTitle method returns one of three book titles depending
on the code. If the code is not one of the three pre-defined codes,
Unknown book is returned.

➞ 82 Likewise, the getPrice method returns one of three prices depend-
ing on the code. If the code is not one of the three allowable codes,
the book is free!

➞ 94 The getQuantity method just returns the quantity variable.

➞ 99 The addQuantity method adds a value to the quantity variable.

➞104 The getTotal method calculates the total by multiplying the price
by the quantity.

48_58961X bk07ch04.qxd 3/29/05 3:38 PM Page 662

Book VIII

Files and Databases

49_58961X pt08.qxd 3/29/05 3:37 PM Page 663

Contents at a Glance
Chapter 1: Working with Files ..665

Chapter 2: Using File Streams ..679

Chapter 3: Database for $100, Please..703

Chapter 4: Using JDBC to Connect to a Database ..717

Chapter 5: Working with XML..733

49_58961X pt08.qxd 3/29/05 3:37 PM Page 664

Chapter 1: Working with Files

In This Chapter
� Examining the File class

� Understanding command-line parameters

� Introducing the JFileChooser class

In this chapter, you discover the ins and outs of working with files and
directories. I don’t show you how to read or write files, but you do find

out how to find files on the disk, how to create, delete, or rename files, and
how to work with directories. You find out how to use the Swing file chooser
dialog box that lets you add filing capabilities to Swing applications. And
finally, you find out how to retrieve parameters from the command line, a
useful technique because command-line parameters are often used to pass
file information to console programs.

Using the File Class
The File class is your key to processing files and directories. A File
object represents a single file or directory. Note that the file or directory
doesn’t actually have to exist on disk. Instead, the File object represents
a file that may or may not actually exist.

Java uses a single class to represent both files and directories because a
directory is actually nothing more than a special type of file. I suppose the
designers of Java could have created a separate Directory class to repre-
sent directories, but using one class to represent both has its advantages.

The File class is in the java.io package, so any program that uses it
should import java.io.File or java.io.*.

Table 1-1 lists the main constructors and methods of the File class.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 665

Using the File Class666

Table 1-1 The File Class
Constructor Description

File(String pathname) Creates a file with the specified pathname.

Field Description

String separator The character used to separate components of a
pathname on this system; usually \ or /.

Method Description

boolean canRead() Determines whether the file can be read.

boolean canWrite() Determines whether the file can be written.

boolean createNewFile() Creates the file on disk if it doesn’t already exist.
Returns true if the file was created, false if
the file already existed. Throws IOException.

boolean delete() Deletes the file or directory. Returns true if the
file was successfully deleted.

boolean exists() Returns true if the file exists on disk, false if
the file doesn’t exist on disk.

String getCanonicalPath() Returns the complete path to the file, including
the drive letter if run on a Windows system.
Throws IOException.

String getName() Gets the name of this file.

String getParent() Gets the name of the parent directory of this file
or directory.

File getParentFile() Gets a File object representing the parent
directory of this file or directory.

boolean isDirectory() Returns true if this File object is a directory,
false if it is a file.

boolean isFile() Returns true if this File object is a file,
false if it is a directory.

boolean isHidden() Returns true if this file or directory is marked by
the operating system as hidden.

long lastModified() Returns the time the file was last modified,
expressed in milliseconds since 0:00:00 AM,
January 1, 1970.

long length() Returns the size of the file in bytes.

String[] list() Returns an array of String objects with the
name of each file and directory in this directory.
Each string is a simple filename, not a complete
path. If this File object is not a directory,
returns null.

File[] listFiles() Returns an array of File objects representing
each file and directory in this directory. If this
File object is not a directory, returns null.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 666

Book VIII
Chapter 1

W
orking w

ith Files

Using the File Class 667

Method Description

static File[] listRoots() Returns an array that contains a File object for
the root directory of every file system available
on the Java runtime. Unix systems usually have
just one root, but Windows systems have a root
for each drive.

boolean mkdir() Creates a directory on disk from this File
object. Returns true if the directory was suc-
cessfully created.

boolean mkdirs() Creates a directory on disk from this File object,
including any parent directories that are listed in
the directory path but don’t already exist. Returns
true if the directory was successfully created.

boolean renameTo(File dest) Renames the File object to the specified desti-
nation File object. Returns true if the rename
was successful.

boolean setLastModified Sets the last modified time for the File object.
(long time) Returns true if the time was successfully set.

boolean setReadOnly() Marks the file as read-only. Returns true if the
file was successfully marked.

String toString() Returns the pathname for this file or directory as
a string.

Creating a File object
To create a File object, you call the File constructor, passing a string rep-
resenting the filename of the file as a parameter. For example:

File f = new File(“hits.log”);

Here, the file’s name is hits.log, and it lives in the current directory, which
is usually the directory from which the Java Virtual Machine was started.

If you don’t want the file to live in the current directory, you can supply a
complete pathname in the parameter string. However, you’re now entering
one of the few areas of Java that becomes system-dependent, because the
way you write pathnames depends on the operating system you’re using. For
example, c:\logs\hits.log is a valid pathname for Windows systems,
but not on Unix or Macintosh systems, which don’t use drive letters and use
forward slashes instead of backslashes to separate directories.

If you hard-code pathnames as string literals, remember that the backslash
character is the escape character for Java strings. Thus, you must code two
slashes to get one slash into the pathname. For example, you must code the
path c:\logs\hits.log like this:

String path = “c:\\logs\\hits.log”;

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 667

Using the File Class668

Creating a file
Creating a File object doesn’t create a file on disk. Instead, it creates an
in-memory object that represents a file or directory that may or may not
actually exist on disk. To find out if the file or directory exists, you can use
the exists method. For example:

File f = new File(path);
if (!f.exists())

System.out.println(“The input file does not
exist!”);

Here, an error message is displayed on the console if the file doesn’t exist.

To create a new file on disk, first create a File object with the filename you
want to use. Then, use the createNewFile method, like this:

File f = new File(path);
if (f.createNewFile())

System.out.println(“File created.”);
else

System.out.println(“File could not be created.”);

Note that the createNewFile method returns a boolean that indicates
whether or not the file was successfully created. If the file already exists,
createNewFile returns false, so you don’t have to use the exists
method before you call createNewFile.

When you create a file with the createNewFile method, the file doesn’t
have anything in it. If you actually want the file to contain data, you can use
the classes I describe in the next chapter to write information to the file.

Getting information about a file
Several of the methods of the File class simply return information about a
file or directory. For example, you can find out if the File object represents
a file or directory by calling its isDirectory or isFile method. Other
methods let you find out if a file is read-only or hidden, or retrieve the file’s
age and when it was last modified.

You can get the name of the file represented by a File object in several pop-
ular ways:

✦ To get just the filename, use the getName method. This method returns
a string that includes just the filename, not the complete path.

✦ To get the path that was specified to create the File object, (such as
\logs\hit.log), use the toString method instead.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 668

Book VIII
Chapter 1

W
orking w

ith Files

Using the File Class 669

✦ To get the full path for a file — that is, the complete path including the
drive letter (for Windows systems) and all the directories and subdirec-
tories leading to the file — use the getCannonicalPath method.
This method removes any system-dependent oddities such as relative
paths, dots (which represent the current directory), and double-dots
(which represent the parent directory) to get the file’s actual path.

Getting the contents of a directory
A directory is a file that contains a list of other files or directories. Because
a directory is just a special type of file, it is represented by an object of the
File class. You can tell if a particular File object is a directory by calling
its isDirectory method. If this method returns true, the File is a direc-
tory. You can then get an array of all the files contained in the directory by
calling the listFiles method.

For example, the following code snippet lists the name of every file in a
directory whose pathname is stored in the String variable path:

File dir = new File(path);
if (dir.isDirectory())
{

File[] files = dir.listFiles();
for (File f : files)

System.out.println(f.getName());
}

The following snippet is a little more selective: It lists only files, not subdi-
rectories, and it doesn’t list hidden files:

File dir = new File(path);
if (dir.isDirectory())
{

File[] files = dir.listFiles();
for (File f : files)
{

if (f.isFile() && !f.isHidden())
System.out.println(f.getName());

}
}

Directory listings are especially well suited to recursive programming because
each File object returned by the listFiles method may be another direc-
tory that itself has a list of files and directories. For an explanation of recursive
programming along with an example that lists directories recursively, see
Book V, Chapter 4.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 669

Using the File Class670

Renaming files
You can rename a file by using the renameTo method. This method uses
another File object as a parameter that specifies the file you want to
rename the current file to. It returns a boolean value that indicates whether
or not the file was successfully renamed.

For example, the following statements change the name of a file named
hits.log to savedhits.log:

File f = new File(“hits.log”);
if (f.renameTo(new File(“savedhits.log”)))

System.out.println(“File renamed.”);
else

System.out.println(“File not renamed.”);

Depending on the capabilities of the operating system, the renameTo method
can also move a file from one directory to another. For example, this code
moves the file hits.log from the folder logs to the folder savedlogs:

File f = new File(“logs\\hits.log”);
if (f.renameTo(new File(“savedlogs\\hits.log”)))

System.out.println(“File moved.”);
else

System.out.println(“File not moved.”);

Always test the return value of the renameTo method to make sure the file
was successfully renamed.

Deleting a file
To delete a file, create a File object for the file, and then call the delete
method. For example:

File f = new File(“hits.log”);
if (f.delete())

System.out.println(“File deleted.”);
else

System.out.println(“File not deleted.”);

If the file is a directory, the directory must be empty to be deleted.

With some recursive programming, you can create a method that deletes a
non-empty directory. The method looks something like this:

private static void deleteFile(File dir)
{

File[] files = dir.listFiles();
for (File f : files)
{

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 670

Book VIII
Chapter 1

W
orking w

ith Files

Using Command-Line Parameters 671

if (f.isDirectory())
deleteFile(f);

else
f.delete();

}
dir.delete();

}

Then, to delete a folder named folder1 along with all its files and subdirec-
tories, call the deleteFile method:

deleteFile(new File(“folder1”);

This feature is extremely dangerous to add to a program! Don’t use it without
first carefully testing it. If you accidentally delete all the files on your hard
drive, don’t blame me.

Using Command-Line Parameters
Ever since Book I, Chapter 1, I’ve used this construction in every Java pro-
gram presented so far:

public static void main(String[] args)

It’s high time you find out what the args parameter of the main method is
used for. The args parameter is an array of strings that lets you access any
command-line parameters that are specified by the user when he or she runs
your program.

For example, suppose you run a Java program named Test from a command
program like this:

C:\>java Test the quick brown fox

In this case, the Java program is passed four parameters: the, quick,
brown, and fox. You can access these parameters via the args array.

Suppose the main method of the Test class is written like this:

public static void main(String[] args)
{

for (String s : args)
System.out.println(s);

}

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 671

Choosing Files in a Swing Application672

Then, the program displays the following output on the console when run
with the command shown a few paragraphs back:

the
quick
brown
fox

Command-line parameters are useful in Java programs that work with files as
a way to pass pathnames to the program. For example, here’s a program that
lists all the files in a directory passed to the program as a parameter:

import java.io.*;

public class ListDirectory
{

public static void main(String[] args)
{

String path = args[0];
File dir = new File(path);
if (dir.isDirectory())
{

File[] files = dir.listFiles();
for (File f : files)
{

System.out.println(f.getName());
}

}
else

System.out.println(“Not a directory.”);
}

}

Choosing Files in a Swing Application
For the most part, you don’t want to mess around with command-line parame-
ters in Swing applications. Instead, you want to use the JFileChooser class
to let users pick the files they want to work with. This class lets you display
Open and Save dialog boxes similar to the ones you’ve seen in other GUI appli-
cations with just a few lines of code.

For example, Figure 1-1 shows an Open dialog box created with just these
two lines of code:

JFileChooser fc = new JFileChooser();
int result = fc.showOpenDialog(this);

This code appears in a frame class that extends the JFrame class, so the
this keyword in the showOpenDialog call refers to the parent frame.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 672

Book VIII
Chapter 1

W
orking w

ith Files

Choosing Files in a Swing Application 673

The result returned by the showOpenDialog method indicates whether
the user chose to open a file or click Cancel. And the JFileChooser class
provides a handy getSelectedFile method you can use to get a File
object for the file selected by the user.

The important thing to remember about the JFileChooser class is that it
doesn’t actually open or save the file selected by the user. Instead, it just
returns a File object for the file the user selects. Your program then has
the task of opening or saving the file.

Of course, the JFileChooser class has many additional methods you can
use to tailor its appearance and behavior just about any way imaginable.
Table 1-2 lists the commonly used constructors and methods of this power-
ful class.

Table 1-2 The JFileChooser Class
Constructor Description

JFileChooser() Creates a file chooser that begins at
the user’s default directory. On
Windows systems, this is usually My
Documents.

JFileChooser(File file) Creates a file chooser that begins at
the location indicated by the file
parameter.

JFileChooser(String path) Creates a file chooser that begins at
the location indicated by the path
string.

(continued)

Figure 1-1:
An Open
dialog box
displayed
by the JFile
Chooser
class.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 673

Choosing Files in a Swing Application674

Table 1-2 (continued)
Method Description

void addChoosableFileFilter Adds a file filter to the chooser.
(FileFilter filter)

File getSelectedFile() Returns a File object for the file
selected by the user.

File[] getSelectedFiles() Returns an array of File objects for
the files selected by the user if the file
chooser allows multiple selections.

void setAcceptAllFileFilterUsed If false, removes the All Files filter from
(boolean value) the file chooser.

void setApproveButtonText Sets the text for the Approve button.
(String text)

void setDialogTitle(String title) Sets the title displayed by the file
chooser dialog box.

void setFileHidingEnabled If true, hidden files are not shown.
(boolean value)

void setMultiSelectionEnabled If true, the user can select more than
(boolean value) one file.

int showDialog(Component Displays a custom dialog with the
parent, String text) specified text for the Accept

button. The return values are
JFileChooser.CANCEL_
OPTION, APPROVE_OPTION, and
ERROR_OPTION.

void setFileSelectionMode Determines whether the user can
(int mode) select files, directories, or both. The

parameter can be specified as
JFileChooser.FILES_ONLY,
DIRECTORIES_ONLY, or
FILES_AND_DIRECTORIES.

int showOpenDialog(Component Displays an Open dialog box. The
parent) return values are the same as for the

showDialogmethod.

int showSaveDialog(Component Displays a Save dialog box. The return
parent) values are the same as for the

showDialogmethod.

Creating an Open dialog box
As you’ve just seen, you can create an Open dialog box with just a few
lines of code. First, you call the JFileChooser constructor to create a
JFileChooser instance. Then, you call the showOpenDialog method
to display an Open dialog box.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 674

Book VIII
Chapter 1

W
orking w

ith Files

Choosing Files in a Swing Application 675

If you don’t pass a parameter to the constructor, the file chooser starts in
the user’s default directory, which on most systems is the operating system’s
current directory. If you want to start in some other directory, you have two
options:

✦ You can create a File object for the directory, and then pass the File
object to the constructor.

✦ You can just pass the pathname for the directory you want to start in to
the constructor.

The JFileChooser class also includes methods that let you control the
appearance of the chooser dialog box. For example, you can use the
setDialogTitle method to set the title (the default is Open), and you
can use the setFileHidingEnabled method to control whether or not
hidden files are shown. If you want to allow the user to select more than one
file, use the setMultiSelectionEnabled method.

A setFileSelectionMode method lets you specify whether users can
select files, directories, or both. The options for this method need a little
explanation:

✦ JFileChooser.FILES_ONLY: With this option, which is the default,
the user can only choose files with the file chooser dialog box. The user
can navigate through directories in the file chooser dialog box, but can’t
actually select a directory.

✦ JFileChooser.DIRECTORIES_ONLY: With this option, the user can
select only directories, not files. One common use for this option is to let
the user choose a default location for files used by your application with-
out actually opening a file.

✦ JFileChooser.FILES_AND_DIRECTORIES: This option lets the user
select either a file or a directory. For most applications, you want the
user to pick either a file or a directory, but not both. So you probably
won’t use this option much.

In addition to an Open dialog box, you can also display a Save dialog box by
calling the showSaveDialog method. A Save dialog box is similar to an
Open dialog box, but has different default values for the title and the text
shown on the Approve button. Otherwise, these dialog boxes work pretty
much the same.

Getting the selected file
The file chooser dialog box is a modal dialog box, which means that after you
call the showOpenDialog method, your application is tied up until the user
closes the file chooser dialog box by clicking the Open or Cancel buttons.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 675

Choosing Files in a Swing Application676

You can find out which button the user clicked by inspecting the value
returned by the showOpenDialog method:

✦ If the user clicked Open, this value is
JFileChooser.APPROVE_OPTION.

✦ If the user clicked Cancel, the return value is
JFileChooser.CANCEL_OPTION.

✦ If an I/O or other error occurs, the return value is
JFileChooser.ERROR_OPTION.

Assuming the showOpenDialog method returns APPROVE_OPTION, you
can then use the getSelectedFile method to get a File object for the
file selected by the user. Then, you can use this File object elsewhere in
the program to read or write data.

Putting it all together, then, here’s a method that displays a file chooser dialog
box and returns a File object for the file selected by the user. If the user
cancels or an error occurs, null is returned:

private File getFile()
{

JFileChooser fc = new JFileChooser();
int result = fc.showOpenDialog(null);
File file = null;
if (result == JFileChooser.APPROVE_OPTION)

file = fc.getSelectedFile();
return file;

}

You can call this method from an action event handler when the user clicks a
button, selects a menu command, or otherwise indicates that he or she wants
to open a file.

Using file filters
The file chooser dialog box includes a Files of Type drop-down list filter
that the user can choose to control what types of files are displayed by the
chooser. By default, the only item available in this drop-down list is All Files,
which doesn’t filter the files at all. If you want to add another filter to this list,
you must first create a class that extends the FileFilter abstract class.
Then, you pass an instance of this class to the addChoosableFileFilter
method.

Table 1-3 lists the methods of the FileFilter class. Fortunately, it has
only two methods you need to implement. This class is in the javax.swing.
filechooser package.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 676

Book VIII
Chapter 1

W
orking w

ith Files

Choosing Files in a Swing Application 677

For some reason, the Java designers gave this class the same name as an
interface that’s in the java.io package, which is also frequently used in
applications that work with files. As a result, you need to fully qualify this
class when you extend it, like this:

class JavaFilter
extends javax.swing.filechooser.FileFilter

Table 1-3 The FileFilter Class
Method Description

public boolean abstract You must implement this method to return true if you
accept(File f) want the file displayed in the chooser, false if you

don’t want the file displayed.

public String abstract You must implement this method to return the descrip-
getDescription() tion string that is displayed in the Files of Type drop-

down list in the chooser dialog box.

The getDescription method simply returns the text displayed in the
Files of Type drop-down list. You usually implement it with a single return
statement that returns the description. For example:

public String getDescription()
{

return “Java files (*.java)”;
}

Here, the string Java files (*.java) is displayed in the Files of Type
drop-down list.

The accept method does the work of a file filter. The file chooser calls this
method for every file it displays. The file is passed as a parameter. The accept
method returns a boolean that indicates whether or not the file is displayed.

The accept method can use any criteria it wants to decide which files to
accept and which files to reject. Most filters do it based on the file extension
part of the filename. Unfortunately, the File class doesn’t have a method that
returns the file extension. But you can get the name with the getName method,
and then use the matches method with a regular expression to determine if
the file is of the type you’re looking for. For example, here’s an if statement
that determines whether the filename in the name variable is a java file:

if (name.matches(“.*\\.java”))

Here, the regular expression matches strings that begin with any sequence
of characters and end with .java. (For more information about regular
expressions, refer to Book V, Chapter 3.)

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 677

Choosing Files in a Swing Application678

Here’s a complete file filter class that displays files with the extension .java:

private class javaFilter
extends javax.swing.filechooser.FileFilter

{
public boolean accept(File f)
{

if (f.isDirectory())
return true;

String name = f.getName();
if (name.matches(“.*\\.java”))

return true;
else

return false;
}

public String getDescription()
{

return “Java files (*.java)”;
}

}

After you create a class that implements a file filter, you can add the file filter
to the file chooser by calling the addChoosableFileFilter method,
passing a new instance of the file filter class:

fc.setChoosableFileFilter(new JavaFilter());

If you want, you can remove the All Files filter by calling the method
setAcceptAllFileFilterUsed, like this:

fc.setAcceptAllFileFilterUsed(false);

Then, only file filters you add to the file chooser appear in the Files of Type
drop-down list.

50_58961X bk08ch01.qxd 3/29/05 3:37 PM Page 678

Chapter 2: Using File Streams

In This Chapter
� Understanding streams

� Reading text files

� Writing text files

� Reading binary files

� Writing binary files

I/O, I/O, it’s off to work I go.

Or so goes the classic song, which pretty much sums up the whole purpose
of computers. Without I/O, computers — and the programs that run on
them — would be worthless.

Imagining any useful computer program that doesn’t do some form of I/O is
hard. Even the very first program presented in this book — the classic Hello,
World! program — does I/O: It displays a simple message on-screen.

In this chapter, you find out about Java’s most fundamental technique for
getting data into and out of programs: streams. You’ve been working with
streams all along in this book. When you use the System.out.print or
System.out.println method to display text on the console, you’re actu-
ally sending data to an output stream. And when you use a Scanner object
to get data from System.in, you’re reading data from an input stream.

In this chapter, you build on what you already know about stream I/O and
see how it can be used to read and write data to disk files.

Understanding Streams
A stream is simply a flow of characters to and from a program. The other
end of the stream can be anything that can accept or generate a stream of
characters, including a console window, a printer, a file on a disk drive, or
even another program.

Streams have no idea of the structure or meaning of your data; a stream is
just a sequence of characters. In later chapters in Book VIII, you find out
how to work with data at a higher level, by using databases and XML.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 679

Reading Character Streams680

You can roughly divide the world of Java stream I/O into two camps:

✦ Character streams: Character streams read and write text characters that
represent strings. You can connect a character stream to a text file to
store text data on disk. Typically, text files use special characters called
delimiters to separate elements of the file. For example:

• A comma-delimited file uses commas to separate individual fields
of data.

• A tab-delimited file uses tabs to separate fields.

You can usually display a text file in a text editor and make some sense
of its contents.

✦ Binary streams: Binary streams read and write individual bytes that rep-
resent primitive data types. You can connect a binary stream to a binary
file to store binary data on disk. The contents of a binary file makes per-
fect sense to the programs that read and write them. However, if you try
to open a binary file in a text editor, the file’s contents look like gibberish.

Conceptually, the trickiest part of understanding how streams work is getting
your mind around all the different classes. Java has more than 60 classes for
working with streams. Fortunately, you only need to know about a few of
them for most file I/O applications. In the rest of this chapter, I tell you about
the most important classes for working with character and binary streams.

All the classes in this chapter are in the java.io package. So programs that
work with file streams include an import java.io.* statement.

Reading Character Streams
To read a text file through a character stream, you usually work with the fol-
lowing classes:

✦ File: The File class, which is covered in detail in the preceding chap-
ter, represents a file on disk. In file I/O applications, the main purpose of
the File class is to identify the file you want to read from or write to.

✦ FileReader: The FileReader class provides basic methods for read-
ing data from a character stream that originates from a file. It provides
methods that let you read data one character at a time. You won’t usu-
ally work directly with this class. Instead, you create a FileReader
object to connect your program to a file, and then pass that object to
the constructor of the BufferedReader class, which provides more
efficient access to the file. (This class extends the abstract class Reader,
which is the base class for a variety of different classes that can read
character data from a stream.)

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 680

Book VIII
Chapter 2

Using File Stream
s

Reading Character Streams 681

✦ BufferedReader: This class “wraps” around the FileReader class
to provide more efficient input. This class adds a buffer to the input
stream that allows the input to be read from disk in large chunks rather
than one byte at a time. This can result in a huge improvement in per-
formance. The BufferedReader class lets you read data one character
at a time or a line at a time. In most programs, you read data one line at
a time, and then use Java’s string-handling features to break the line into
individual fields.

Table 2-1 lists the most important constructors and methods of these classes.

Table 2-1 The BufferedReader and FileReader Classes
Constructors Description

BufferedReader Creates a buffered reader from any object that extends
(Reader in) the Reader class. Typically, you pass this constructor

a FileReader object.

FileReader(File file) Creates a file reader from the specified File object.
Throws FileNotFoundException if the file
doesn’t exist or if it is a directory rather than a file.

FileReader(String path) Creates a file reader from the specified pathname.
Throws FileNotFoundException if the file
doesn’t exist or if it is a directory rather than a file.

Methods Description

void close() Closes the file. Throws IOException.

int read() Reads a single character from the file and returns it as
an integer. Returns –1 if the end of the file has been
reached. Throws IOException.

String readLine() Reads an entire line and returns it as a string. Returns
null if the end of the file has been reached. Throws
IOException.

void skip(long num) Skips ahead the specified number of characters.

In the following sections, you find out how to read a file named movies.txt
that contains one line for ten of my favorite movies. Each line of the file con-
tains the title of the movie, a tab, the year the movie was released, another
tab, and the price I paid for it at the video store. Here’s the contents of the file:

It’s a Wonderful Life➪1946➪14.95
The Great Race➪1965➪12.95
Young Frankenstein➪1974➪16.95
The Return of the Pink Panther➪1975➪11.95
Star Wars➪1977➪17.95
The Princess Bride➪1987➪16.95
Glory➪1989➪14.95

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 681

Reading Character Streams682

Apollo 13➪1995➪19.95
The Game➪1997➪14.95
The Lord of the Rings: The Fellowship of the Ring➪

2001➪19.95

(In this list, the arrows represent tab characters.) Later in this chapter, I show
you a program that writes data to this file.

If you create this file with a text editor, make sure your text editor correctly
preserves the tabs.

Creating a BufferedReader
The normal way to connect a character stream to a file is to create a File
object for the file using one of the techniques presented in the preceding chap-
ter. Then, you can call the FileReader constructor to create a FileReader
object and pass this object to the BufferedReader constructor to create a
BufferedReader object. For example:

File f = new File(“movies.txt”);
BufferedReader in = new BufferedReader(

new FileReader(f));

Here, a BufferedReader object is created to read the movies.txt file.

Reading from a character stream
To read a line from the file, you use the readLine method of the
BufferedReader class. This method returns null when the end of the
file is reached. As a result, testing the string returned by the readLine
method in a while loop to process all the lines in the file is common.

For example, this code snippet reads each line from the file and prints it to
the console:

String line = in.readLine();
while (line != null)
{

System.out.println(line);
line = in.readLine();

}

After you read a line of data from the file, you can use Java’s string handling
features to pull out the individual bits of data from the line. In particular, you
can use the split method to separate the line into the individual strings
that are separated by tabs. Then, you can use the appropriate parse meth-
ods (such as parseInt and parseDouble) to convert each string to its
correct data type.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 682

Book VIII
Chapter 2

Using File Stream
s

Reading Character Streams 683

For example, here’s a routine that converts a line read from the movies.
txt file to the title (a string), year (an int), and price (a double):

String[] data = line.split(“\t”);
String title = data[0];
int year = Integer.parseInt(data[1]);
double price = Double.parseDouble(data[2]);

After the entire file is read, you can close the stream by calling the close
method:

in.close();

Reading the movies.txt file
Listing 2-1 shows a complete, albeit simple, program that reads the movies.
txt file and prints the contents of the file to the console.

LISTING 2-1: READING FROM A TEXT FILE

import java.io.*; ➞ 1
import java.text.NumberFormat;

public class ReadFile
{

public static void main(String[] args)
{

NumberFormat cf = NumberFormat.getCurrencyInstance();

BufferedReader in = getReader(“movies.txt”); ➞ 10

Movie movie = readMovie(in); ➞ 12
while (movie != null) ➞ 13
{

String msg = Integer.toString(movie.year);
msg += “: “ + movie.title;
msg += “ (“ + cf.format(movie.price) + “)”;
System.out.println(msg);
movie = readMovie(in);

}
} ➞ 21

private static BufferedReader getReader(String name) ➞ 23
{

BufferedReader in = null;
try
{

File file = new File(name);
in = new BufferedReader(

new FileReader(file));
}
catch (FileNotFoundException e)
{

continued

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 683

Reading Character Streams684

LISTING 2-1 (CONTINUED)

System.out.println(“The file doesn’t exist.”);
System.exit(0);

}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return in;

}

private static Movie readMovie(BufferedReader in) ➞ 45
{

String title;
int year;
double price;
String line = “”;
String[] data;

try
{

line = in.readLine();
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}

if (line == null)
return null;

else
{

data = line.split(“\t”);
title = data[0];
year = Integer.parseInt(data[1]);
price = Double.parseDouble(data[2]);
return new Movie(title, year, price);

}
}

private static class Movie ➞ 75
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 684

Book VIII
Chapter 2

Using File Stream
s

Reading Character Streams 685

If you run this program, the following output is displayed on the console:

1946: It’s a Wonderful Life ($14.95)
1965: The Great Race ($12.95)
1974: Young Frankenstein ($16.95)
1975: The Return of the Pink Panther ($11.95)
1977: Star Wars ($17.95)
1987: The Princess Bride ($16.95)
1989: Glory ($14.95)
1995: Apollo 13 ($19.95)
1997: The Game ($14.95)
2001: The Lord of the Rings: The Fellowship of the Ring

($19.95)

Because I’ve already explained most of this code, the following paragraphs
provide just a roadmap to this program:

➞ 1 The program begins with import java.io.* to import all the Java
I/O classes used by the program.

➞10 The program uses a method named getReader to create a
BufferedReader object that can read the file. The name of the file
is passed to this method as a parameter. Note that in a real program,
you’d probably get this filename from the user via a JFileChooser
dialog box or some other means. In any event, the BufferedReader
object returned by the getReader method is saved in a variable
named in.

➞12 Another method, named readMovie, is used to read each movie
from the file. This method returns a Movie object — Movie is a pri-
vate class that’s defined later in the program. If the end of the file has
been reached, this method returns null.

➞13 A while loop is used to process each movie. This loop simply builds
a message string from the Movie object, displays it on the console,
and then calls readMovie to read the next movie in the file.

➞21 The program ends without closing the file. That’s okay, though,
because the file is closed automatically when the program that
opened it ends. If the program were to go on with other processing
after it was finished with the file, you’d want to close the file first.

➞23 The getReader method creates a BufferedReader object for the
filename passed as a parameter. If any exceptions are thrown while
trying to create the BufferedReader, the program exits.

➞45 The readMovie method reads a line from the reader passed as a
parameter, parses the data in the line, creates a Movie object from the
data, and returns the Movie object. If the end of the file is reached,
this method returns null. The statement that reads the line from the
file is enclosed in a try/catch block that exits the program if an I/O
error occurs.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 685

Writing Character Streams686

➞75 The Movie class is a private inner class that defines the movie objects.
To keep the class simple, it uses public fields and a single constructor
that initializes the fields.

Writing Character Streams
The usual way to write data to a text file is to use the PrintWriter class,
which as luck has it you’re already familiar with: It’s the same class that pro-
vides the print and println methods used to write console output. As a
result, the only real trick to writing output to a text file is figuring out how to
connect a print writer to a text file. To do that, you work with three classes:

✦ FileWriter: The FileWriter class connects to a File object but
provides only rudimentary writing ability.

✦ BufferedWriter: This class connects to a FileWriter and provides
output buffering. Without the buffer, data is written to disk one charac-
ter at a time. This class lets the program accumulate data in a buffer and
writes the data only when the buffer is filled up or when the program
requests that the data be written.

✦ PrintWriter: This class connects to a Writer, which can be a
BufferedWriter, a FileWriter, or any other object that extends
the abstract Writer class. Most often, you connect this class to a
BufferedWriter.

The PrintWriter class is the only one of these classes whose methods
you usually use when you write data to a file. Table 2-2 lists the most impor-
tant constructors and methods of this class.

Table 2-2 The PrintWriter, BufferedWriter, and FileWriter Classes
Constructors Description

PrintWriter(Writer out) Creates a print writer for the specified output writer.

PrintWriter(Writer out, Creates a print writer for the specified output writer. If
boolean flush) the second parameter is true, the buffer is automati-

cally flushed whenever the printlnmethod is
called.

BufferedWriter(Writer Creates a buffered writer from the specified writer.
out) Typically, you pass this constructor a FileWriter

object.

FileWriter(File file) Creates a file writer from the specified File object.
Throws IOException if an error occurs.

FileWriter(File file, Creates a file writer from the specified File object.
boolean append) Throws IOException if an error occurs. If the

second parameter is true, data is added to the end of
the file if the file already exists.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 686

Book VIII
Chapter 2

Using File Stream
s

Writing Character Streams 687

Constructors Description

FileWriter(String path) Creates a file writer from the specified pathname.
Throws IOException if an error occurs.

FileWriter(String path, Creates a file writer from the specified pathname.
boolean append) Throws IOException if an error occurs. If the

second parameter is true, data is added to the end of
the file if the file already exists.

PrintWriter Methods Description

void close() Closes the file.

void flush() Writes the contents of the buffer to disk.

int read() Reads a single character from the file and returns it
as an integer. Returns –1 if the end of the file has
been reached. Throws IOException.

void print(value) Writes the value, which can be any primitive type or
any object. If the value is an object, the object’s
toString()method is called.

void println(value) Writes the value, which can be any primitive type or
any object. If the value is an object, the object’s
toString()method is called. A line break is writ-
ten following the value.

Connecting a PrintWriter to a text file
To connect a character stream to an output file, you first create a File
object for the file as I describe in the preceding chapter. Then, you call the
PrintWriter constructor to create a PrintWriter object you can use to
write to the file. This constructor wraps around a BufferedWriter object,
which in turn wraps around a FileWriter object like this:

File file = new File(“movies.txt”);
PrintWriter out =

new PrintWriter(
new BufferedWriter(

new FileWriter(file)));

If you find this a little confusing, that’s good! That makes me feel a little
better, because I find it a little confusing too. The basic idea going on here is
that each of the classes is adding a capability to the class it wraps. At the
bottom is the FileWriter class, which has the ability to write characters to
a file. The BufferedWriter class adds buffering to the mix, saving data in
a buffer until it makes sense to write it all out to the file in one big spurt. And
the PrintWriter class adds basic formatting capabilities, like adding line
endings at the end of each line and converting primitive types to strings.

Both the FileWriter and the PrintWriter classes have an optional
boolean parameter you can use to add extra capabilities to the file stream.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 687

Writing Character Streams688

If you specify true in the FileWriter constructor, the file is appended if it
exists. That simply means that any data in the file is retained; data you write
to the file in your program is simply added on to the end of the file. Here’s a
PrintWriter constructor that appends data to its file:

File file = new File(“movies.txt”);
PrintWriter out =

new PrintWriter(
new BufferedWriter(

new FileWriter(file, true)))// append mode

If you specify false instead of true, or if you leave this parameter out alto-
gether, an existing file is deleted, and its data is lost.

The boolean parameter in the PrintWriter class has less dire conse-
quences. It simply tells the PrintWriter class that it should tell the
BufferedWriter class to flush its buffer whenever you use the println
method to write a line of data. Although this option might decrease the effi-
ciency of your program by a small amount, it also makes the program a little
more reliable because it reduces the odds of losing data because your pro-
gram or the whole computer crashes while unwritten data is in the buffer.

Unfortunately, the code for specifying this option looks a little goofy because
of the way the constructors for the BufferedWriter and FileWriter
classes are nested:

File file = new File(“movies.txt”);
PrintWriter out =

new PrintWriter(
new BufferedWriter(

new FileWriter(file)), true); ////mode flush

If all these nested constructors make your head spin, you can always con-
struct each object separately and use variables to keep track of them. Here’s
an example that does that, and turns on append mode for the FileWriter
and flush mode for the PrintWriter:

FileWriter fw = new FileWriter(file, true);
BufferedWriter bw = new BufferedWriter(fw);
PrintWriter out = new PrintWriter(bw, true);

If you find this coding technique easier to understand, by all means use it.

Writing to a character stream
After you successfully connect a character stream to a file, writing data to it
is as easy as writing text to the console. You just use the print and println
methods exactly as if you’re writing to the console.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 688

Book VIII
Chapter 2

Using File Stream
s

Writing Character Streams 689

One minor complication is that if you’re writing data to a text file in a delimited
format, you have to include statements that write the delimiter characters
to the file. For example, suppose the title and year for a movie you want to
write to the text file are stored in String variables named title and year.
This snippet of code writes these fields with a tab delimiter between them:

System.out.print(title);
System.out.print(“\t”);
System.out.println(year);

Here, the last item to be written is written with the println method rather
than the print method. That ends the current line.

If you prefer to be a little more efficient, you can build a string representing
the entire line, and then write the line all at once:

String line = title + “\t” + year;
System.out.println(line);

This way is a little more efficient than the previous version, but not as much
as you’d think. In most cases, the BufferedWriter holds your text in a
buffer until the println method is called anyway.

If you didn’t specify the flush option when you created the PrintWriter
object, you can still periodically force any data in the buffer to be written to
disk by calling the flush method:

out.flush();

Also, when you’re finished writing data to the file, you can close the file by
calling the close method:

out.close();

Writing the movies.txt file
Listing 2-2 shows a complete program that writes lines to a text file. The data
written is taken from an array that’s hard-coded into the file, but you can
easily imagine how to obtain the data from the user by prompting for con-
sole input or using text fields in a Swing application.

LISTING 2-2:WRITING TO A TEXT FILE

import java.io.*;

public class WriteFile
{

public static void main(String[] args) ➞ 5

continued

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 689

Writing Character Streams690

LISTING 2-2 (CONTINUED)

{
Movie[] movies = getMovies();

PrintWriter out = openWriter(“movies.txt”);
for (Movie m : movies)

writeMovie(m, out);
out.close();

}

private static Movie[] getMovies() ➞ 15
{

Movie[] movies = new Movie[10];

movies[0] = new Movie(“It’s a Wonderful Life”, 1946, 14.95);
movies[1] = new Movie(“The Great Race”, 1965, 12.95);
movies[2] = new Movie(“Young Frankenstein”, 1974, 16.95);
movies[3] = new Movie(“The Return of the Pink Panther”, 1975,

11.95);
movies[4] = new Movie(“Star Wars”, 1977, 17.95);
movies[5] = new Movie(“The Princess Bride”, 1987, 16.95);
movies[6] = new Movie(“Glory”, 1989, 14.95);
movies[7] = new Movie(“Apollo 13”, 1995, 19.95);
movies[8] = new Movie(“The Game”, 1997, 14.95);
movies[9] = new Movie(“The Lord of the Rings: The Fellowship

of the Ring”, 2001, 19.95);

return movies;
}

private static PrintWriter openWriter(String name) ➞ 40
{

try
{

File file = new File(name);
PrintWriter out =

new PrintWriter(
new BufferedWriter(

new FileWriter(file)), true);
return out;

}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return null;

}

private static void writeMovie(Movie m, ➞ 58
PrintWriter out)
{

String line = m.title;
line += “\t” + Integer.toString(m.year);
line += “\t” + Double.toString(m.price);
out.println(line);

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 690

Book VIII
Chapter 2

Using File Stream
s

Writing Character Streams 691

}

private static class Movie ➞ 67
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

Because all the coding elements in this program have already been explained
in this chapter, the following paragraphs just provide a roadmap to the major
part of the program:

➞ 5 The main method begins by calling a method named getMovies,
which returns an array of Movie objects to be written to the file.
(The Movie class is defined as an inner class later in the program.)
Then, it calls openWriter, which creates a PrintWriter object
the program can use to write data to the file. Next, it uses an enhanced
for loop to call the writeMovie method for each movie in the array.
This method accepts a Movie object that contains the movie to be
written and a PrintWriter object to write the movie to. Finally, the
PrintWriter is closed.

➞15 The getMovies method returns an array of Movie objects that are
written to a file. In a real-life program, you probably do something
other than hard-code the movie information in this method. For
example, you might prompt the user to enter the data or use a Swing
frame to get the data.

➞40 The openWriter method creates a PrintWriter object for the
filename passed to it as a parameter. The PrintWriter uses a
buffer that’s flushed each time println is called.

➞58 The writeMovie method accepts as parameters a Movie object to
be written and the PrintWriter the movie should be written to.
It creates a string that includes the title, a tab, the year, another tab,
and the price. Then, it writes the string to the file.

➞67 The Movie class is an inner class that defines a movie object. This
class simply consists of three public fields (title, year, and price) and
a constructor that initializes the fields.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 691

Reading Binary Streams692

Reading Binary Streams
Binary streams are a bit tougher to read than character streams, but not
much. The biggest obstacle to pass when you’re reading a binary stream is
that you need to know exactly the type of each item that was written to the
file. If any incorrect data is in the file, the program won’t work. So you need
to ensure the file contains the data your program expects it to contain.

To read a binary file, you usually work with the following classes:

✦ File: Once again, you use the File class to represent the file itself.

✦ FileInputStream: The FileInputStream is what connects the
input stream to a file.

✦ BufferedInputStream: This class adds buffering to the basic
FileInputStream, which improves the stream’s efficiency and
gives it a moist and chewy texture.

✦ DataInputStream: This is the class you actually work with to read
data from the stream. The other Stream classes read a byte at a time.
This class knows how to read basic data types, including primitive types
and strings.

Table 2-3 lists the vital constructors and methods of these classes.

Table 2-3 The BufferedReader and FileReader Classes
Constructors Description

BufferedInputStream Creates a buffered input stream from any object that
(InputStream in) extends the InputStream class. Typically, you pass

this constructor a FileInputStream object.

DataInputStream Creates a data input stream from any object that
(InputStream in) extends the InputStream class. Typically, you pass

this constructor a BufferedInputStream object.

FileInputStream Creates a file input stream from the specified File
(File file) object. Throws FileNotFoundException if the file

doesn’t exist or if it is a directory rather than a file.

FileInputStream Creates a file input stream from the specified path-
(String path) name. Throws FileNotFoundException if the file

doesn’t exist or if it is a directory rather than a file.

DataInputStream Methods Description

boolean readBoolean() Reads a boolean value from the input stream. Throws
EOFException and IOException.

byte readByte() Reads a byte value from the input stream. Throws
EOFException and IOException.

char readChar() Reads a char value from the input stream. Throws
EOFException and IOException.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 692

Book VIII
Chapter 2

Using File Stream
s

Reading Binary Streams 693

DataInputStream Methods Description

double readDouble() Reads a double value from the input stream. Throws
EOFException and IOException.

float readFloat() Reads a float value from the input stream. Throws
EOFException and IOException.

int readInt() Reads an int value from the input stream. Throws
EOFException and IOException.

long readLong() Reads a long value from the input stream. Throws
EOFException and IOException.

short readShort() Reads a short value from the input stream. Throws
EOFException and IOException.

String readUTF() Reads a string stored in UTF format from the input stream.
Throws EOFException, IOException, and
UTFDataFormatException.

The following sections present programs that read and write data in a binary
file named movies.dat that contains information about movies. Each
record in this file consists of a UTF string containing the movie’s title, an int
representing the year the movie was released, and a double representing
the price I paid for the movie at my local discount video store. Although the
format of this file is different than the movies.txt file shown earlier in this
chapter, the file contains the same data. You can refer to the earlier section
“Reading Character Streams” to see a listing of the movies in this file.

Creating a DataInputStream
To read data from a binary file, you want to connect a DataInputStream
object to an input file. To do that, you use a File object to represent the
file, a FileInputStream object that represents the file as an input stream,
a BufferedInputStream object that adds buffering to the mix, and finally
a DataInputStream object to provide the methods that read various data
type. The constructor for such a beast looks like this:

File file = new File(“movies.dat”);
DataInputStream in = new DataInputStream(

new BufferedInputStream(
new FileInputStream(file)));

If all the nesting makes you nauseous, you can do it this way instead:

File file = new File(“movies.dat”);
FileInputStream fs = new FileInputStream(file);
BufferedInputStream bs = new BufferedInputStream(fs);
DataInputStream in = new DataInputStream(bs);

Either way, the effect is the same.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 693

Reading Binary Streams694

Reading from a data input stream
With binary files, you don’t read an entire line into the program and parse
it into individual fields. Instead, you use the various read methods of the
DataInputStream class to read the fields one at a time. To do that, you
have to know the exact sequence in which data values appear in the file.

For example, here’s a code snippet that reads the information for a single
movie and stores the data in variables:

String title = in.readUTF();
int year = in.readInt();
double price = in.readDouble();

Note that the read methods all throw EOFException if the end of the file
is reached and IOException if an I/O error occurs. So you need to call
these methods inside a try/catch block that catches these exceptions.
The readUTF method also throws UTFDataFormatException, but that
exception is a type of IOException, so you probably don’t need to catch it
separately.

The read methods are usually used in a while loop to read all the data from
the file. When the end of the file is reached, EOFException is thrown. You
can then catch this exception and stop the loop. One way to do that is to use
a boolean variable to control the loop:

boolean eof = false;
while (!eof)
{

try
{

String title = in.readUTF();
int year = in.readInt();
double price = in.readDouble();
// do something with the data here

}
catch (EOFException e)
{

eof = true;
}
catch (IOException e)
{

System.out.println(“An I/O error has
occurred!”);

System.exit(0);
}

}

Here, the boolean variable eof is set to true when EOFException is
thrown, and the loop continues to execute as long as eof is false.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 694

Book VIII
Chapter 2

Using File Stream
s

Reading Binary Streams 695

After you read a line of data from the file, you can use Java’s string handling
features to pull out the individual bits of data from the line. In particular, you
can use the split method to separate the line into the individual strings
that are separated by tabs. Then, you can use the appropriate parse meth-
ods to parse each string to its correct data type.

For example, here’s a routine that converts a line read from the movies.txt
file to the title (a string), year (an int), and price (a double):

String[] data = line.split(“\t”);
String title = data[0];
int year = Integer.parseInt(data[1]);
double price = Double.parseDouble(data[2]);

After the entire file has been read, you can close the stream by calling the
close method:

in.close();

This method also throws IOException, so you want to place it inside a
try/catch block.

Reading the movies.dat file
Now that you’ve seen the individual elements of reading data from a binary
file, Listing 2-3 presents a complete program that uses these techniques.
This program reads the movies.dat file, creates a Movie object for each
title, year, and price value, and prints a line on the console for the movie. If
you run this program, the output looks exactly like the output from the text
file version presented earlier in this chapter, in the section “Reading the
movies.txt file.”

LISTING 2-3: READING FROM A BINARY FILE

import java.io.*;
import java.text.NumberFormat;

public class ReadBinaryFile
{

public static void main(String[] args) ➞ 6
{

NumberFormat cf = NumberFormat.getCurrencyInstance();

DataInputStream in = getStream(“movies.dat”);

boolean eof = false;
while (!eof)
{

Movie movie = readMovie(in);
if (movie == null)

continued

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 695

Reading Binary Streams696

LISTING 2-3 (CONTINUED)

eof = true;
else
{

String msg = Integer.toString(movie.year);
msg += “: “ + movie.title;
msg += “ (“ + cf.format(movie.price) + “)”;
System.out.println(msg);

}
}
closeFile(in);

}
private static DataInputStream getStream(String name) ➞ 28
{

DataInputStream in = null;
try
{

File file = new File(name);
in = new DataInputStream(

new BufferedInputStream(
new FileInputStream(file)));

}
catch (FileNotFoundException e)
{

System.out.println(“The file doesn’t exist.”);
System.exit(0);

}
catch (IOException e)
{

System.out.println(“I/O Error creating file.”);
System.exit(0);

}
return in;

}

private static Movie readMovie(DataInputStream in) ➞ 51
{

String title = “”;
int year = 0;;
double price = 0.0;;

try
{

title = in.readUTF();
year = in.readInt();
price = in.readDouble();

}
catch (EOFException e)
{

return null;
}
catch (IOException e)
{

System.out.println(“I/O Error”);
System.exit(0);

}
return new Movie(title, year, price);

}

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 696

Book VIII
Chapter 2

Using File Stream
s

Reading Binary Streams 697

private static void closeFile(DataInputStream in) ➞ 76
{

try
{

in.close();
}
catch(IOException e)
{

System.out.println(“I/O Error closing file.”);
System.out.println();

}
}

private static class Movie ➞ 89
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

The following paragraphs describe what each method in this program does:

➞ 6 The main method is intentionally kept simple so it can focus on con-
trolling the flow of the program rather than doing the detail work of
accessing the file. As a result, it calls a method named getStream to
get a data input stream object to read the file. Then, it uses a while
loop to call a method named readMovie to get a movie object. If the
Movie object isn’t null, the movie’s data is then printed to the con-
sole. Finally, when the loop ends, a method named closeFile is
called to close the file.

➞28 The getStream method creates a DataInputStream object for
the filename passed as a parameter. If any exceptions are thrown, the
program exits.

➞51 The readMovie method reads the data for a single movie and cre-
ates a Movie object. If the end of the file is reached, the method
returns null.

➞76 The closeFile method closes the input stream.

➞89 As in the other programs in this chapter, the Movie class is defined
as a private inner class.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 697

Writing Binary Streams698

Writing Binary Streams
To write data to a binary file, you use the following classes:

✦ FileOutputStream: The FileOutputStream class connects to a
File object and creates an output stream that can write to the file.
However, this output stream is limited in its capabilities: It can write
only raw bytes to the file. In other words, it doesn’t know how to write
values such as ints, doubles, or strings.

✦ BufferedOutputStream: This class connects to a FileOutput
Stream and adds output buffering.

✦ DataOutputStream: This class adds the ability to write primitive data
types and strings to a stream.

Table 2-4 lists the essential constructors and methods of these classes.

Table 2-4 The DataOutputStream, BufferedOutputStream,
and FileOutputStream Classes

Constructors Description

DataOutputStream Creates a data output stream for the specified output
(OutputStream out) stream.

BufferedIOutputStream Creates a buffered output stream for the specified
(OutputStream out) stream. Typically, you pass this constructor a

FileOutputStream object.

FileOutputStream Creates a file writer from the file. Throws
(File file) FileNotFoundException if an error occurs.

FileOutputStream(File Creates a file writer from the file. Throws
file, boolean append) FileNotFoundException if an error occurs. If

the second parameter is true, data is added to the
end of the file if the file already exists.

FileOutputStream Creates a file writer from the specified pathname.
(String path) Throws FileNotFoundException if an error

occurs.

FileOutputStream(String Creates a file writer from the specified pathname.
path, boolean append) Throws FileNotFoundException if an error

occurs. If the second parameter is true, data is added
to the end of the file if the file already exists.

DataInputStream Methods Description

void close() Closes the file.

void flush() Writes the contents of the buffer to disk.

int size() Returns the number of bytes written to the file.

void writeBoolean Writes a boolean value to the output stream.
(boolean value) Throws IOException.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 698

Book VIII
Chapter 2

Using File Stream
s

Writing Binary Streams 699

DataInputStream Methods Description

void writeByte(byte Writes a byte value to the output stream. Throws
value) IOException.

void writeChar(char Writes a char value to the output stream. Throws
value) IOException.

void writeDouble(double Writes a double value to the output stream. Throws
value) IOException.

void writeFloat(float Writes a float value to the output stream. Throws
value) IOException.

void writeInt(int Writes an int value to the output stream. Throws
value) IOException.

void writeLong(long Writes a long value to the output stream. Throws
value) IOException.

void writeShort(short Writes a short value to the output stream. Throws
value) IOException.

void writeUTF(String Writes a string stored in UTF format to the output
value) stream. Throws EOFException, IOException,

and UTFDataFormatException.

Creating a DataOutputStream
Creating a DataOutputStream object requires yet another one of those
crazy nested constructor things:

File file = new File(name);
DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream(file)));

If you prefer, you can unravel the constructors like this:

File file = new File(name);
FileOutputStream fos = new FileOutputStream(file);
BufferedOutputStream bos = new

BufferedOutputStream(fos);
DataOutputStream out = new DataOutputStream(bos);

The FileOutputStream class has an optional boolean parameter you
can use to indicate that the file should be appended if it exists. To use this
feature, call the constructors like this:

File file = new File(name);
DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream(file, true)));

If you specify false instead of true or leave the parameter out altogether,
an existing file is deleted and its data is lost.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 699

Writing Binary Streams700

Writing to a binary stream
After you successfully connect a DataOutputStream to a file, writing data
to it is simply a matter of calling the various write methods to write different
data types to the file. For example, the following code writes the data for a
Movie object to the file:

out.writeUTF(movie.title);
out.writeInt(movie.year);
out.writeDouble(movie.price);

Of course, these methods throw IOException. As a result, you have to
enclose them in a try/catch block.

If you included the BufferedOutputStream class in the stream, it accu-
mulates data in its buffer until it decides to write the data to disk. If you
want, you can force the buffer to be written to disk by calling the flush
method, like this:

out.flush();

Also, when you finish writing data to the file, close the file by calling the
close method, like this:

out.close();

Both the flush and close methods also throw IOException, so you
need a try/catch to catch the exception.

Writing the movies.dat file
Listing 2-4 presents a program that writes the movies.dat file from an
array of Movie objects whose values are hard-coded into the program.

LISTING 2-4:WRITING TO A TEXT FILE

import java.io.*;

public class WriteBinaryFile
{

public static void main(String[] args) ➞ 5
{

Movie[] movies = getMovies();
DataOutputStream out = openOutputStream(“movies.dat”);
for (Movie m : movies)

writeMovie(m, out);
closeFile(out);

}

private static Movie[] getMovies() ➞ 14

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 700

Book VIII
Chapter 2

Using File Stream
s

Writing Binary Streams 701

{
Movie[] movies = new Movie[10];

movies[0] = new Movie(“It’s a Wonderful Life”, 1946, 14.95);
movies[1] = new Movie(“The Great Race”, 1965, 12.95);
movies[2] = new Movie(“Young Frankenstein”, 1974, 16.95);
movies[3] = new Movie(“The Return of the Pink Panther”, 1975,

11.95);
movies[4] = new Movie(“Star Wars”, 1977, 17.95);
movies[5] = new Movie(“The Princess Bride”, 1987, 16.95);
movies[6] = new Movie(“Glory”, 1989, 14.95);
movies[7] = new Movie(“Apollo 13”, 1995, 19.95);
movies[8] = new Movie(“The Game”, 1997, 14.95);
movies[9] = new Movie(“The Lord of the Rings: The Fellowship

of the Ring”, 2001, 19.95);
return movies;

}

private static DataOutputStream
openOutputStream(String name) ➞ 39
{

DataOutputStream out = null;
try
{

File file = new File(name);
out = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream(file)));

return out;
}
catch (IOException e)
{

System.out.println(
“I/O Exception opening file.”);

System.exit(0);
}
return out;

}

private static void writeMovie(Movie m, ➞ 59
DataOutputStream out)
{

try
{

out.writeUTF(m.title);
out.writeInt(m.year);
out.writeDouble(m.price);

}
catch (IOException e)
{

System.out.println(
“I/O Exception writing data.”);

System.exit(0);
}

}

private static void closeFile(DataOutputStream out) ➞ 76
{

continued

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 701

Writing Binary Streams702

LISTING 2-4 (CONTINUED)

try
{

out.close();
}
catch (IOException e)
{

System.out.println(“I/O Exception closing file.”);
System.exit(0);

}
}

private static class Movie ➞ 89
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

Because this chapter explains all the coding elements in this program, the fol-
lowing paragraphs just provide a roadmap to the major part of the program:

➞ 5 The main method calls getMovies to get an array of Movie objects.
Then, it calls openOutputStream to get an output stream to write
data to the file. Then, an enhanced for loop calls writeMovie to
write the movies to the file. Finally, it calls closeFile to close the file.

➞14 The getMovies method creates an array of movies to be written to
the file.

➞39 The openOutputStream method creates a DataOutputStream
object so the program can write data to the file.

➞59 The writeMovie method accepts two parameters: the movie to be
written and the output stream to write the data to.

➞76 The closeFile method closes the file.

➞89 Once again, the Movie class is included as an inner class.

51_58961X bk08ch02.qxd 3/29/05 3:36 PM Page 702

Chapter 3: Database for
$100, Please

In This Chapter
� Understanding some basic database concepts

� Taking a quick look at SQL

� Creating tables

� Selecting data

� Joining data

� Updating and deleting data

SQL stands for Structured Query Language. SQL is the lingua franca
(that’s not a type of pasta — it’s a type of tongue) of relational databases.

SQL is the standard language used for creating and accessing relational data-
bases and is the foundation of database processing in Java.

Note that Java doesn’t provide any implementation of SQL itself. Instead, Java
provides JDBC — Java DataBase Connectivity — that lets you formulate SQL
statements, send them off to a database server, and process the results. But in
order to use JDBC, you need to know some basic concepts of SQL databases
and a least enough SQL to formulate some sensible SQL statements.

This chapter won’t make you a database guru or a SQL expert. SQL is a com-
plicated language that is the subject of many of its own books, including SQL
For Dummies by Allen G. Taylor (Wiley). This chapter covers just enough
SQL to get you going with JDBC. Also, this chapter doesn’t cover JDBC. I
decided to defer that until the next chapter so that if you already know SQL,
you can skip this chapter altogether.

What Is a Relational Database?
The term relational database is one of the most used and abused buzzwords
in all of computerdom. A relational database can be

✦ A database in which data is stored in tables. Relationships can be
established between tables based on common information. For exam-
ple, a table of customers and a table of invoices might both contain
a customer number column. This column can serve as the basis for a
relationship between the tables.

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 703

What Is SQL, and How Do You Pronounce It?704

✦ A database that is accessed via Structured Query Language (SQL). SQL
was originally invented by IBM back in the 1970s to provide a practical
way to access data stored in relational databases.

✦ Any database system developed since about 1980, with the exception
of a few cutting-edge Object Oriented Databases. Marketers quickly fig-
ured out that the way to sell database programs was to advertise them
as relational. Thus, just about every database program ever made has
claimed to be relational, whether it really is or not.

From a Java programmer’s perspective, the second definition is the only
one that matters. If you can use SQL to access the database, the database
is relational.

What Is SQL, and How Do You Pronounce It?
SQL is a query language, which means it is designed to extract, organize, and
update information in relational databases. Way back in the 1970s, when SQL
was invented (SQL is old enough to be Java’s grandfather), SQL was sup-
posed to be an English-like query language that could be used by untrained
end users to access and update relational database data without the need
for programming. Of course, that didn’t happen. SQL is nothing like English.
It’s way too complicated and esoteric for untrained end users to learn, but it
has become the overwhelming favorite among programmers.

Ever since you first saw the letters SQL, you’ve probably been wondering
how to pronounce it. If not, humor me. Two schools of thought exist on this
subject:

✦ Spell out the letters: Es – Que – El.

✦ Pronounce it like the word sequel.

Either one does the job, but sequel makes you sound less like a database
rookie.

SQL Statements
Unlike Java, SQL is not object oriented. Remember, SQL was invented during
the Nixon administration. However, like Java, SQL does use statements to get
work done. Table 3-1 lists the SQL statements you use most often.

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 704

Book VIII
Chapter 3

Database for
$100,Please

Creating a SQL Database 705

Table 3-1 Common SQL Statements
SQL Statement Description

Data Manipulation

select Retrieves data from one or more tables. This is the statement
you use most often.

insert Inserts one or more rows into a table.

delete Deletes one or more rows from a table.

update Updates existing rows in a table.

Data Definition

create Creates tables and other database objects.

alter Changes the definitions of a table or other database object.

drop Deletes a table or other database object.

use Used in scripts to indicate what database subsequent state-
ments apply to.

Note that unlike Java, statements in SQL are not case sensitive. Thus, you
can write select, Select, or SELECT. You could even write sElEcT for
kicks, if you want.

Creating a SQL Database
Before you can store data in a relational database, you must create the data-
base. You don’t normally do that from a Java program. Instead, you do it by
writing a script file that contains the Create statements necessary to create
the table, and then run the script through the database server’s administra-
tion program. (Note that some database servers also let you define databases
interactively. However, the script approach is preferred because you often
need to delete and re-create a database while testing your applications.)

The scripts shown in this section (and in the rest of this chapter) are for
version 4.1 of MySQL. MySQL is a free SQL database server you can down-
load from www.mysql.com. MySQL includes a program called the MySQL
Command Line Client that lets you enter SQL commands from a prompt and
immediately see the results.

Script statements end with semicolons. That’s about the only thing SQL
scripts have in common with Java. Be aware, however, that the semicolon isn’t
required when you use SQL statements in a Java program. The semicolon is
required only when you use SQL statements in a script or interactively from
the MySQL Command Line Client program.

I don’t have room in this book to go into a complete tutorial on writing
scripts that create SQL databases. So instead, I present a sample script,

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 705

Creating a SQL Database706

Listing 3-1, that creates a database named movies that’s used in the rest of
this chapter and in the next, and walk you through its most important lines.

LISTING 3-1: A DATABASE CREATION SCRIPT

drop database movies; ➞ 1
create database movies; ➞ 2
use movies; ➞ 3
create table movie (➞ 4

id int not null auto_increment, ➞ 5
title varchar(50), ➞ 6
year int, ➞ 7
price decimal(8,2), ➞ 8
primary key(id) ➞ 9

);

insert into movie (title, year, price) ➞ 12
values (“It’s a Wonderful Life”, 1946, 14.95);

insert into movie (title, year, price)
values (“The Great Race”, 1965, 12.95);

insert into movie (title, year, price)
values (“Young Frankenstein”, 1974, 16.95);

insert into movie (title, year, price)
values (“The Return of the Pink Panther”, 1975, 11.95);

insert into movie (title, year, price)
values (“Star Wars”, 1977, 17.95);

insert into movie (title, year, price)
values (“The Princess Bride”, 1987, 16.95);

insert into movie (title, year, price)
values (“Glory”, 1989, 14.95);

insert into movie (title, year, price)
values (“Apollo 13”, 1995, 19.95);

insert into movie (title, year, price)
values (“The Game”, 1997, 14.95);

insert into movie (title, year, price)
values (“The Lord of the Rings: The Fellowship of the Ring, 2001,
19.95);

The following paragraphs describe the important lines of this script:

➞ 1 It’s common for a script that creates a database to begin with a drop
database statement to delete any existing database with the same
name. During testing, it’s common to delete and re-create the data-
base, so you want to include this statement in your scripts.

➞ 2 This statement creates a new database named movies.

➞ 3 The use statement indicates that the script statements that follow
applies to the newly created movies database.

➞ 4 This create table statement creates a table named movie with
columns named id, title, year, and price. This statement also
specifies that the primary key for the table is the id column.

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 706

Book VIII
Chapter 3

Database for
$100,Please

Querying a Database 707

➞ 5 The id column’s data type is int, which corresponds to Java’s int
type. This column also specifies not null, which means that it
must have a value for every row, and it specifies auto increment,
which means that the database server itself provides values for this
column. Each time a new row is added to the table, the value for the
id column is automatically incremented.

➞ 6 The title column’s data type is varchar, which is like a Java
String.

➞ 7 The year column’s data type is int.

➞ 8 The price column’s data type is decimal. Java doesn’t have a
decimal type, so the values from this column are converted to
double.

➞ 9 The create table statement specifies that the id column is the
table’s primary key. A primary key is a column (or a combination of
columns) that contains a unique value for each row in a table. Every
table should have a primary key.

➞12 The insert statements add data to the database. Each of these ten
statements adds a row to the movie table. The syntax of the insert
statement is weird, because you first list all the columns that you want
to insert data for, and then you list the actual data. For example, each
of the insert statements inserts data for three columns: title, year,
and price. The first insert statement (the one in line 12) inserts the
values “It’s a Wonderful Life”, 1946, and 14.95.

To run this script in MySQL, start the MySQL Command Line Client from the
Start menu. Then, use a source command that names the script. For example:

mysql> source c:\data\create.sql

Querying a Database
As the name Structured Query Language suggests, queries are what SQL is
all about. A query is an operation that is performed against one or more SQL
tables that extracts data from the tables and creates a result set containing
the selected rows and columns. A crucial point to understand is that the
result set is itself a table consisting of rows and columns. When you query a
database from a Java program, the result set is returned to the program in an
object created from the ResultSet class. This class has methods that let
you extract the data from each column of each row in the result set.

Using your basic select
To query a database, you use the select statement. In the select state-
ment, you list the table or tables from which you want to retrieve the data,
the specific table columns you want to retrieve (you might not be interested

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 707

Querying a Database708

in everything that’s in the table), and other clauses that indicate which spe-
cific rows to retrieve, what order to present the rows in, and so on. Here’s a
simple select statement that lists all the movies in the movie table:

select title, year
from movie
order by year;

When you take this statement apart piece by piece, you get:

✦ select title, year names the columns you want included in the
query result.

✦ from movie names the table you want the rows retrieved from.

✦ order by year indicates that the result is sorted into sequence by
the year column so the oldest movie appears first.

In other words, this select statement retrieves the title and date for all the
rows in the movie table and sorts them into year sequence. You can run
this query by typing it directly into the MySQL Command Line Client. Here’s
what you get:

mysql> select title, year from movie order by year;
+---+------+
| title | year |
+---+------+
It’s a Wonderful Life	1946
The Great Race	1965
Young Frankenstein	1974
The Return of the Pink Panther	1975
Star Wars	1977
The Princess Bride	1987
Glory	1989
Apollo 13	1995
The Game	1997
The Lord of the Rings: The Fellowship of the Ring	2001
+---+------+
10 rows in set (0.09 sec)

As you can see, the Command Line Client displays the rows returned by the
select statement. This can be very handy when you’re planning the select
statements your program needs or when you’re testing a program that
updates a table and you want to make sure the updates are made correctly.

If you want the query to retrieve all the columns in each row, you can use an
asterisk instead of naming the individual columns:

select * from movie order by year;

Use an asterisk in this manner in a program is not a good idea, however,
because the columns that make up the table might change. If you use an
asterisk, your program can’t deal with changes to the table’s structure.

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 708

Book VIII
Chapter 3

Database for
$100,Please

Querying a Database 709

Both examples so far include an order by clause. In a SQL database, the
rows stored in a table are not assumed to be in any particular sequence. As
a result, if you want to display the results of a query in sequence, you must
include an order by in the select statement.

Narrowing down the query
Suppose you want to find information about one particular video title. To
select certain rows from a table, use the where clause in a select state-
ment. For example:

mysql> select title, year from movie
-> where year <= 1980
-> order by year;

+--------------------------------+------+
| title | year |
+--------------------------------+------+
It’s a Wonderful Life	1946
The Great Race	1965
Young Frankenstein	1974
The Return of the Pink Panther	1975
Star Wars	1977
+--------------------------------+------+
5 rows in set (0.00 sec)

Here, the select statement selects all the rows in which the year column
is less than or equal to 1980. The results are ordered by the year column.

Excluding rows
Perhaps you want to retrieve all rows except those that match certain cri-
teria. For example, here’s a query that ignores movies made in the 1970s
(which is probably a good idea):

mysql> select title, year from movie
-> where year < 1970 or year > 1979
-> order by year;

+---+------+
| title | year |
+---+------+
It’s a Wonderful Life	1946
The Great Race	1965
The Princess Bride	1987
Glory	1989
Apollo 13	1995
The Game	1997
The Lord of the Rings: The Fellowship of the Ring	2001
+---+------+
7 rows in set (0.41 sec)

Singleton selects
When you want to retrieve information for a specific row, mention the pri-
mary key column in the where clause, like this:

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 709

Querying a Database710

mysql> select title, year from movie where id = 7;
+-------+------+
| title | year |
+-------+------+
| Glory | 1989 |
+-------+------+
1 row in set (0.49 sec)

Here, the where clause selects the row whose id column equals 7. This
type of select statement is called a singleton select because it retrieves
only one row. Singleton selects are commonly used in Java programs to
allow users to access or update a specific database row.

Sounds like
Suppose you want to retrieve information about a movie, but you can’t quite
remember the name. You know it has the word princess in it though. One of
the more interesting variations of the where clause is to throw in the word
like, which lets you search rows using wildcards. Here’s an example in
which the percent sign (%) is a wildcard character:

mysql> select title, year from movie
-> where title like “%princess%”;

+--------------------+------+
| title | year |
+--------------------+------+
| The Princess Bride | 1987 |
+--------------------+------+
1 row in set (0.00 sec)

Column functions
What if you want a count of the total number of movies in the movie table?
Or a count of the number of movies that were made before 1970? To do that,
you use a column function. SQL’s column functions let you make calculations
on columns. You can calculate the sum, average, largest or smallest value, or
count the number of values for an entire column. Table 3-2 summarizes these
functions. Note that these functions operate on the values returned in a result
set, which isn’t necessarily the entire table.

Table 3-2 Column Functions
Function Description

sum(column-name) Adds up the values in the column.

avg(column-name) Calculates the average value for the column. Null values are
not figured in the calculation.

min(column-name) Determines the lowest value in the column.

max(column-name) Determines the highest value in the column.

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 710

Book VIII
Chapter 3

Database for
$100,Please

Querying a Database 711

Function Description

count(column-name) Counts the number of rows that have data values for the column.

countDistinct Counts the number of distinct values for the column.
(column-name)

count(*) Counts the number of rows in the result set.

To use one of these functions, specify the function rather than a column
name in a select statement. For example, the following select statement
calculates the number of rows in the table and the year of the oldest movie:

mysql> select count(*), min(year) from movie;
+----------+-----------+
| count(*) | min(year) |
+----------+-----------+
| 10 | 1946 |
+----------+-----------+
1 row in set (0.00 sec)

As you can see, ten movies are in the table, and the oldest was made in 1946.

If the select statement includes a where clause, only the rows that match
the criteria are included in the calculation. For example, this statement finds
out how many movies in the table were made before 1970:

mysql> select count(*) from movie where year < 1970;
+----------+
| count(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

The result is only two.

Selecting from more than one table
In the real world, most select statements retrieve data from two or more
tables. Suppose you want a list of all the movies you’ve currently loaned out
to friends. To do that, you have to create another table in your database that
lists your friends’ names and the ids of any movie they’ve borrowed. Here’s a
create table statement that creates just such a table:

create table friend (
lastname varchar(50),
firstname varchar(50),
movieid int

);

Now load it up with some data:

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 711

Querying a Database712

insert into friend (lastname, firstname, movieid)
values (“Haskell”, “Eddie”, 3);

insert into friend (lastname, firstname, movieid)
values (“Haskell”, “Eddie”, 5);

insert into friend (lastname, firstname, movieid)
values (“Cleaver”, “Wally”, 9);

insert into friend (lastname, firstname, movieid)
values (“Mondello”, “Lumpy”, 2);

insert into friend (lastname, firstname, movieid)
values (“Cleaver”, “Wally”, 3);

With that out of the way, you can get to the business of using both the friend
and movie tables in a single select statement. All you have to do is list
both tables in the from clause, and then provide a condition in the where
clause that correlates the tables. For example:

mysql> select lastname, firstname, title
-> from movie, friend
-> where movie.id = friend.movieid;

+----------+-----------+--------------------+
| lastname | firstname | title |
+----------+-----------+--------------------+
Haskell	Eddie	Young Frankenstein
Haskell	Eddie	Star Wars
Cleaver	Wally	The Game
Mondello	Lumpy	The Great Race
Cleaver	Wally	Young Frankenstein
+----------+-----------+--------------------+
5 rows in set (0.00 sec)

Here, you can see which movies have been lent out and who has them.
Notice that the id and movieid columns in the where clause are qualified
with the name of the table the column belongs to.

Here’s a select statement that lists all the movies Eddie Haskell has
borrowed:

mysql> select title from movie, friend
-> where movie.id = friend.movieid
-> and lastname = “Haskell”;

+--------------------+
| title |
+--------------------+
| Young Frankenstein |
| Star Wars |
+--------------------+
2 rows in set (0.00 sec)

That rat has two of your best movies! Notice in this example that you can
refer to the friend table in the where clause even though you’re not actu-
ally retrieving any of its columns. However, you must still mention both
tables in the from clause.

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 712

Book VIII
Chapter 3

Database for
$100,Please

Updating and Deleting Rows 713

Eliminating duplicates
If you want to know just the names of everyone who has a movie checked
out, you can do a simple select from the friend table:

mysql> select lastname, firstname from friend;
+----------+-----------+
| lastname | firstname |
+----------+-----------+
Haskell	Eddie
Haskell	Eddie
Cleaver	Wally
Mondello	Lumpy
Cleaver	Wally
+----------+-----------+
5 rows in set (0.00 sec)

However, this result set has a problem: Eddie Haskel and Wally Cleaver are
listed twice. Wouldn’t it be nice if you could eliminate the duplicate rows?
Your wish is granted in the next paragraph.

You can eliminate duplicate rows by adding the distinct keyword in the
select statement:

mysql> select distinct lastname, firstname from friend;
+----------+-----------+
| lastname | firstname |
+----------+-----------+
Haskell	Eddie
Cleaver	Wally
Mondello	Lumpy
+----------+-----------+
3 rows in set (0.07 sec)

Notice that no duplicates appear; each distinct name appears only once in
the result set.

Updating and Deleting Rows
You’ve already seen how to create databases, insert rows, and retrieve result
sets. All that remains now is updating and deleting data in a table. For that,
you use the update and delete statements, as described in the following
sections. I explain the delete statement first, because it has a simpler syntax.

The delete statement
The basic syntax of the delete statement is:

delete from table-name where condition;

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 713

Updating and Deleting Rows714

For example, here’s a statement that deletes the movie whose id is 10:

mysql> delete from movie where id = 10;
Query OK, 1 row affected (0.44 sec)

Notice that the Command Line Client shows that this statement affected
one line. You can confirm that the movie was deleted by following up with
a select statement:

mysql> select * from movie;
+----+--------------------------------+------+-------+
| id | title | year | price |
+----+--------------------------------+------+-------+
1	It’s a Wonderful Life	1946	14.95
2	The Great Race	1965	12.95
3	Young Frankenstein	1974	16.95
4	The Return of the Pink Panther	1975	11.95
5	Star Wars	1977	17.95
6	The Princess Bride	1987	16.95
7	Glory	1989	14.95
8	Apollo 13	1995	19.95
9	The Game	1997	14.95
+----+--------------------------------+------+-------+
9 rows in set (0.00 sec)

As you can see, movie 10 is gone.

If the where clause selects more than one row, all the selected rows are
deleted. For example

mysql> delete from friend where lastname = “Haskell”;
Query OK, 2 rows affected (0.45 sec)

A quick query of the friend table shows that both records for Eddie Haskell
are deleted:

mysql> select * from friend;
+----------+-----------+---------+
| lastname | firstname | movieid |
+----------+-----------+---------+
Cleaver	Wally	9
Mondello	Lumpy	2
Cleaver	Wally	3
+----------+-----------+---------+
3 rows in set (0.00 sec)

If you don’t include a where clause, the entire table is deleted. For example,
this statement deletes all the rows in the movie table:

mysql> delete from movie;
Query OK, 9 rows affected (0.44 sec)

A quick select of the movie table confirms that it is now empty:

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 714

Book VIII
Chapter 3

Database for
$100,Please

Updating and Deleting Rows 715

mysql> select * from movie;
Empty set (0.00 sec)

Fortunately, you can now just run the create.sql script again to create
the table.

The update statement
The update statement selects one or more rows from a table, and then
modifies the value of one or more columns in the selected rows. Its syntax
is this:

update table-name
set expressions...
where condition;

The set expressions resemble Java assignment statements. For example,
here’s a statement that changes the price of movie 8 to 18.95:

mysql> update movie set price = 18.95 where id = 8;
Query OK, 1 row affected (0.44 sec)
Rows matched: 1 Changed: 1 Warnings: 0

You can use a quick select statement to verify that the price was changed:

mysql> select id, price from movie;
+----+-------+
| id | price |
+----+-------+
1	14.95
2	12.95
3	16.95
4	11.95
5	17.95
6	16.95
7	14.95
8	18.95
9	14.95
10	19.95
+----+-------+
10 rows in set (0.01 sec)

To update more than one column, use commas to separate the expressions.
For example, here’s a statement that changes Eddie Haskell’s name in the
friend table:

mysql> update friend set lastname = “Bully”,
-> firstname = “Big”
-> where lastname = “Haskell”;

Query OK, 2 rows affected (0.46 sec)
Rows matched: 2 Changed: 2 Warnings: 0

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 715

Updating and Deleting Rows716

Again, a quick select shows that the rows are properly updated:

mysql> select firstname, lastname from friend;
+-----------+----------+
| firstname | lastname |
+-----------+----------+
Big	Bully
Big	Bully
Wally	Cleaver
Lumpy	Mondello
Wally	Cleaver
+-----------+----------+
5 rows in set (0.00 sec)

One final trick with the update statement you should know about is that
the set expressions can include calculations. For example, the following
statement increases the price of all the movies by 10 percent:

mysql> update movie set price = price * 1.1;
Query OK, 10 rows affected (0.46 sec)
Rows matched: 10 Changed: 10 Warnings: 0

Here’s a select statement to verify that this update worked:

mysql> select id, price from movie;
+----+-------+
| id | price |
+----+-------+
1	16.45
2	14.25
3	18.65
4	13.15
5	19.75
6	18.65
7	16.45
8	20.85
9	16.45
10	21.95
+----+-------+
10 rows in set (0.01 sec)

52_58961X bk08ch03.qxd 3/29/05 3:35 PM Page 716

Chapter 4: Using JDBC to
Connect to a Database

In This Chapter
� Configuring JDBC drivers

� Creating a connection

� Executing SQL statements

� Retrieving result data

� Updating and deleting data

JDBC — Java Database Connectivity — is a Java feature that lets you con-
nect to almost any relational database system, execute SQL commands,

and process the results all from within a Java program. In this chapter, you
set up JDBC and use it to access data in a MySQL database.

If you aren’t familiar with the basics of SQL, read the previous chapter
before you tackle this chapter.

Setting Up a Driver
Before you can write a Java program to access a database via JDBC, you
must first install a driver that links Java’s database API classes to an actual
database. Getting the driver set up right can be tricky, but once you get it
working, accessing the database is easy.

The following sections describe two basic approaches to setting up a driver
to connect to a database: ODBC or a database connector.

Setting up an ODBC data source
ODBC is a generic database connection standard that almost every database
program available can speak to. It’s inherently inefficient, but it is easy to
set up and performs adequately for small applications and for testing pur-
poses. If you’re using Access files for your database, ODBC is the way to go.

Assuming you have created a database in Access that you want to access
from a Java program, you can follow these steps to create an ODBC data
source for the Access database:

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 717

Setting Up a Driver718

1. Open the Control Panel and double-click Administrative Tools.

A window with icons for various administrative tools comes up.

2. Double click Data Sources (ODBC).

The ODBC Data Source Administrator dialog box opens, as shown in
Figure 4-1.

3. Click the System DSN tab, and then click Add.

A dialog box listing a bunch of ODBC drivers appears.

4. Choose Microsoft Access Driver, and then click Finish.

The Finish button is strangely named, but this is when the real configu-
ration actually begins. The dialog box shown in Figure 4-2 now appears.

Figure 4-2:
Configuring
an Access
data source.

Figure 4-1:
The ODBC
Data Source
Administra-
tor dialog
box.

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 718

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Setting Up a Driver 719

5. Type a name for the data source.

You use this name in your Java program to access the data source, so
choose it wisely.

6. Click the Select button, and then choose the database you want to con-
nect to and click OK.

A Select Database dialog box appears. From this dialog box, you can nav-
igate to the folder that contains your Access data file to select it.

7. Click OK.

The data source is added to the list of configured ODBC data sources.

8. Click OK to dismiss the ODBC Data Source Administrator.

You’re all done.

Setting up the MySQL JDBC connector
An alternative to using ODBC is to use a database connector, which is a driver
provided by your database vendor. Database connectors are designed to
work exclusively with a specific type of database. As a result, they’re consid-
erably more efficient and powerful than ODCB.

You have to obtain the JDBC connector for the database you’re using from the
company that makes the database server you’re using. For example, you can
get a JDBC connector for MySQL from the MySQL Web site at www.mysql.
com. Along with the driver, you get detailed instructions on how to set it up.
But the following procedure works for a simple testing environment:

1. Download the driver from www.mysql.com/products/connector
and unzip it.

The driver you’re looking for is called MySQL Connector/J. After you
download it from MySQL’s Web site, unzip the files to any folder you
wish. I suggest one with a simple pathname, such as c:\MySql.

2. Add the driver’s .jar file to your ClassPath variable.

To change the ClassPath, open Control Panel and double-click System.
Then, click the Advanced tab, and then click Environment Variables. You
can then click New to add a new environment variable. The ClassPath
variable has to specify the complete path for the connector’s jar file.
For example, here’s a sample ClassPath variable for a driver located in
c:\mysql:

.;c:\mysql\mysql-connector-java-3.1.6-bin.jar

Notice that the ClassPath variable starts with a period and a semicolon.
This ensures that Java can find classes that are in the current directory.

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 719

Connecting to a Database720

If the ClassPath variable already exists, just add the connector’s jar file
to the end of the existing text.

That’s all you have to do. You can now connect to MySQL from a Java
program.

Connecting to a Database
Before you can use JDBC to access a SQL database, you must first establish
a connection to the database. The first step to establishing a connection
involves registering the driver class so the class is available. To do that, you
use the forName method of the Class class, specifying the package and
class name of the driver. For example, to register the MySQL connector, use
this statement:

Class.forName(“com.mysql.jdbc.Driver”);

To register the standard ODBC driver, use this statement instead:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Note that the forName method throws ClassNotFoundException, so
you have to enclose this statement in a try/catch block that catches
ClassNotFoundException.

After you register the driver class, you can call the static getConnection
method of the DriverManager class to open the connection. This method
takes three String parameters: the database URL, the user name, and a
password. Here’s an example:

String url = “jdbc:mysql://localhost/Movies”;
String user = “root”;
String pw = “pw”;
con = DriverManager.getConnection(url, user, pw);

The URL parameter has the following syntax:

jdbc:subprotocol:subname

where subprotocol is mysql for a MySQL database and odbc for an ODBC
driver. The subname is the database name. For a MySQL database, this can
be a complete URL, but for a database on your own computer, you just spec-
ify //localhost/ plus the name of the database.

For ODBC, you use the name you used when you created the data source.
For example

String url = “jdbc:odbc:Movies”;

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 720

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Querying a Database 721

The user and password parameters must also be valid for the database server
you’re using. For testing purposes on a MySQL database, you can use root
and the password you created when you installed MySQL. For ODBC, use
admin with no password for testing.

Note that the getConnection method throws SQLException, so you need
to enclose it in a try/catch block statement that catches this exception.

Putting it all together, here’s a method that returns a Connection object
that connects to the movies database in MySQL:

private static Connection getConnection()
{

Connection con = null;
try
{

Class.forName(“com.mysql.jdbc.Driver”);
String url = “jdbc:mysql://localhost/Movies”;
String user = “root”;
String pw = “NuttMutt”;
con = DriverManager.getConnection(url, user, pw);

}
catch (ClassNotFoundException e)
{

System.out.println(e.getMessage());
System.exit(0);

}
catch (SQLException e)
{

System.out.println(e.getMessage());
System.exit(0);

}
return con;

}

You can find these classes — and the other classes for working with SQL
databases — in the java.sql package. As a result, you have to include an
import statement that specifies this package in any program that uses JDBC.

Querying a Database
After you establish a connection to a database, you can execute select
statements to retrieve data. To do so, you have to use several classes and
interfaces:

✦ Connection: The Connection class has two methods you’re
likely to use. The close method closes the connection, and the
createStatement method returns a Statement object, which you
then use to execute statements.

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 721

Querying a Database722

✦ Statement: The Statement interface contains the methods neces-
sary to send statements to the database for execution and return the
results. In particular, you use the executeQuery method to execute a
select statement or the executeUpdate method to execute an
insert, update, or delete statement.

✦ ResultSet: The ResultSet interface represents rows returned from
a query. It provides methods you can use to move from row to row and
to get the data for a column.

Table 4-1 lists the methods of the Connection class and the Statement
interface you use to execute queries. You find out about the many methods
of the ResultSet interface later in this chapter, in the section “Navigating
through the result set.”

Table 4-1 Connection and Statement Methods
Connection Class Methods Description

void close() Closes the connection.

Statement Creates a Statement object that can execute a
createStatement() SQL statement on the database connected by the

connection.

Statement Creates a Statement object that can execute a
createStatement SQL statement on the database connected by
(int type, int concur) the connection.

Statement Interface Methods Description

ResultSet executeQuery Executes the select statement contained in the
(String sql) string parameter and returns the result data as a

ResultSet object.

ResultSet executeQuery Executes the select statement contained in the
(String sql) string parameter and returns the result data as a

ResultSet object.

int executeUpdate Executes the insert, update, or delete
(String sql) statements contained in the string parameter and

returns the result data as a ResultSet object.

The first parameter of the createStatement method specifies the type of
result set that is created, and can be one of the following:

ResultSet.TYPE_FORWARD_ONLY
ResultSet.TYPE_SCROLL_INSENSITIVE
ResultSet.TYPE_SCROLL_SENSITIVE

The second parameter indicates whether the result set is read-only or updat-
able, and can be one of the following:

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 722

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Querying a Database 723

ResultSet.CONCUR_READ_ONLY
ResultSet.CONSUR_UPDATABLE

Executing a select statement
The following snippet executes a select statement and gets the result set:

Statement s = con.createStatement();
String select = “Select title, year, price “

+ “from movie order by year”;
ResultSet rows = s.executeQuery(select);

Here, the result set is stored in the rows variable.

Navigating through the result set
The ResultSet object returned by the executeQuery statement contains
all the rows that are retrieved by the select statement. You can only access
one of those rows at a time. The result set maintains a pointer called a cursor
to keep track of the current row. You can use the methods shown in Table 4-2
to move the cursor through a result set.

For example, the following snippet shows how you can structure code that
processes each row in a result set:

while(rows.next())
{

// process the current row
}

All you have to do is replace the comment with statements that retrieve data
from the result set and process it, as described in the next section.

Table 4-2 Navigation Methods of the ResultSet Interface
Method Description

void close() Closes the result set.

void last() Moves the cursor to the last row.

int getRow() Gets the current row number.

boolean next() Moves to the next row.

Getting data from a result set
Table 4-3 lists the methods of the ResultSet interface you can use to
retrieve data from the current row. As you can see, each of these methods
comes in two versions: One specifies the column by name, the other by

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 723

Querying a Database724

index number. If you know the index number, using it to access the column
values is more efficient than using the column names.

Here’s a bit of code that gets the title, year, and price for the current row:

String title = row.getString(“title”);
int year = row.getInt(“year”);
double price = row.getDouble(“price”);

The following code does the same thing, assuming the columns appear in
order:

String title = row.getString(1);
int year = row.getInt(2);
double price = row.getDouble(3);

Note that unlike almost every other index in Java, column indexes start with
1, not zero.

Table 4-3 Get Methods of the ResultSet Interface
Method Description

BigDecimal getBigDecimal(String Gets the value of the specified
columnName) column as a BigDecimal.

BigDecimal getBigDecimal(int Gets the value of the specified
columnIndex) column as a BigDecimal.

boolean getBoolean(String Gets the value of the specified
columnName) column as a boolean.

boolean getBoolean(int columnIndex) Gets the value of the specified
column as a boolean.

Date getDate(String columnName) Gets the value of the specified
column as a Date.

Date getDate(int columnIndex) Gets the value of the specified
column as a Date.

double getDouble(String columnName) Gets the value of the specified
column as a double.

double getDouble(int columnIndex) Gets the value of the specified
column as a double.

float getFloat(String columnName) Gets the value of the specified
column as a float.

float getFloat(int columnIndex) Gets the value of the specified
column as a float.

int getInt(String columnName) Gets the value of the specified
column as a int.

int getInt(int columnIndex) Gets the value of the specified
column as a int.

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 724

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Querying a Database 725

Method Description

long getLong(String columnName) Gets the value of the specified
column as a long.

long getLong(int columnIndex) Gets the value of the specified
column as a long.

short getShort(String columnName) Gets the value of the specified
column as a short.

short getShort(int columnIndex) Gets the value of the specified
column as a short.

String getString(String columnName) Gets the value of the specified
column as a String.

String getString(int columnIndex) Gets the value of the specified
column as a String.

Putting it all together: A program
that reads from a database
Now that you’ve seen the various elements that make up a program that
uses JDBC to query a database, Listing 4-1 shows a program that reads data
from the movies database and lists it on the console. When you run this
program, the following appears on the console:

1946: It’s a Wonderful Life ($16.45)
1965: The Great Race ($14.25)
1974: Young Frankenstein ($18.65)
1975: The Return of the Pink Panther ($13.15)
1977: Star Wars ($19.75)
1987: The Princess Bride ($18.65)
1989: Glory ($16.45)
1995: Apollo 13 ($20.85)
1997: The Game ($16.45)
2001: The Lord of the Rings: The Fellowship of the Ring

($21.95)

LISTING 4-1:THE MOVIE LISTING PROGRAM

import java.sql.*;
import java.text.NumberFormat;

public class ListMovies
{

public static void main(String[] args) ➞ 6
{

NumberFormat cf = NumberFormat.getCurrencyInstance();

ResultSet movies = getMovies();

continued

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 725

Querying a Database726

LISTING 4-1 (CONTINUED)

try
{

while (movies.next())
{

Movie m = getMovie(movies);
String msg = Integer.toString(m.year);
msg += “: “ + m.title;
msg += “ (“ + cf.format(m.price) + “)”;
System.out.println(msg);

}
}
catch (SQLException e)
{

System.out.println(e.getMessage());
}

}

private static ResultSet getMovies() ➞ 28
{

Connection con = getConnection();
try
{

Statement s = con.createStatement();
String select = “Select title, year, price “

+ “from movie order by year”;
ResultSet rows;
rows = s.executeQuery(select);
return rows;

}
catch (SQLException e)
{

System.out.println(e.getMessage());
}
return null;

}

private static Connection getConnection() ➞ 46
{

Connection con = null;
try
{

Class.forName(“com.mysql.jdbc.Driver”);
String url = “jdbc:mysql://localhost/Movies”;
String user = “root”;
String pw = “NuttMutt”;
con = DriverManager.getConnection(url, user, pw);

}
catch (ClassNotFoundException e)
{

System.out.println(e.getMessage());
System.exit(0);

}
catch (SQLException e)
{

System.out.println(e.getMessage());

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 726

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Querying a Database 727

System.exit(0);
}
return con;

}

private static Movie getMovie(ResultSet movies) ➞ 70
{

try
{

String title = movies.getString(“Title”);
int year = movies.getInt(“Year”);
double price = movies.getDouble(“Price”);
return new Movie(title, year, price);

}
catch (SQLException e)
{

System.out.println(e.getMessage());
}
return null;

}

private static class Movie ➞ 86
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

The following paragraphs describe the basics of how this program works:

➞ 6 The main method begins by calling the getMovies method to get
a ResultSet object that contains the movies to be listed. Then, a
while loop reads each row of the result set. The getMovie method
is called to create a Movie object from the data in the current row.
Then, an output string is created and sent to the console. The loop is
contained in a try/catch statement because the next method may
throw SQLException.

➞28 The getMovies method is responsible for getting a database con-
nection, and then querying the database to get the movies. The first
task is delegated to the getConnection method. Then, a
Statement is created and executed with the following select
statement:

select title, year, price from movie order by year

Then, the result set is returned to the main method.

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 727

Updating SQL Data728

➞46 The getConnection method creates a Connection object to the
database. Note that the user id and password are hard-coded into
this method. In a real application, you get this information from the
user or from a configuration file.

➞70 The getMovie method extracts the title, year, and price from the
current row and uses these values to create a Movie object.

➞86 The Movie class is created as an inner class. To keep this application
simple, this class uses public fields and a single constructor that ini-
tializes the fields with the values passed as parameters.

Updating SQL Data
Besides executing select statements, you can also use a Statement
object to execute insert, update, or delete statements as well. To do
that, you call the executeUpdate method instead of the executeQuery
method. This method returns an int value that indicates how many rows
were updated. You can test the return value to determine whether the data
was properly updated.

For example, here’s a method that accepts a movie id, last name, and first
name and inserts a row into the friend table:

private static void loanMovie(int id, String lastName,
String firstName)

{
Connection con = getConnection();
try
{

Statement stmt = con.createStatement();
String insert = “insert into friend “

+ “(lastname, firstname, movieid) “
+ “values (“
+ “\”” + lastName + “\”, \””
+ firstName + “\”, “ +
+ id + “)”;

int i = stmt.executeUpdate(insert);
if (i == 1)

System.out.println(“Loan recorded.”);
else

System.out.println(“Loan not recorded.”);
}
catch (SQLException e)
{

System.out.println(e.getMessage());
System.exit(0);

}
}

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 728

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Using an Updatable RowSet Object 729

The getConnection method called at the start of this method is the same
getConnection method in Listing 4-1. After a connection is created, a
Statement object is created, and an insert statement is constructed
using the values passed via the parameters. For example, if you pass id 3,
last name Haskell, and first name Eddie, the following insert statement
is built:

Insert into friend (lastname, firstname, movieid)
Values (“Haskell”, “Eddie”, 3)

Then, the executeUpdate method is called to execute the insert state-
ment. An if statement is used to determine whether or not the row is
inserted.

You can execute update or delete statements in the same manner.

While you’re testing database code that executes SQL statements constructed
from strings like this, throw in a System.out.println call to print the
statement to the console. That way, you can verify that the statement is being
created properly.

Using an Updatable RowSet Object
If you’re using a newer JDBC driver (one that supports JDBC 2.0 or later),
you have another option for updating data: with an updatable result set.
With an updatable result set, you can change data in a result set row, add a
row to the result set, or delete a row from the result set. When you do, the
updates are automatically written back to the underlying database.

To create an updatable result set, you must specify the ResultSet.
CONCUR_UPDATABLE field on the createStatement method when you
create the Statement object, like this:

Statement stmt = con.createStatement(
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.TYPE_CONCUR_UPDATABLE);

The first parameter indicates that the result set is scrollable, which means
you can move the cursor backwards as well as forwards through the result
set. You can use the methods listed in Table 4-4 to scroll the result set. This
parameter also indicates that the result set can be synchronized with the
database so that any changes made by other users are reflected in the
result set.

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 729

Using an Updatable RowSet Object730

Table 4-4 Methods for Scrollable Result Sets
Method Description

boolean absolute Moves the cursor to the given row number in this ResultSet
(int row) object.

void afterLast() Moves the cursor to the end of this ResultSet object, just
after the last row.

void beforeFirst()Moves the cursor to the front of this ResultSet object, just
before the first row.

boolean first() Moves the cursor to the first row in this ResultSet object.

boolean last() Moves the cursor to the last row in this ResultSet object.

boolean next() Moves the cursor down one row from its current position.

boolean previous()Moves the cursor to the previous row in this ResultSet
object.

boolean relative Moves the cursor a relative number of rows, either positive or
(int rows) negative.

The second parameter indicates that the result set is updatable, and any
changes you make to the result set are automatically written back to the
database. You can use any of the methods listed in Table 4-5 to update the
result set, and thus update the underlying database.

Table 4-5 Methods for Updatable Result Sets
Method Description

void cancelRowUpdates() Cancels the updates made to the current row in this
ResultSet object.

void deleteRow() Deletes the current row from this ResultSet object
and from the underlying database.

void insertRow() Inserts the contents of the insert row into this
ResultSet object and into the database.

void moveToCurrentRow() Moves the cursor to the remembered cursor position,
usually the current row.

void moveToInsertRow() Moves the cursor to the insert row.

void refreshRow() Refreshes the current row with its most recent value in
the database.

void updateRow() Updates the underlying database with the new con-
tents of the current row of this ResultSet object.

Deleting a row
To delete a row from a result set, use one of the navigation methods in Table
4-4 to move to the row you want to delete, and then use the deleteRow

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 730

Book VIII
Chapter 4

Using JDBC to
Connect to a

Database
Using an Updatable RowSet Object 731

method to delete the row. For example, here’s code that deletes the third
row in the result set:

try
{

rs.absolute(3);
rs.deleteRow();

}
catch (SQLException e)
{

System.out.println(e.getMessage());
System.exit(0);

}

Updating the value of a row column
To update the value of a row column, navigate to the row you want to update,
and then use one of the updater methods listed in Table 4-6 to change one or
more column values. Finally, call updateRow to apply the changes.

For example:

try
{

rs.absolute(6);
rs.updateInt(“year”, 1975);
rs.updateRow();

}
catch (SQLException e)
{

System.out.println(e.getMessage());
System.exit(0);

}

Here, the year column of the sixth row in the result set is changed to 1975.

Table 4-6 Update Methods of the ResultSet Interface
Update by Column Name Update by Column Index

void updateBigDecimal void updateBigDecimal(int
(String columnName, columnIndex, BigDecimal value)
BigDecimal value)

void updateBoolean void updateBoolean(int columnIndex,
(String columnName, boolean value)
boolean value)

void updateDate(String void updateDate(int columnIndex,
columnName, Date value) Date value)

(continued)

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 731

Using an Updatable RowSet Object732

Table 4-6 (continued)
Update by Column Name Update by Column Index

void updateDouble void updateDouble(int columnIndex,
(String columnName, double value)
double value)

void updateFloat(String void updateFloat(int columnIndex,
columnName, float value) float value)

void updateInt(String void updateInt(int columnIndex,
columnName, int value) int value)

void updateLong(String void updateLong(int columnIndex,
columnName, long value) long value)

void updateShort(String void updateShort(int columnIndex,
columnName, short value) short value)

void updateString(String void updateString(int
columnName, String columnIndex, String value)
value)

Inserting a row
To insert a row, you use a special row in the result set called the insert row.
First, you call the moveToInsertRow method to move the cursor to the
insert row. Then, you use update methods to set the value for each column
in the insert row. You then call the insertRow method to copy the insert
row into the result set, which in turn writes a new row to the database. And
finally, you call moveToCurrentRow to move back to the previous position
in the result set.

Here’s an example:

try
{

rs.moveToInsertRow();
rs.updateString(“title”,

“Monty Python and the Holy Grail”);
rs.updateInt(“year”, 1975);
rs.updateDouble(“price”, 13.95);
rs.insertRow();
rs.moveToCurrentRow();

}
catch (SQLException e)
{

System.out.println(e.getMessage());
System.exit(0);

}

53_58961X bk08ch04.qxd 3/29/05 3:35 PM Page 732

Chapter 5: Working with XML

In This Chapter
� Understanding XML

� Defining structure with DTD

� Looking at DOM and SAX

� Reading a document into memory

� Navigating a document

� Getting attribute and element values

In this chapter, you find out how to work with XML — the best thing to
happen to computing since the invention of the vacuum tubes, at least

according to some over-enthusiastic prognosticators.

This chapter focuses on the basics of reading an XML document into
memory and extracting data from it. With the background in this chapter,
you shouldn’t have much trouble studying the API documentation on your
own to learn more about XML programming.

What Exactly Is XML, Anyway?
XML is the latest and greatest fad in computing. Most computer industry
pundits agree that XML will completely change the way you work with com-
puters. Here are just some of the ways XML will revolutionize the world of
computers:

✦ Unlock all the vast warehouses of data that’s locked up in the vaults of
corporate mainframe computers.

✦ Enable every electronic device on the planet from the most complex
supercomputers to desktop computers to cellphones to wrist watches
to communicate with one another.

✦ Allow every computer program ever written to exchange data with every
other computer program ever written.

✦ Probably cure cancer and solve the budget deficit, too.

Yawn.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 733

What Exactly Is XML, Anyway?734

So what is XML, really? Simply put, XML is a way to store and exchange infor-
mation in a standardized way that’s easy to create, retrieve, and exchange
between different types of computer systems or programs.

When XML is stored in a file, the file is usually given the extension xml.

Tags
Like HTML, XML uses tags to mark the data. For example, here’s a bit of XML
that describes a book:

<Book>
<Title>Java All-In-One Desk Reference For
Dummies</Title>

<Author>Lowe</Author>
</Book>

This chunk of XML defines an element called Book, which contains informa-
tion for a single book. The Book element, in turn, contains two subordinate
elements: Title and Author.

Notice how each element begins with a tag that lists the element’s name. This
tag is called the start tag. The element ends with an element that repeats the
element name, preceded by a slash (an end tag).

Everything that appears between the start tag and the end tag is the element’s
content. An element’s content can consist of text data, or it can consist of one
or more additional elements. In that case, the additional elements nested
within an element are called child elements, and the element that contains
them is called the parent element.

The highest level element in an XML document is called the root element. A
properly formed XML document consists of a single root element, which can
contain elements nested within it. For example, suppose you want to create
an XML document with information about two movies. The XML document
might look something like this:

<Movies>
<Movie>
<Title>It’s a Wonderful Life</Title>
<Year>1946</Year>
<Price>14.95</Price>

</Movie>
<Movie>
<Title>The Great Race</Title>
<Year>1965</Year>
<Price>12.95</Price>

</Movie>
</Movies>

Here, the root element named Movies contains two Movie elements, each
of which contains a Title, Year, and Price element.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 734

Book VIII
Chapter 5

W
orking w

ith XM
L

What Exactly Is XML, Anyway? 735

Although XML superficially resembles HTML, you find two key differences
between XML and HTML:

✦ The tags used in HTML indicate the format of data that displays. In con-
trast, tags in an XML document indicate the meaning of the data. For
example, HTML has tags such as and <I> that indicate data is bold
or italic. In contrast, an XML document that holds information about
books may have tags such as <Title> and <Author> that provide the
title and author of the book.

✦ The tags used in an HTML document are set in stone. In contrast, you
can make up any tags you want to use in an XML document. If you’re cre-
ating an XML document about cars, you may use tags such as <Make>,
<Model>, and <Year>. But if you’re creating an XML document about
classes taught at a university, you may use tags such as <Course>,
<Title>, <Instructor>, <Room>, and <Schedule>.

Attributes
Instead of using child elements, you can use attributes to provide data for
an element. An attribute is a name and value pair that’s written inside of the
start tag for an element. For example, here’s a Movie element that uses an
attribute instead of a child element to record the year:

<Movie year=”1946”>
<Title>It’s a Wonderful Life</Title>
<Price>14.95</Price>

</Movie>

Whether you use attributes or child elements is largely a matter of personal
preference. Many XML purists say that you should avoid attributes, or use
them only for identifying data such as identification numbers or codes.
Others say to use attributes freely. In my experience, a few attributes here
and there don’t hurt, but I avoid them for the most part.

The movies.xml file
For your reference, Listing 5-1 shows the movies.xml file that the pro-
grams that appear later in this chapter use.

LISTING 5-1:THE MOVIES.XML FILE

<Movies>
<Movie year=”1946”>
<Title>It’s a Wonderful Life</Title>
<Price>14.95</Price>

</Movie>

continued

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 735

Using a DTD736

LISTING 5-1 (CONTINUED)

<Movie year=”1965”>
<Title>The Great Race</Title>
<Price>12.95</Price>

</Movie>
<Movie year=”1974”>
<Title>Young Frankenstein</Title>
<Price>16.95</Price>

</Movie>
<Movie year=”1975”>
<Title>The Return of the Pink Panther</Title>
<Price>11.95</Price>

</Movie>
<Movie year=”1977”>
<Title>Star Wars</Title>
<Price>17.95</Price>

</Movie>
<Movie year=”1987”>
<Title>The Princess Bride</Title>
<Price>16.95</Price>

</Movie>
<Movie year=”1989”>
<Title>Glory</Title>
<Price>14.95</Price>

</Movie>
<Movie year=”1995”>
<Title>Apollo 13</Title>
<Price>19.95</Price>

</Movie>
<Movie year=”1997”>
<Title>The Game</Title>
<Price>14.95</Price>

</Movie>
<Movie year=”2001”>
<Title>The Fellowship of the Ring</Title>
<Price>19.95</Price>

</Movie>
</Movies>

Using a DTD
An XML document can have a DTD, which spells out exactly what elements
can appear in an XML document and in what order the elements can appear.
DTD stands for Document Type Definition, but that won’t be on the test.

For example, a DTD for an XML document about movies may specify that
each Movie element must have a Title and Price subelements and an

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 736

Book VIII
Chapter 5

W
orking w

ith XM
L

Using a DTD 737

attribute named year. It can also specify that the root element is named
Movies and consists of any number of Movie elements.

The main purpose of the DTD is to spell out the structure of an XML document
so that users of the document know how to interpret it. But another equally
important use of the DTD is to validate the document to make sure it doesn’t
have any structural errors. For example, if you create a Movies XML document
that has two titles for a movie, you can use the DTD to detect the error.

You can store the DTD for an XML document in the same file as the XML data,
but more often you store the DTD in a separate file. That way, you can use a
DTD to govern the format of several XML documents of the same type. To
indicate the name of the file that contains the DTD, you add a <!DOCTYPE>
tag to the XML document. For example:

<!DOCTYPE Movies SYSTEM “movies.dtd”>

Here, the XML file is identified as a Movies document, whose DTD you
can find in the file movies.dtd. Add this tag near the beginning of the
movies.xml file, right after the <?xml> tag.

Listing 5-2 shows a DTD file for the movies.xml file that was shown in
Listing 5-1.

LISTING 5-2: A DTD FILE FOR THE MOVIES.XML FILE

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie (Title, Price)>
<!ATTLIST Movie year CDATA #REQUIRED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Price (#PCDATA)>

Each of the ELEMENT tags in a DTD defines a type of element that can
appear in the document and indicates what can appear as the content for
that element type. The general form of the ELEMENT tag is this:

<!ELEMENT element (content)>

Use the rules listed in Table 5-1 to express the content.

For example, the first ELEMENT tag in the DTD I showed in Listing 5-2 says
that a Movies element consists of zero or more Movie elements. The second
ELEMENT tag says that a Movie element consists of a Title element fol-
lowed by a Price element. The third and fourth ELEMENT tags say that the
Title and Price elements consist of text data.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 737

Using a DTD738

Table 5-1 Specifying Element Content
Content Description

element* The specified element can occur zero or more times.

element+ The specified element can occur 1 or more times.

element? The specified element can occur 0 or 1 times.

element1|element2 Either element1 or element2 can appear.

element1, element2 Element1 followed by element2.

#PCDATA Text data.

ANY Any child elements are allowed.

EMPTY No child elements of any type are allowed.

If this notation looks vaguely familiar, it’s because it is derived from regular
expressions.

The ATTLIST tag provides the name of each attribute. Its general form is this:

<!ATTLIST element attribute type default-value>

Here’s a breakdown of this tag:

✦ element names the element whose tag the attribute can appear in.

✦ attribute provides the name of the attribute.

✦ type specifies what can appear as the attribute’s value. The type can be
any of the items listed in Table 5-2.

✦ default provides a default value and indicates whether the attribute is
required or optional. default can be any of the items listed in Table 5-3.

Table 5-2 Attribute Types
Element The Attribute Value . . .

CDATA Can be any character string.

(string1|string2...) Can be one of the listed strings.

NMTOKEN Must be a name token, which is a string made up of let-
ters and numbers.

NMTOKENS Must be one or more name tokens separated by white
space.

ID Is a name token that must be unique. In other words,
no other element in the document can have the same
value for this attribute.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 738

Book VIII
Chapter 5

W
orking w

ith XM
L

Processing XML in Two Ways 739

Element The Attribute Value . . .

IDREF Must be the same as an ID value used elsewhere in the
document.

IDREFS Is a list of IDREF values separated by white space.

Table 5-3 Attribute Defaults
Default Optional or Required?

#REQUIRED Required.

#IMPLIED Optional.

value Optional. This value is used if the attribute is omitted.

#FIXED value Optional. However, if included, it must be this value, and if omit-
ted, this value is used by default.

For example, here’s the ATTLIST tag declaration from movies.dtd:

<!ATTLIST Movie year CDATA #REQUIRED>

This declaration indicates that the attribute goes with the Movie element,
is named year, can be any kind of data, and is required.

Here’s an ATTLIST tag that specifies a list of possible values along with a
default:

<!ATTLIST Movie genre (SciFi|Action|Comedy|Drama)
Comedy>

This form of the ATTLIST tag lets you create an attribute that’s similar to an
enumeration, with a list of acceptable values.

Processing XML in Two Ways
In general, you can process XML documents in a Java program with two
approaches. These two approaches are referred to as DOM and SAX:

✦ DOM: DOM stands for Document Object Model. The basic idea of DOM is
that you read an entire XML document from a file into memory, where
the document is stored as a collection of objects that are structured as a
tree. You can then process the elements of the tree (called nodes) however
you wish. If you change any of the nodes, you can write the document
back to a file.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 739

Processing XML in Two Ways740

✦ SAX: SAX stands for Simple API for XML. SAX is a read-only technique for
processing XML that lets you read the elements of an XML document
from a file and react to them as they come. Because SAX doesn’t require
that you store an entire XML document in memory at one time, it’s often
used for very large XML documents.

In this chapter, I cover the basics of using DOM to retrieve information from
an XML document. DOM represents an XML document in memory as a tree
of Node objects. For example, Figure 5-1 shows a simplified DOM tree for an
XML document that has two Movie elements. Notice that the root element
(Movies) is a node, each Movie element is a node, and each Title and
Price element is a node. In addition, text values are stored as child nodes
of the elements they belong to. Thus, the Title and Price elements each
have a child node that contains the text for these elements.

Document

Movies

Title

Text
It’s a Wonderful Life

Price

Text
14.95

Movie
year=1946

Title

Text
The Great Race

Price

Text
12.95

Movie
year=1965

Figure 5-1:
A DOM
document
tree.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 740

Book VIII
Chapter 5

W
orking w

ith XM
L

Reading a DOM Document 741

Reading a DOM Document
Before you can process a DOM document, you have to read the document into
memory from an XML file. You’d think that would be a fairly straightforward
proposition, but unfortunately it involves some pretty strange incantations.
Rather than go through all the classes and methods you have to use, I just
look at the finished code for a complete method that accepts a String that
contains a filename as a parameter and returns a document object as its
return value. Along the way, you find out what each class and method does.

Here’s the code:

private static Document getDocument(String name)
{

try
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setIgnoringComments(true);

factory.setIgnoringElementContentWhitespace(true);
factory.setValidating(true);
DocumentBuilder builder =

factory.newDocumentBuilder();
return builder.parse(new InputSource(name));

}
catch (Exception e)
{

System.out.println(e.getMessage());
}
return null;

}

Creating a document builder factory
The first statement of the preceding example calls the newInstance
method of the DocumentBuilderFactory class to create a new
DocumentBuilderFactory object. The job of the document builder fac-
tory is to create document builder objects that are able to read XML input
and create DOM documents in memory.

Why not just call the DocumentBuilderFactory constructor? It turns out
that DocumentBuilderFactory is an abstract class, so it doesn’t have a
constructor. newInstance is a static method that determines which class
to create an instance of based on the way your system is configured.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 741

Reading a DOM Document742

Configuring the document builder factory
After you get a document builder factory, you can configure it so it reads
the document the way you want. The next three statements configure three
options that are applied to document builders created by this factory object:

factory.setIgnoringComments(true);
factory.setIgnoringElementContentWhitespace(true);
factory.setValidating(true);

Here’s a closer look at these statements:

✦ The setIgnoringComments method tells the document builder to not
create nodes for comments in the XML file. Most XML files don’t con-
tain comments, but if they do, they’re not part of the data represented by
the document, so they can be safely ignored. Setting this option causes
them to be ignored automatically. (If you don’t set this option, a node is
created for each comment in the document. And because you can’t pre-
dict when or where comments appear, your program has to check every
node it processes to make sure it isn’t a comment.)

✦ The setIgnoringElementContentWhitespace method causes the
document builder to ignore any white space that isn’t part of a text
value. If you don’t include this option, the DOM document includes nodes
that represent white space. The only thing these white space nodes are
good for is making the DOM document harder to process, so you should
always set this option.

✦ The setValidating method tells the document builder to validate the
input XML if it specifies a DTD. Validating the input can also dramatically
simplify your program, because you know that the DOM document con-
forms to the requirements of the DTD. For example, if you’re processing
the movies.xml file shown earlier in Listing 5-1, you know for certain
that the first child of a Movie element is a Title element and the second
child is a Price element. Without the validation, all you know is that the
first child of a Movie element should be a Title element, but you have
to check it to make sure.

Creating a document builder and the document
After you set the options, you can call the newDocumentBuilder method
to create a document builder:

DocumentBuilder builder =
factory.newDocumentBuilder();

Here, the document builder is referenced by a variable named builder.

Finally, you can create the DOM document by calling the parse method of
the document builder. This method accepts an InputSource object as a

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 742

Book VIII
Chapter 5

W
orking w

ith XM
L

Reading DOM Nodes 743

parameter. Fortunately, the InputSource class has a constructor that takes
a filename parameter and returns an input source linked to the file. So you
can create the input source, parse the XML file, create a DOM document, and
return the DOM document to the caller all in one statement:

return builder.parse(new InputSource(name));

Note that several of these methods throw exceptions. In particular,
newDocumentBuilder throws ParserConfigurationException and
parse throws IOException and SAXException. To keep this example
simple, I caught all exceptions in one catch clause and printed the excep-
tions message to the console.

Using the getDocument method
By adding the getDocument method, you can create a DOM document from
a file with a single statement, like this:

Document doc = getDocument(“movies.xml”);

Here, the movies.xml file is read and a DOM document is created and
assigned to the doc variable.

Also, note that you must provide three import statements to use the
getDocument method:

import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;

DocumentBuilder and DocumentBuilderFactory are in the
javax.xml.parsers package, Document is in org.w3c.dom, and
InputSource is in org.xml.sax.

Remember how I said I wouldn’t use SAX in this chapter? I lied. The parse
method of the DocumentBuilder class uses SAX to read the XML file while
it builds the DOM object.

Reading DOM Nodes
After you have a DOM document in memory, you can easily retrieve data
from the document’s nodes. The DOM API is based on interfaces rather than
classes, so each node of the DOM document is represented by an object that
implements one or more DOM interfaces. The following paragraphs give you
an overview of the interfaces you need to work with:

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 743

Reading DOM Nodes744

✦ Document: The entire document is represented by an object that imple-
ments the Document interface. The method you use most from this
interface is getDocumentElement, which returns an Element object
that represents the document’s root node. After you have the root node,
you can then navigate to other nodes in the document to get the infor-
mation you’re looking for.

✦ Node: The Node interface represents a node in the DOM document. This
interface provides methods that are common to all nodes. Table 5-4 lists
the most useful of these methods. This table also lists some of the fields’
values that the getNodeType method can return.

✦ Element: The Element interface represents nodes that correspond to
elements in the XML document. Element extends Node, so any object
that implements Element is also a Node. Table 5-5 lists some of the
more useful methods of this interface.

✦ Text: The text content of an element is not contained in the element
itself, but in a Text node that’s stored as a child of the element. The Text
interface has a few interesting methods you may want to look up, but for
most applications, you just use the getNodeValue method inherited
from the Node interface to retrieve the text stored by a text node.

✦ NodeList: A NodeList is a collection of nodes that’s returned by
methods such as the getChildNodes method of the Node interface or
the getElementsByTagName of the Element interface. NodeList has
just two methods: item(int i), which returns the node at the specified
index, and getLength(), which returns the number of items in the list.
(Like almost every other index in Java, the first node is index 0, not 1.)

Table 5-4 The Node Interface
Method Description

NodeList getChildNodes() Gets a NodeList object that contains all of this
node’s child nodes.

Node getFirstChild() Gets the first child of this node.

Node getLastChild() Gets the last child of this node.

int getNodeType() Gets an int that indicates the type of the node. The
value can be one of the fields listed later in this table.

String getNodeValue() Gets the value of this node, if the node has a value.

Node getNextSibling() Gets the next sibling node.

Node getPrevSibling() Gets the previous sibling node.

boolean hasChildNodes() Determines whether the node has any child nodes.

Field Description

ATTRIBUTE_NODE The node is an attribute node.

CDATA_SECTION_NODE The node contains content data.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 744

Book VIII
Chapter 5

W
orking w

ith XM
L

Reading DOM Nodes 745

Field Description

COMMENT_NODE The node is a comment.

DOCUMENT_NODE The node is a document node.

ELEMENT_NODE The node is an element node.

TEXT_NODE The node is a text node.

Table 5-5 The Element Interface
Method Description

String getAttribute Gets the value of the specified attribute.
(String name)

NodeList getElementsBy Gets a NodeList object that contains all of the
TagName(String name) element nodes that are contained within this element

and have the specified name.

boolean hasAttribute Determines whether the element has the specified
(String name) attribute.

Processing elements
Assuming you use a DTD to validate the XML file when you build the document,
you can usually navigate your way around the document to pick up informa-
tion you need without resorting to NodeList objects. For example, here’s a
routine that simply counts all the Movie elements in the movies.xml file
(shown earlier in Listing 5-1) after it’s been parsed into a Document object
named doc:

int count = 0;
Element root = doc.getDocumentElement();
Node movie = root.getFirstChild();
while (movie != null)
{

count++;
movie = movie.getNextSibling();

}
System.out.println(“There are “ + count + “ movies.”);

This method first calls the getFirstChild method to get the first child of
the root element. Then, it uses each child element’s getNextSibling
method to get the next element that’s also a child of the root element.

If you run a program that contains these lines, the following line appears on
the console:

There are 10 movies.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 745

Reading DOM Nodes746

This program doesn’t do anything with the Movie elements other than count
them, but you soon see how to extract data from the Movie elements.

An alternative way to process all the elements in the movies.xml file is to
use the getChildNodes method to return a NodeList object that contains
all the elements. You can then use a for loop to access each element individu-
ally. For example, here’s a snippet of code that lists the name of each element:

Element root = doc.getDocumentElement();
NodeList movies = root.getChildNodes();
for (int i = 0; i < movies.getLength(); i++)
{

Node movie = movies.item(i);
System.out.println(movie.getNodeName());

}

Here, the item method is used in the for loop to retrieve each Movie ele-
ment. If you run a program that contains these lines, ten lines with the word
Movie are displayed in the console window.

Getting attribute values
To get the value of an element’s attribute, call the getAttribute method
and pass the name of the attribute as the parameter. This returns the string
value of the attribute. You can then convert this value to another type if nec-
essary. Note that the value may include some white space, so you should run
the value through the trim method to get rid of any superfluous white space.

Here’s an example that gets the year attribute from each movie in the
movies.xml file and determines the year of the oldest movie in the
collection:

Element root = doc.getDocumentElement();
Element movie = (Element)root.getFirstChild();
int oldest = 9999;
while (movie != null)
{

String s = movie.getAttribute(“year”);
int year = Integer.parseInt(s);
if (year < oldest)

oldest = year;
movie = (Element)movie.getNextSibling();

}
System.out.println(“The oldest movie in the file “

+ “is from “ + oldest + “.”);

The year attribute is extracted with these two lines of code:

String s = movie.getAttribute(“year”);
int year = Integer.parseInt(s);

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 746

Book VIII
Chapter 5

W
orking w

ith XM
L

Reading DOM Nodes 747

The first line gets the string value of the year attribute, and the second line
converts it to an int.

Notice the extra casting that’s done in this method. It’s necessary because
the movie variable has to be an Element type so you can call the
getAttribute method. However, the getNextSibling method returns
a Node, not an Element. As a result, the compiler doesn’t let you assign the
node to the movie variable unless you first cast it to an Element.

Getting child element values
You might be surprised to learn that the text content of an element is not
stored with the element. Instead, it’s stored in a child node of type Text.
For example, consider the following XML:

<Title>The Princess Bride</Title>

This element results in two nodes in the XML document: an Element node
named Title, and a Text node that contains the text The Princess
Bride.

Thus, if you have a Title element in hand, you must first get the Text ele-
ment before you can get the text content. For example

Node textElement = titleElement.getFirstChild();
String title = textElement.getNodeValue();

If you prefer to write your code a little more tersely, you can do it in a single
statement like this:

String title =
titleElement.getFirstChild().getNodeValue();

If you find this incantation a little tedious and you’re doing a lot of it in your
program, write yourself a little helper method. For example

private static String getTextValue(Node n)
{

return n.getFirstChild().getNodeValue();
}

Then, you can get the text content for an element by calling the
getTextValue method, like this:

String title = getTextValue(titleElement);

After you get the text content, you can parse it to a numeric type if you
need to.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 747

Putting It All Together: A Program That Lists Movies748

Putting It All Together: A Program That Lists Movies
Now that you’ve seen the various interfaces and classes you use to get
data from an XML file, Listing 5-3 shows a complete program that reads the
movies.xml file (shown earlier in Listing 5-1) and lists the title, year, and
price of each movie on the console. When you run this program, the follow-
ing appears on the console:

1946: It’s a Wonderful Life ($14.95)
1965: The Great Race ($12.95)
1974: Young Frankenstein ($16.95)
1975: The Return of the Pink Panther ($11.95)
1977: Star Wars ($17.95)
1987: The Princess Bride ($16.95)
1989: Glory ($14.95)
1995: Apollo 13 ($19.95)
1997: The Game ($14.95)
2001: The Lord of the Rings:The Fellowship of the Ring

($19.95)

LISTING 5-3: READING AN XML DOCUMENT

import java.io.*; ➞ 1
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.w3c.dom.*;
import java.text.*;

public class ListMoviesXML
{

private static NumberFormat cf =
NumberFormat.getCurrencyInstance();

public static void main(String[] args) ➞ 12
{

Document doc = getDocument(“movies.xml”);

Element root = doc.getDocumentElement();

Element movieElement = (Element)root.getFirstChild();
Movie m;
while (movieElement != null)
{

m = getMovie(movieElement);
String msg = Integer.toString(m.year);
msg += “: “ + m.title;
msg += “ (“ + cf.format(m.price) + “)”;
System.out.println(msg);
movieElement =

(Element)movieElement.getNextSibling();
}

}

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 748

Book VIII
Chapter 5

W
orking w

ith XM
L

Putting It All Together: A Program That Lists Movies 749

private static Document getDocument(String name) ➞ 33
{

try
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setIgnoringComments(true);
factory.setIgnoringElementContentWhitespace(true);
factory.setValidating(true);
DocumentBuilder builder =

factory.newDocumentBuilder();
return builder.parse(new InputSource(name));

}
catch (Exception e)
{

System.out.println(e.getMessage());
}
return null;

}

private static Movie getMovie(Element e) ➞ 53
{

// get the year attribute
String yearString = e.getAttribute(“year”);
int year = Integer.parseInt(yearString);

// get the Title element
Element tElement = (Element)e.getFirstChild();
String title = getTextValue(tElement).trim();

// get the Price element
Element pElement =

(Element)tElement.getNextSibling();
String pString = getTextValue(pElement).trim();
double price = Double.parseDouble(pString);

return new Movie(title, year, price);
}

private static String getTextValue(Node n) ➞ 72
{

return n.getFirstChild().getNodeValue();
}

private static class Movie ➞ 77
{

public String title;
public int year;
public double price;

public Movie(String title, int year, double price)
{

this.title = title;
this.year = year;
this.price = price;

}
}

}

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 749

Putting It All Together: A Program That Lists Movies750

Because all the code in this program is elsewhere in this chapter, the follow-
ing paragraphs just provide a simple description of what each method in this
program does:

➞ 1 Wow, that’s a lot of packages to import. Too bad Java’s designers
couldn’t have put all of these XML classes in one big package.

➞12 The main method starts by calling the getDocument method to get
a Document object from the file movies.xml. Then, it gets the root
element and uses a while loop to spin through all the child elements,
which you know to be Movie elements because the document was
validated when it was parsed. As each Movie element is processed, it
is passed to the getMovie method, which extracts the year attrib-
ute and the title and price elements and returns a Movie object.
Then, the movie is printed on the console.

➞33 The getDocument method accepts a filename as a parameter and
returns a Document object. Before it creates the DocumentBuilder
object, it sets the configuration options so that comments and white
space are ignored and the XML file is validated.

➞53 The getMovie method is passed an Element object that represents
a Movie element. It extracts the year attribute, gets the text value of
the title element, and parses the text value of the price element
to a double. It then uses these values to create a new Movie object,
which is then returned to the caller.

➞72 The getTextValue method is simply a little helper method that
gets the text content from a node. This method assumes that the
node has a child node that contains the text value, so you shouldn’t
call this method unless you know that to be the case. (Because the
XML document was validated, you do.)

➞77 The Movie class is a private inner class that represents a single movie.
It uses public fields to hold the title, year, and price, and provides a
simple constructor that initializes these fields.

54_58961X bk08ch05.qxd 3/29/05 3:33 PM Page 750

Book IX

Fun and Games

55_58961X pt09.qxd 3/29/05 3:33 PM Page 751

Contents at a Glance
Chapter 1: Fun with Fonts and Colors ..753

Chapter 2: Drawing Shapes ..767

Chapter 3: Using Images and Sound..789

Chapter 4: Animation and Game Programming ..803

55_58961X pt09.qxd 3/29/05 3:33 PM Page 752

Chapter 1: Fun with Fonts
and Colors

In This Chapter
� Setting the font of a text control

� Getting a list of available fonts

� Playing with colors

� Using system colors

� Setting foreground and background colors

In this chapter, I look at ways of dressing up the text that appears in
Swing controls. In particular, I show you how to change the font that text

is displayed in — including bold, italic, and size — as well as how to change
the color of your text.

Most of the examples work with labels, but the methods you call to set the
font and color are available to all Swing components because they’re defined
by the Component class, which all Swing components inherit.

Also, the information about fonts and colors that I present in this chapter
also applies to graphics created with the methods of the Graphics2D class
in Book IX, Chapter 3.

Working with Fonts
In Java, a font is represented by the Font class. Each Font object has three
basic characteristics: the font name, a style identifier (plain, bold, italic, or
bold and italic), and a point size.

Although the Font class has a ton of methods, you probably won’t use
them unless you’re writing a desktop publishing program in Java. Instead,
you can get by with the basic constructor, which has this form:

Font(String name, int style, int size)

For example, this statement creates a Font object for a font named Papyrus:

Font(“Papyrus”, Font.PLAIN, 14)

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 753

Working with Fonts754

Here, the font style is plain, and the size is 14-point.

Realizing that the Font class constructor doesn’t really create a font is
important. Instead, it creates a Font object that represents a font that’s
already installed on your computer. Creating a Font object with the name
“Comic Strip” doesn’t actually create a font named Circus Clowns unless
that font is already installed on the computer.

Using font names
The name parameter specifies the name of the installed font you want to
use. For example, if you specify Times New Roman, the Times New Roman
font is used.

Coding string literals for specific fonts is usually not a good idea, because
you have no way to guarantee that every computer has the exact font you
specify. You can get around that problem in two ways:

✦ Let the user configure the fonts by picking from a list of available fonts.
Check out the later section, “Getting a list of all available fonts.”

✦ Use one of several logical font names that Java provides in an attempt to
let you specify fonts generically. Table 1-1 lists the logical font names.
You don’t get much choice when you use logical font names, but at least
you can choose between a basic serif font, sans-serif font, and mono-
spaced font. And you can use the Dialog and Dialog Input fonts
to set the font used in dialog boxes.

Table 1-1 Logical Font Names
Logical font Description

Serif A basic serif font. Times New Roman on Windows, usually
Times Roman on other systems.

SansSerif A sans-serif font. Arial on Windows, usually Helvetica on non-
Windows systems.

Monospaced A monospaced font. Courier New on Windows, usually Courier
on non-Windows systems.

Dialog The font used to display text in system dialog boxes.

DialogInput The font used for text input in system dialog boxes.

Using font styles
Fonts can have one of four styles: plain, bold, italic, and bold-italic. To set
the font style, you use the following three constants as the second param-
eter to the Font class constructor:

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 754

Book IX
Chapter 1

Fun w
ith Fonts

and
Colors

Working with Fonts 755

Font.BOLD
Font.ITALIC
Font.PLAIN

For example, here’s how you create a Font object for 24-point JSL Ancient
Bold:

Font(“JSL Ancient”, Font.BOLD, 24)

You may have noticed that bold-italic has no constant. To create a bold-italic
font, you combine the Font.BOLD and Font.ITALIC constants with a |
operator, like this:

Font(“Garamond”, Font.BOLD | Font.ITALIC, 12)

Here, the Font object is Garamond, bold and italic, and 12-point.

Setting a component’s font
To set the font used to display a component, just call the component’s
setFont method and pass it a Font object. For example:

JLabel textLabel = new JLabel(“Arghh, Matey”);
Font f = new Font(“JSL Ancient”, Font.PLAIN, 16);
textLabel.setFont(f);

Here, the font of the label named textLabel is set to 16-point JSL Ancient.
(JSL Ancient is one of my personal favorites; it’s used in the Pirates of the
Caribbean ride at Disneyland.)

If the font is used for only one component, you can just create the compo-
nent right in the setFont method call:

textLabel.setFont(new Font(“JSL Ancient”, Font.PLAIN, 16));

If you want a component to inherit the font used by the container that
holds it (such as a panel), call the component’s setFont method with
the parameter set to null. For example, here’s code that sets the font for
a pair of buttons in a panel named panel1 to JSL Ancient:

JPanel panel1 = new JPanel();
panel1.setFont(new Font(“JSL Ancient”, Font.PLAIN, 16));

JButton b1 = new JButton(“Jolly”);
b1.setFont(null);
panel1.add(b1);

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 755

Working with Fonts756

JButton b2 = new JButton(“Roger”);
b2.setFont(null);
panel1.add(b2);

In this example, both buttons have their fonts set to null, so they both pick
up the font of their parent panel1.

Getting a list of all available fonts
If you want to let the user pick a font, you want to get a list of all the avail-
able fonts on the system so you can put the font names in a combo box.
To do that, you first have to get an object called a GraphicsEnvironment
that represents the graphics environment the program is running in.
The GraphicsEnvironment class has a static method named
getLocalGraphicsEnvironment that does this for you:

GraphicsEnvironment g;
g = GraphicsEnvironment.getLocalGraphicsEnvironment();

Note that the GraphicsEnvironment class is in the java.awt package,
so you need to provide an import statement to import that package.

After you have a GraphicsEnvironment object, you can call its
getAvailableFontFamilyNames method, which returns an array of
strings containing all the font names that are available on the system. For
example:

String[] fonts;
fonts = g.getAvailableFontFamilyNames();

You can then use this array in the constructor of a combo box, like this:

JComboBox fontComboBox = new JComboBox(fonts);

Then, you can create a font from the name selected by the user with code
similar to this:

String name = (String) fontComboBox.getSelectedItem();
Font f = new Font(name, Font.PLAIN, 12);

A program that plays with fonts
So that you can see how these elements work together, Listing 1-1 presents a
simple program that lets the user choose a font, style, and size for the sample
text that’s displayed. Figure 1-1 shows this program in action. Whenever
the user chooses a font or size from one of the combo boxes or checks or
unchecks one of the check boxes, the font used to display the text at the top
of the form is changed accordingly.

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 756

Book IX
Chapter 1

Fun w
ith Fonts

and
Colors

Working with Fonts 757

LISTING 1-1: A PROGRAM THAT PLAYS WITH FONTS

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class Fonts extends JFrame
{

public static void main(String [] args)
{

new Fonts();
}

private JLabel sampleText; ➞ 12

private JComboBox fontComboBox; ➞ 14
private JComboBox sizeComboBox;
private JCheckBox boldCheck, italCheck;

private String[] fonts; ➞ 18

public Fonts()
{

this.setSize(500,150);
this.setTitle(“Fun with Fonts “);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

FontListener fl = new FontListener(); ➞ 26

sampleText = new JLabel(
“All work and no play makes Jack a dull boy”);

this.add(sampleText, BorderLayout.NORTH); ➞ 30

GraphicsEnvironment g; ➞ 32
g = GraphicsEnvironment

.getLocalGraphicsEnvironment();
fonts = g.getAvailableFontFamilyNames();

JPanel controlPanel = new JPanel(); ➞ 37

fontComboBox = new JComboBox(fonts); ➞ 39
fontComboBox.addActionListener(fl);
controlPanel.add(new JLabel(“Family: “));
controlPanel.add(fontComboBox);

Integer[] sizes = {7, 8, 9, 10, 11, 12, ➞ 44
14, 18, 20, 22, 24, 36};

continued

Figure 1-1:
The Fonts
program in
action.

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 757

Working with Fonts758

LISTING 1-1 (CONTINUED)

sizeComboBox = new JComboBox(sizes);
sizeComboBox.setSelectedIndex(5);
sizeComboBox.addActionListener(fl);
controlPanel.add(new JLabel(“Size: “));
controlPanel.add(sizeComboBox);

boldCheck = new JCheckBox(“Bold”); ➞ 52
boldCheck.addActionListener(fl);
controlPanel.add(boldCheck);

italCheck = new JCheckBox(“Ital”); ➞ 56
italCheck.addActionListener(fl);
controlPanel.add(italCheck);

this.add(controlPanel, BorderLayout.SOUTH); ➞ 60
fl.updateText();

this.setVisible(true);
}

private class FontListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

updateText(); ➞ 70
}

public void updateText() ➞ 73
{

String name
= (String) fontComboBox.getSelectedItem();

Integer size
= (Integer)sizeComboBox.getSelectedItem();

int style;
if (boldCheck.isSelected()

&& italCheck.isSelected())
style = Font.BOLD | Font.ITALIC;

else if (boldCheck.isSelected())
style = Font.BOLD;

else if (italCheck.isSelected())
style = Font.ITALIC;

else
style = Font.PLAIN;

Font f = new Font(name, style,
size.intValue());

sampleText.setFont(f);
}

}
}

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 758

Book IX
Chapter 1

Fun w
ith Fonts

and
Colors

Working with Fonts 759

The following paragraphs hit the high points of this program:

➞12 The label whose font is changed when the user makes a selection.

➞14 The controls that the user works with to pick the font, size, and style.

➞18 The fonts variable is an array of strings that is used to hold the
name of each font available on the system.

➞26 The fl variable holds a reference to the action listener object that
handles action events for both combo boxes and both check boxes.

➞30 The label that contains the sample text is added to the North region
of the frame.

➞32 These lines get the GraphicsEnvironment object, and then use it
to populate the fonts array with the names of the fonts available on
the system.

➞37 A panel is used to hold the two combo box and two check box
controls.

➞39 These lines create the font combo box and add it to the panel.

➞44 These lines create the size combo box and add it to the panel. The
combo box is filled from an array of integers that lists commonly
used point sizes. If you want, you could call setEditable(true)
to make this combo box editable. Then, the user could type any
desired font size into the combo box. To keep the application simple,
I did not make the combo box editable.

➞52 These lines create the bold check box and add it to the panel.

➞56 These lines create the italic check box and add it to the panel.

➞60 The panel is added to the South region of the frame. Then, the next
line calls the action listener’s updateText method, which applies the
currently selected font, style, and size to the label. (If you don’t call
this method here, the label is initially displayed with the default font,
not with the font indicated by the initial value of the font combo box.)

➞70 The actionPerformed method of the action listener class simply
calls updateText.

➞73 The updateText method changes the font of the sampleText
label to the font selected by the user. First, it gets the name selected
in the font combo box. Next, it gets the size selected by the user in
the size combo box. Because combo boxes return objects, the
selected item is cast to an Integer. Next, the settings of the two
check boxes are evaluated to determine how to set the style vari-
able. Finally, a new Font object is created and assigned to the
sampleText label.

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 759

Working with Color760

Working with Color
In Java, a particular color is represented by an instance of the Color class.
Every color is a unique combination of three different constituent colors:
red, green, and blue. Each constituent is represented by an integer that
ranges from 0 to 255, with zero meaning the constituent color is completely
absent and 255 meaning the color is completely saturated with the con-
stituent color.

In the following sections, you discover how to use the Color class to create
color objects. Then, you apply colors to Swing components. And finally, you
use a handy Swing dialog box called the Color Chooser.

Creating colors
One way to create a Color object is to call the Color constructor, passing
it the red, green, and blue values you want to use. For example:

Color c = new Color(255, 255, 0);

Here, a color with full red, full green, and no blue is created. This results in
bright yellow.

If all three constituent colors are zero, the resulting color is black. If all three
are 255, the result is white. And if all three values are the same, somewhere
between 0 and 255, the result is a shade of gray.

Because color numbers can be confusing to work with and hard to remember,
the Color class provides several static constants that give you pre-defined
colors. Table 1-2 lists these constants. For example, here’s a statement that
creates a Color object that represents the color red:

Color c = Color.RED;

Table 1-2 Constants Defined by the Color Class
BLACK GRAY MAGENTA RED

BLUE GREEN ORANGE WHITE

CYAN LIGHT_GRAY PINK YELLOW

DARK_GRAY

Colors also have a characteristic called alpha, which indicates the trans-
parency of the color. By default, alpha is set to 255, meaning that the color
is not transparent. If you want to set a different alpha value, you can call a

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 760

Book IX
Chapter 1

Fun w
ith Fonts

and
Colors

Working with Color 761

second Color constructor that accepts the alpha value as a fourth param-
eter. For example:

Color c = new Color(255, 0, 0, 128);

Here, the color is semitransparent.

The following paragraphs describe a few additional details worth knowing
about the Color class:

✦ Color objects are immutable; there are no set methods that let you
change a color.

✦ You can get the red, green, blue, and alpha values by using the getRed,
getGreen, getBlue, and getAlpha methods.

✦ You can use the brighter method to create a color that is brighter
than the current color. Likewise, the darker method returns a color
object that’s a little darker than the current color. These methods work
by increasing the red, green, and blue values but keeping them in pro-
portion to one another.

✦ If you call the Color constructor with a parameter that’s less than
zero or greater than 255, IllegalArgumentException is thrown.
As a result, you need to check the parameter values before calling the
constructor.

✦ The Color class provides an alternative constructor that lets you set
the constituent colors using float values between 0.0 and 1.0.

✦ The Color class is in the java.awt package, so you need an import
statement that specifies either java.awt.Color or java.awt.*.

Using system colors
You can use the SystemColor class to get colors that correspond to
the colors configured by the underlying operating system for various
GUI elements, such as menu text or the desktop background. Note that
the SystemColor class extends the Color class, so you can use
SystemColor objects with the setForeground and setBackground
methods or with any other methods that call for Color objects.

The SystemColor class has a bevy of static methods that return
SystemColor objects for the colors used by different parts of the system’s
GUI interface, as listed in Table 1-3. For example, here’s a statement that sets
the background color of a button to the color used as the background for
tooltips:

button1.setBackground(SystemColor.info);

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 761

Working with Color762

Table 1-3 SystemColor Methods
Field Description

static SystemColor Background color of the active window’s
activeCaption title bar.

static SystemColor Border color of the active window’s title bar.
activeCaptionBorder

static SystemColor Text color of the active window’s title bar.
activeCaptionText

static SystemColor control Background color used for controls.

static SystemColor Text color used for controls.
controlText

static SystemColor desktop Background color used for the desktop.

static SystemColor Background color used for the title bar of
inactiveCaption inactive windows.

static SystemColor Border color used for the title bar of inactive
inactiveCaptionBorder windows.

static SystemColor Text color used for the title bar of inactive
inactiveCaptionText windows.

static SystemColor info Background color used for tooltips.

static SystemColor infoText Text color used for tooltips.

static SystemColor menu Background color used for menus.

static SystemColor menuText Text color used for menus.

static SystemColor Background color used for highlighted text.
textHighlight

static SystemColor Text color used for highlighted text.
textHighlightText

static SystemColor Text color used for inactive text.
textInactiveText

static SystemColor textText Text color used for text boxes and other text
controls.

static SystemColor Background color used for highlighted text.
extHighlight

static SystemColor window Background color used for windows.

static SystemColor Border color used for windows.
windowBorder

static SystemColor Text color used for windows.
windowText

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 762

Book IX
Chapter 1

Fun w
ith Fonts

and
Colors

Working with Color 763

Setting the color of Swing components
Every Swing component has two methods that let you set the colors used
to draw the component: setForeground and setBackground. The
setForeground method sets the color used to draw the component’s text,
and the setBackground method sets the color that fills in behind the text.

For example, here’s code that sets the foreground color of a label to red:

JLabel errorMessage = new JLabel(“Oops!”);
errorMessage.setForeground(Color.RED);

As with fonts, you can force a component to use the color of its container by
setting the color to null, like this:

textLabel.setForeground(null);

Then, if you add textLabel to a panel, the label uses the panel’s foreground
color.

Using a color chooser
The JColorChooser class creates a standardized dialog box that lets the
user pick a color. This dialog box includes three tabs that let the user choose
one of three methods to pick a color:

✦ The Swatches tab, shown in Figure 1-2, provides 279 different pre-
defined color choices.

✦ The HSB tab lets the user select the color by specifying the hue (that is,
the base color), saturation (the amount of the color), and brightness.

✦ The RGB tab lets the user specify the red, green, and blue values for the
color.

All you need is one line of code to display a Color Chooser dialog box. Just
call the static showDialog method, which takes three parameters:

✦ The parent component to use for the dialog box (null to center the
dialog box on-screen)

✦ The text to display in the title bar

✦ The initial color

The showDialog method returns the color selected by the user, or null if
the user cancels without selecting a color.

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 763

Working with Color764

Here’s an example:

Color c = JColorChooser.showDialog(null, “Choose a
Color”,
sampleText.getForeground());

Just to prove how easy it is to use a color chooser, Listing 1-2 shows the
complete code for a program that uses a color chooser. This program dis-
plays the frame shown in Figure 1-3; when the user clicks the Choose Color
button, a color chooser just like the one in Figure 1-2 appears. Then, when
the user selects a color and clicks OK, the color selected by the user is
applied to the label.

LISTING 1-2: A PROGRAM THAT USES A COLOR CHOOSER

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class ColorChooser extends JFrame
{

public static void main(String [] args)
{

new ColorChooser();

Figure 1-3:
The Color
Chooser
program.

Figure 1-2:
A Color
Chooser
dialog box.

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 764

Book IX
Chapter 1

Fun w
ith Fonts

and
Colors

Working with Color 765

}

private JLabel sampleText; ➞ 12
private JButton chooseButton;

public ColorChooser()
{

this.setSize(300,100);
this.setTitle(“Color Chooser”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel1 = new JPanel();

sampleText = new JLabel(
“All work and no play makes Jack a dull boy”);

sampleText.setBackground(null);
panel1.add(sampleText);

chooseButton = new JButton(“Choose Color”);
chooseButton.addActionListener(new ButtonListener());
panel1.add(chooseButton);

this.add(panel1);
this.setVisible(true);

}

private class ButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

Color c = JColorChooser.showDialog(null, ➞ 40
“Choose a Color”,
sampleText.getForeground());

if (c != null) ➞ 43
sampleText.setForeground(c);

}
}

}

Here are the key points to note as you peruse this program:

➞12 This label’s color is set to the value chosen by the user.

➞40 In the actionPerformed method of the action listener attached to
the button, this statement calls the static showDialog method of
the JColorChooser class to display a Color Chooser dialog box.
The color selected by the user is saved in the variable c.

➞43 If c is null, the user canceled out of the Color Chooser dialog box,
so the label’s foreground color is unchanged. Otherwise, the label’s
setForeground method is called to set the label’s color to the
color chosen by the user.

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 765

Book IX: Fun and Games766

56_58961X bk09ch01.qxd 3/29/05 3:31 PM Page 766

Chapter 2: Drawing Shapes

In This Chapter
� Creating basic shapes such as lines, rectangles, and ellipses

� Setting the fill color and stroke thickness

� Creating shapes you can see through

� Creating gradient fills

� Rotating shapes

� Drawing text on-screen

Were you one of those kids who, way back in school, passed away
the boring hours of algebra class by doodling in the margins of the

book? If so, you’re in luck. Now that you’re a grown up and you’re learning
Java programming, you don’t have to doodle in the book. Instead, you can
write programs that doodle on-screen.

This chapter is a gentle introduction to the fascinating world of drawing in
Java. The designers of Java call this feature Java 2D. With Java2D, you can
draw basic shapes such as lines, arcs, rectangles, ellipses, and so on. You can
set the style used to draw the shape’s outline, and you can fill the shape with
a solid color, a gradient fill, or text that’s created from an image. You can make
your shapes solid or transparent, and you can rotate, clip, skew, and do all
sorts of other unspeakable things to them.

Getting a Graphics Context
Before you can do any drawing with Java 2D, you have to get yourself an
object called a graphics context. The best way to do that is to place all the
code that does your drawing in the paint method of a component that’s
added to a frame or panel so it can be displayed. The paint method receives
the graphics context for the component as a parameter.

The paint method is called by Swing whenever a component needs to be
repainted for any reason. That happens when the component is first displayed,
but it can happen again if the user minimizes the window that displays the
component and then restores it, or if the user moves another window over it
and then moves that window out of the way. In addition, you can cause the
paint method to be called at any time by calling the component’s repaint
method. You should do this whenever something happens that affects the
appearance of the component.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 767

Drawing Shapes768

The graphics context object is created from a class called Graphics2D.
However, just to be ornery, the paint method is passed an object of the
Graphics class, from which Graphics2D is derived. As a result, the very
first thing you need to do in your paint method is to cast the Graphics
parameter to a Graphics2 object, like this:

public void paint(Graphics g)
{

Graphics2D g2 = (Graphics2D)g;

// more to come...
}

The Graphics2 class has a setRenderingHint method that lets you set
a variety of hints that influence how your drawings are rendered to the com-
ponent. Most of them are pretty esoteric, but one can give you dramatically
better looking graphics: the antialiasing hint. To apply it, use this statement:

g2.setRenderingHint(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

Drawing Shapes
To draw a shape, you must first create a Shape object that represents the
shape you want to draw. Java 2D provides several different classes that
implement the Shape interface. I have more to say about those classes later
in this chapter, but to get started, I create a basic rectangle:

Shape rect = new Rectangle2D.Float(10, 20, 120, 150);

This statement creates a rectangle whose upper-left corner is at (10, 20),
whose width is 120, and whose height is 150. Note that the upper-left corner
of a component is (0, 0), so this rectangle appears in the upper-left part of
the component’s display area.

Never mind about the strange incantation Rectangle2D.Float. I explain
that in the section “Creating Shapes” later in this chapter.

After you have a shape in hand, you can draw it by calling the draw method
of the graphics context, like this:

g2.draw(rect);

This method draws an outline of the shape using the current color.

Here are some ways you can tweak a shape:

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 768

Book IX
Chapter 2

Draw
ing Shapes

Drawing Shapes 769

✦ Change the color before you draw the shape: Call the setColor
method, like this:

g2.setColor(Color.RED);

Here, the color is changed to red.

✦ Change the thickness of the line used to draw the shape: Call
setStroke and pass it a new instance of the BasicStroke class.
For example:

g2.setStroke(new BasicStroke(4));

Here, the stroke thickness is set to 4.

✦ Fill a shape with color: Call the fill method. For example:

g2.fill(rect);

✦ Create a shape with both an outline and a fill color: Call both draw
and fill and change the color in between. For example:

g2.setColor(Color.BLACK);
g2.draw(rect);
g2.setColor(Color.MAGENTA);
g2.fill(rect);

Here, the rectangle is drawn with a black outline, and then filled with
magenta.

To give you an idea of how graphics programs are usually constructed,
Listing 2-1 shows a simple program that displays an ellipse. Figure 2-1 shows
the frame displayed by this program. It’s not very exciting, but I promise
things get more interesting by the end of this chapter.

I use the basic structure of this program throughout this chapter to illustrate
how graphics programming works. In particular, whenever you see code
examples that call methods on an object named g2, you can assume that
code appears inside a paint method, such as the one shown in this listing.

Figure 2-1:
The frame
displayed by
the program
in Listing
2-1.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 769

Drawing Shapes770

LISTING 2-1:THE SIMPLESHAPE PROGRAM

import javax.swing.*; ➞ 1
import java.awt.*;
import java.awt.geom.*;

public class SimpleShape extends JFrame ➞ 5
{

public static void main(String [] args) ➞ 7
{

new SimpleShape();
}

public SimpleShape() ➞ 12
{

this.setSize(300, 300);
this.setTitle(“A Simple Shape Program”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

this.add(new PaintSurface(), BorderLayout.CENTER);

this.setVisible(true);
}

private class PaintSurface extends JComponent ➞ 23
{

public void paint(Graphics g) ➞ 25
{

Graphics2D g2 = (Graphics2D)g;

g2.setRenderingHint(➞ 29
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

Shape s = new Ellipse2D.Float(➞ 33
20, 50, 250, 150);

g2.setPaint(Color.BLACK);
g2.draw(s);

}
}

}

The following paragraphs hit the important points of this program:

➞ 1 The program imports three packages: java.swing, java.awt, and
java.geom. Most programs that draw graphics need at least these
three classes, and some features may require that you import addi-
tional classes.

➞ 5 The SimpleShape class extends JFrame. However, it works
just as well as an applet by extending JApplet instead, provided
you remove the constructor statements that call methods that
aren’t defined by JApplet (in particular, setTitle and
setDefaultCloseOperation).

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 770

Book IX
Chapter 2

Draw
ing Shapes

Creating Shapes 771

➞ 7 The main method simply creates a new instance of the SimpleShape
class to get things going.

➞12 The SimpleShape constructor does the normal frame housekeeping
duties. Then, it adds an instance of the PaintSurface class to the
frame just before making the frame visible.

➞23 The PaintSurface class extends JComponent.

➞25 The paint method is overridden here. It receives a single parameter
of type Graphics, named g. Notice that the first thing this method
does is cast the Graphics parameter to a Graphics2D variable.
This parameter allows you to use features of the Graphics2D class
that aren’t available if the graphics context is treated as a Graphics
object.

➞29 After casting the graphics context object, the program sets the ren-
dering hint to use antialiasing. This results in much smoother output.

➞33 After setting the rendering hint, this program creates a shape (an
ellipse), sets the painting color to black, and draws the shape on the
component.

Creating Shapes
All the various shapes you can draw with Java 2D are created with classes
that implement the Shape interface. Although the Shape interface has
some interesting methods of its own, for now I focus on the various classes
that implement the Shape interface, listed in Table 2-1.

Table 2-1 Classes That Represent Basic Shapes
Class Constructor Description

Arc2D.Float(float x, Creates an arc, which is a segment of an ellipse
float y, float w, defined by the first four parameters. start is
float h, float start, the starting angle of the arc in degrees, extent
float extent, int type) is the angular extent of the arc, and type is the

type of arc to draw. Type can be OPEN, CHORD,
and PIE.

Ellipse2D.Float(float x, Creates an ellipse that fits within the rectangle
float y, float w, whose top-left corner is at (x, y), whose width is w
float h) and whose height is h. To create a circle, specify

the same value for w and h.

Line2D.Float(float x1, Creates a line from (x1, y1) to (x2, y2).
float y1, float x2,
float y2)

Line2D.Float(Point2D p1, Creates a line from p1 to p2.
Point2D p2)

(continued)

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 771

Creating Shapes772

Table 2-1 (continued)
Class Constructor Description

Rectangle2D.Float(float Creates a rectangle whose top-left corner is at
x, float y, float w, (x, y), whose width is w, and whose height is h.
float h)

RoundRectangle2D.Float Creates a rounded rectangle whose top-left corner
(float x, float y, float is at (x, y), whose width is w, and whose height is
w, float h, float arcw, h. The arcw and arch parameters specify the
float arch) width and height of the corner arcs.

One complication you’ll immediately notice about using these classes is that
the class names are weird. For example, the class for creating a rectangle is
Rectangle2D.Float. Here’s why: The Float class is actually an inner
class of the Rectangle2D class, which is abstract. What’s not shown in the
table is that each of these classes also has an inner class named Double that
lets you represent shapes with more precision. For most purposes, float
precision is adequate, but you may need to use the Double classes if you’re
working on an application that requires high precision to represent shapes.

Figure 2-2 shows several of these shapes drawn in a frame. The code that cre-
ated this figure is shown in Listing 2-2, later in the chapter. Before examining
the code in detail, however, I describe how you use each of the constructors
listed in Table 2-1 to create these shapes.

Creating lines
The most basic type of shape is a line, created with the Line2D.Float
class. To create a line, you specify the x and y coordinates of the start and
end of the line. For example:

Shape line1 = new Line2D.Float(0, 0, 100, 200);

Here, a line that goes from (0,0) to (100, 200) is created.

The Line2D.Float class has an alternate constructor that accepts
Point2D objects for its parameters. Point2D is also an abstract class with
inner classes named Float and Double, so you must use Point2D.Float
or Point2D.Double to actually create a Point2D object. For example,
here’s the same line created using Point2D objects:

Point2D start = new Point2D.Float(0, 0);
Point2D end = new Point2D.Float (100, 200);
Shape line1 = new Line2D.Float(start, end);

The grid lines in Figure 2-2 were drawn by line shapes inside for loops,
like this:

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 772

Book IX
Chapter 2

Draw
ing Shapes

Creating Shapes 773

for (int i = 0; i < getSize().width; i += 10)
g2.draw(new Line2D.Float(i, 0, i,
getSize().height));

for (int i = 0; i < getSize().height; i += 10)
g2.draw(new Line2D.Float(0, i, getSize().width, i));

The first for loop draws the vertical lines, and the second draws the hori-
zontal lines.

Creating rectangles
A rectangle requires an (x, y) starting point and a width and height. For exam-
ple, here’s the code that creates the first rectangle shown in Figure 2-2:

Shape rect1 = new Rectangle2D.Float(10, 10, 60, 80);

Here, the rectangle starts at (10, 10). Its width is 60, and its height is 80.

Java2D also provides a RoundRectangle2D class that lets you create rectan-
gles with rounded corners. The constructor for this class takes two additional
parameters that specify the width and height of the arc used to draw the cor-
ners. For example, here’s the rounded rectangle in the middle of the first row
of shapes in Figure 2-2:

Shape round1 = new RoundRectangle2D.Float(
110, 10, 80, 80, 10, 10);

Here, the corners are rounded with an arc whose height and width are both 10.

You can create some interesting shapes by using unequal values for the arc’s
width and height. For example, here’s the code for the third shape in the first
row of Figure 2-2:

Figure 2-2:
A bunch of
shapes.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 773

Creating Shapes774

Shape round2 = new RoundRectangle2D.Float(210, 10, 60,
80, 50, 75);

Here, the arc’s width is 50, and its height is 75.

Creating ellipses
An ellipse is a round shape that fits within a rectangular area. Thus, the con-
structor for the Ellipse2D.Float class is similar to the Rectangle2D.
Float constructor. Here’s an example that creates an ellipse where the
bounding rectangle is a square:

Shape ellipse1 = new Ellipse2D.Float(10, 110, 80, 80);

Note that if the bounding rectangle happens to be a square, the ellipse is a
circle. This one is the first shape in the second row in Figure 2-2. Here’s the
code for the second ellipse in the figure:

Shape ellipse2 = new Ellipse2D.Float(110, 110, 80, 40);

Here, the ellipse fits inside a rectangle whose width is 80 and height is 40.
Thus, the ellipse is short and wide, kind of like me. If I ate a little less and
exercised a little more, maybe I’d look more like the third ellipse, created
with this code:

Shape ellipse3 = new Ellipse2D.Float(210, 110, 40, 80);

Creating arcs
Another useful type of shape is an arc, which is a segment of an ellipse. To
create an arc, you supply the bounding rectangle that contains the ellipse.
Here are the parameters you need to specify:

✦ The starting angle for the arc in degrees — 0 is due east, or 3 o’clock as
they say in the movies.

✦ The extent, which is an angle that represents how much of the ellipse the
arc spans. This too is specified in degrees. The important thing to know
is that the arc travels counterclockwise from the starting point. So if you
specify 0 as the starting point and 90 as the extent, the arc travels from
3 o’clock to 12 o’clock high.

✦ One of three arc types: Arc2D.OPEN indicates that you want to draw
just the arc itself. Arc2D.CHORD means you want to draw the arc, and
then connect the ends with a straight line to create a closed shape.
Arc2D.PIE means you want to connect the ends with straight lines
back to the center of the ellipse to create a shape that looks like a piece
of pie.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 774

Book IX
Chapter 2

Draw
ing Shapes

Creating Shapes 775

Here’s an example that creates the first arc shown in the figure:

Shape arc1 = new Arc2D.Float(10, 210, 80, 80, 90, 90,
Arc2D.OPEN);

The second arc is created with this statement:

Shape arc1 = new Arc2D.Float(110, 210, 80, 80, 0, 180,
Arc2D.CHORD);

And the third arc (the pie slice) is created by this statement:

Shape arc1 = new Arc2D.Float(210, 210, 45, 180, 45, 90,
Arc2D.PIE);

Looking at the ShapeMaker program
Now that you’ve seen how to create a variety of shapes, you’re ready to take
a glance at Listing 2-2, which draw the shapes that were shown earlier in
Figure 2-2. This program relies on a very useful technique for any program
that works with more than a few shapes. Instead of creating and drawing
each shape separately in the paint method, the shapes are stored in
an ArrayList object of type Shape. The shapes are created in the
PaintComponent constructor, so the code that creates the shapes is exe-
cuted only once. Then, in the paint method, an enhanced for loop is used
to draw each shape in the ArrayList. This technique is especially handy
for programs that let the user draw shapes. Each time the user draws a new
shape, you just add the shape to the ArrayList. Then, whenever the
paint method is called, all the shapes are drawn.

LISTING 2-2 THE SHAPEMAKER PROGRAM

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.awt.geom.*;
import java.util.*;

public class ShapeMaker extends JFrame
{

public static void main(String [] args)
{

new ShapeMaker();
}

public ShapeMaker()
{

this.setSize(300, 300);
this.setTitle(“Shape Maker”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.add(new PaintSurface(), BorderLayout.CENTER);

continued

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 775

Creating Shapes776

LISTING 2-2 (CONTINUED)

this.setVisible(true);
}

private class PaintSurface extends JComponent
{

ArrayList<Shape> shapes = new ArrayList<Shape>();
Point startDrag, endDrag;
Shape found = null;

public PaintSurface()
{

Shape s;

// a rectangle
s = new Rectangle2D.Float(10, 10, 60, 80);
shapes.add(s);

// a rounded rectangle
s = new RoundRectangle2D.Float(110, 10, 80, 80,10, 10);
shapes.add(s);

// a rounded rectangle
s = new RoundRectangle2D.Float(210, 10, 60, 80, 50, 75);
shapes.add(s);

// a circle
s = new Ellipse2D.Float(10, 110, 80, 80);
shapes.add(s);

// an ellipse
s = new Ellipse2D.Float(110, 110, 80, 40);
shapes.add(s);

// another ellipse
s = new Ellipse2D.Float(210, 110, 40, 80);
shapes.add(s);

// an arc
s = new Arc2D.Float(10, 210, 80, 80, 90, 90, Arc2D.OPEN);
shapes.add(s);

// another arc
s = new Arc2D.Float(110, 210, 80, 80, 0, 180, Arc2D.CHORD);
shapes.add(s);

// another arc
s = new Arc2D.Float(210, 210, 80, 80, 45, 90, Arc2D.PIE);
shapes.add(s);

}

public void paint(Graphics g)
{

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 776

Book IX
Chapter 2

Draw
ing Shapes

Filling Shapes 777

Graphics2D g2 = (Graphics2D)g;

// turn on antialiasing
g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

// draw background grid
g2.setPaint(Color.LIGHT_GRAY);
for (int i = 0; i < getSize().width; i += 10)

g2.draw(new Line2D.Float(i, 0, i, getSize().height));
for (int i = 0; i < getSize().height; i += 10)

g2.draw(new Line2D.Float(0, i, getSize().width, i));

// draw all the shapes in the array list
g2.setColor(Color.BLACK);
g2.setStroke(new BasicStroke(2));
for (Shape s : shapes)

g2.draw(s);
}

}
}

Filling Shapes
As explained earlier in the chapter, you can fill a shape with a solid color by
first calling the setPaint method to set the fill color, and then calling the
fill method to fill the shape. For example:

g2.setColor(Color.RED);
g2.fill(rect1);

Here, the fill color is set to red, and then the shape named rect1 is filled.

But there’s more to filling than solid colors. In the following sections, you
find out how to create fills that are partially transparent and fills that gradu-
ally fade from one color to another.

Drawing transparently
Java 2D lets you create transparent shapes by specifying a compositing rule.
The compositing rule can do more than just set the transparency, but its
other uses are more advanced than this short chapter allows. So rather than
go into all the gory details, just accept my word that to set the transparency,
you must use this odd incantation:

g2.setComposite(AlphaComposite.getInstance(
AlphaComposite.SRC_OVER, 0.50F));

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 777

Filling Shapes778

The key here is the float parameter value, which must be from 0.0 to 1.0.
In this case, the transparency is set to 0.50F, which means that the shapes
are 50% transparent. As a result, whatever is under the shape when it is
drawn partially shows through.

Using a gradient fill
Instead of using a solid color, you can specify a gradient fill, which blends
two colors by using the GradientPaint class, whose constructors are
shown in Table 2-2. A gradient fill is created from two color points. Imagine
a line drawn between these two points. The gradient fill varies the color
smoothly from the color that’s set at the first point to the color set at the
second point. Then, it extends the colors on this line at 90 degree angles to
the line to fill an entire area.

Table 2-2 Constructors of the GradientPaint Class
Constructor Description

GradientPaint(float x1, Creates a gradient in which the color at point x1,
floaty1, Color c1, float y1 is color1, the color at point x2, y2 is
x2, float y2, Color c2) color2, and points in between are smoothly

blended. All points beyond the x1, y1 point have
color1, and all points beyond the x2, y2 point
have color2.

GradientPaint(Point2D p1, Creates a gradient in which the color at point p1
Color c1, Point2D p2 is color1, the color at point p2 is color2,
Color c2) and points in between are smoothly blended. All

points beyond p1 have color1, and all points
beyond p2 have color2.

GradientPaint(float x1, Same as the first constructor, but if the cyclic
floaty1, Color c1, float parameter is true, the gradient pattern repeats
x2, float y2, Color c2, infinitely beyond the two points.
boolean cyclic)

GradientPaint(Point2D p1, Same as the second constructor, but if the
Color c1, Point2D p2 Color cyclic parameter is true, the gradient pattern
c2, boolean cyclic) repeats infinitely beyond the two points.

Here’s an example that sets a gradient fill that varies the color from magenta
to yellow:

GradientPaint gp =
new GradientPaint(0, 0, Color.MAGENTA,

0, 100, Color.YELLOW);

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 778

Book IX
Chapter 2

Draw
ing Shapes

Filling Shapes 779

Here are some suggestions for choosing the location of the two color points:

✦ The points are relative to the top-left corner of the component, not to
the shape you’re filling. You usually want both points to lie at or near the
edges of the shape you’re drawing.

✦ The easiest way to keep the number straight is to create variables named
x, y, width, and height, and use these variables to create both the
shapes and the gradient fills.

✦ If you want to have the first color at the top and the second color at the
bottom, use (x, y) for the first point and (x, y+height) as the second point.

✦ If you want to have the first color at the left and the second color at the
right, use (x, y) for the first point and (x+width, y) as the second point.

✦ Each point is painted with the full color you specify. If you want a band
of solid color on the edges of the object before the gradient begins,
choose points that are somewhat inside the object. For example, use
(10, 10) and (width-10, height-10).

✦ If you use the third or fourth constructors and specify true for the
cyclic parameter, the gradient pattern repeats itself. Then, you want
to pick points that are closer together so you can see the repetition
within your object. For example, if the width of the object is 150, pick
points such as (0, 0) and (0, 50) to see the cycle repeat three times
within the object.

Table 2-3 shows four different examples of gradient fills created with the
GradientPaint class. Each of the rectangles is 100 x 100. The table also
shows the location of the points for each fill relative to x, y, width, and
height. For each fill, the color for point 1 is black, and for point 2, white.

Table 2-3 Four Gradient Fill Examples
Gradient Fill Name Point 1 (Black) Point 2 (White)

gp1 x, y x, y + height

gp2 x, y x + width, y

gp3 x, y+35 x, y + height + 35

gp4 x+35, y+35 x+width-35, y+height-35

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 779

Rotating and Translating780

Here’s the code that creates these four gradient fills:

GradientPaint gp1 = new GradientPaint(x, y,
Color.BLACK,
x, y + h, Color.WHITE);

GradientPaint gp2 = new GradientPaint(x, y,
Color.BLACK,
x + w, y, Color.WHITE);

GradientPaint gp3 = new GradientPaint(x, y+35,
Color.BLACK, x, y+h-35, Color.WHITE, true);

GradientPaint gp4 = new GradientPaint(x+35, y+35,
Color.BLACK, x+w-35, y+h-35, Color.WHITE, true);

Using this code as a starting point, you can devise many different variations
to create your own fills.

Rotating and Translating
This section describes two methods of the Graphics2D class that modify
how a shape is drawn:

✦ The translate method moves the (0, 0) point from the top-left corner
to any arbitrary point.

✦ The rotate method rotates the component’s coordinate system so that
shapes are drawn at an angle.

Translate method
The translate method takes two parameters, namely the x and y coordinate
of the point you want to designate as the center of the universe. For many
graphics applications, translating to the center of the component is useful,
so (0, 0) is in the middle of the component. Then, points with a negative x
value appear to the left of center, and points with a negative y value appear
above center. Here’s a code snippet that does that regardless of the size of
the component:

int cx = getSize().width / 2; // center X;
int cy = getSize().height / 2; // center Y;
g2.translate(cx, cy);

Rotate method
Rotation is a little more complicated. The rotate method itself is simple
enough — it takes just a single parameter that rotates the coordinate system
by the angle you specify. For example:

g2.rotate(angle);

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 780

Book IX
Chapter 2

Draw
ing Shapes

Rotating and Translating 781

The angle isn’t measured in degrees. Instead, it’s measured in radians, which
if you’ll remember back to your high-school math is the length of the arc
subtended by the angle (assuming the radius is 1). Java’s Math class has a
handy toRadians method that automatically converts degrees to radians.
So, to rotate the coordinate space by 45 degrees, you use this statement:

g2.rotate(Math.toRadians(45));

Note that the rotate method rotates the entire coordinate space for the
component you’re painting on, not just a single shape. As a result, to draw a
shape rotated around its center, you first translate to the center of the shape
you want to rotate, call the rotate method, and then draw the shape. The
Graphics2D class provides a convenient version of the rotate method
that does that for you automatically. It takes three parameters: the rotation
angle and the x and y coordinates of the point around which you want to
rotate. For example:

g2.rotate(Math.toRadians(45), 100, 150);

Here, the coordinate space is rotated 45 degrees around point 100, 150.
(The translation is only temporary; the rotate method restores the
previous translation after it does the rotation.)

Here’s an example from a paint method that creates an ellipse, and then
draws it several times at different rotations:

int x = 50;
int y = 75;
int width = 200;
int height = 100;
Shape r1 = new Ellipse2D.Float(x, y, width, height);
for (int angle = 0; angle <= 360; angle += 45)
{

g2.rotate(Math.toRadians(angle),
x + width/2, y + height/2);

g2.setPaint(Color.YELLOW);
g2.fill(r1);
g2.setStroke(new BasicStroke(4));
g2.setPaint(Color.BLACK);
g2.draw(r1);

}

Here, the rotate method is called inside a for loop that varies the angle
from 0 degrees through 360 degrees in 45 degree increments. Assuming the
paint method has set antialiasing and 50% transparency and has drawn the
line grids shown in the previous examples, Figure 2-3 shows how the shapes
drawn by these statements appear.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 781

Drawing Text782

Drawing Text
You can use the drawString method to draw the text contained in a string.
This method accepts three parameters: the string to be drawn and the x and
y coordinates of the lower-left corner of the first character to be drawn
(technically speaking, the start of the baseline for the text). For example:

g2.drawString(“This is some text!”, 100, 50);

Here, the string “This is some text!” is drawn at point (100, 50).

The current stroke, color, translation, and rotation apply to the text that’s
drawn, as well as the current font that you specify via the setFont method.
This method accepts a Font object, like this:

g2.setFont(new Font(“Times New Roman”, Font.PLAIN, 36));

Here, the font is set to 36-point Times New Roman. For more information
about creating fonts, refer to Book IX, Chapter 1.

Letting the User Draw on a Component
In many applications, you need to let the user doodle directly on a panel.
To do that, you need to create listeners that listen for mouse events such as
clicks, drags, or just basic movement. Then, you need to coordinate those
listeners with the paint method so that the mouse events generated by the
user are translated into shapes that are drawn on the component. Table 2-4
lists the mouse events you need to listen for in programs that let the user
draw shapes.

Figure 2-3:
Rotated
shapes.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 782

Book IX
Chapter 2

Draw
ing Shapes

Letting the User Draw on a Component 783

Table 2-4 Mouse Events and Listeners
MouseListener Methods Description

void mouseClicked(MouseEvent e) The user clicked a mouse button.

void mouseEntered(MouseEvent e) The mouse entered a component.

void mouseExited(MouseEvent e) The mouse exited a component.

void mousePressed(MouseEvent e) The user pressed a mouse button.

void mouseReleased(MouseEvent e) The user released a mouse
button.

MouseMotionListener Methods Description

void mouseMoved(MouseEvent e) The user moved the mouse with-
out pressing a button.

void mouseDragged(MouseEvent e) The user moved the mouse while
a button was pressed.

MouseEvent Methods Description

int getButton() Gets the mouse button that has
been clicked, pressed, or
released. The result can be
BUTTON1, BUTTON2,
BUTTON3, or NOBUTTON.

int getClickCount() Gets the number of clicks to
determine if the user has double-
or triple-clicked.

Point getPoint() Gets the mouse position as a
Point object.

int getX() Gets the x position.

int getY() Gets the y position.

Note that both the MouseListener and MouseMotionListener inter-
faces have corresponding adapter classes named MouseAdapter and
MouseMotionAdapter. If you use one or both of these adapter classes,
you only have to override the methods for the events you want to respond
to. (For more information about adapter classes and listeners, refer to Book
VI, Chapter 2.)

To see how mouse events can be used to create programs that let the user
draw on-screen, take a look at a simple program that lets the user draw rec-
tangles. The basic technique used by the program goes something like this:

✦ When the user presses the mouse button, you make a note of the loca-
tion to use as the starting point of the rectangle to be drawn.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 783

Letting the User Draw on a Component784

✦ When mouse movement is detected, you make a note of the mouse loca-
tion and call repaint to force the component to be repainted. Then, in
the paint method, you draw a temporary rectangle from the original
starting position to the current mouse position to give the user a visual
clue while he or she is drawing the rectangle. This rectangle is drawn with
a light gray line and isn’t filled. Each time the user moves the mouse, this
rectangle is redrawn according to the current mouse position. As a result,
the rectangle appears to grow and shrink with the mouse movements.

✦ When the user releases the mouse button, you create a new
Rectangle2D.Float object using the original starting location and
the mouse location when the button was released. You then add the rec-
tangle to an ArrayList of Shape objects and call repaint to force
the component to be repainted. This causes all the rectangles in the
ArrayList to be drawn in the order in which the user created them.

✦ Also when the user releases the mouse button, you clear the two mouse
locations that were saved while the user was drawing the rectangle. That
way, the paint method knows not to draw the temporary rectangle.

Here are a few other points to know about this program before I dive into
the code:

✦ Rectangles created with the Rectangle2D class are always specified
with the (x, y) coordinate of the top-left corner and a width and height.
However, users don’t always draw rectangles starting with the top-left
corner. The user might press the mouse button to anchor the rectangle,
and then draw the mouse up and to the left, so that the original position
is the bottom-right corner instead of the top-left corner. To facilitate this,
the program includes a helper method that creates a rectangle from any
two arbitrary points that mark opposite corners. This method uses these
points to determine the location of the top-left corner and the width and
height.

✦ To make the rectangles visually interesting, the program uses an array of
colors to fill each one with a different color. And each rectangle is filled
with 50% transparency so rectangles beneath it are visible.

✦ The component surface also shows a grid drawn with Line2D shapes.

Figure 2-4 shows this program in action, after the user has drawn several rec-
tangles. Listing 2-3 provides the complete code for the program.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 784

Book IX
Chapter 2

Draw
ing Shapes

Letting the User Draw on a Component 785

LISTING 2-3:THE DRAWINGBOARD PROGRAM

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.awt.geom.*;
import java.util.*;

public class DrawingBoard extends JFrame
{

public static void main(String [] args) ➞ 8
{

new DrawingBoard();
}

public DrawingBoard() ➞ 13
{

this.setSize(300, 300);
this.setTitle(“The Drawing Board”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
this.add(new PaintSurface(), BorderLayout.CENTER);
this.setVisible(true);

}
private class PaintSurface extends JComponent
{

ArrayList<Shape> shapes = new ArrayList<Shape>(); ➞ 24
Point startDrag, endDrag;

public PaintSurface()
{

this.addMouseListener(new MouseAdapter()
{
public void mousePressed(MouseEvent e) ➞ 31
{

startDrag = new Point(e.getX(), e.getY());

continued

Figure 2-4:
The
Drawing
Board
program
in action.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 785

Letting the User Draw on a Component786

LISTING 2-3 (CONTINUED)

endDrag = startDrag;
repaint();

}

public void mouseReleased(MouseEvent e) ➞ 38
{

Shape r = makeRectangle(
startDrag.x, startDrag.y,
e.getX(), e.getY());

shapes.add(r);
startDrag = null;
endDrag = null;
repaint();

}
});

this.addMouseMotionListener(new MouseMotionAdapter()
{
public void mouseDragged(MouseEvent e) ➞ 52
{

endDrag = new Point(e.getX(), e.getY());
repaint();

}
});

}

public void paint(Graphics g) ➞ 59
{

Graphics2D g2 = (Graphics2D)g;

// turn on antialiasing
g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

// draw background grid
g2.setPaint(Color.LIGHT_GRAY);
for (int i = 0; i < getSize().width; i += 10)
{

Shape line = new Line2D.Float(
i, 0, i, getSize().height);

g2.draw(line);
}

for (int i = 0; i < getSize().height; i += 10)
{

Shape line = new Line2D.Float(
0, i, getSize().width, i);

g2.draw(line);
}

// draw the shapes
Color[] colors = {Color.RED, Color.BLUE, ➞ 85

Color.PINK, Color.YELLOW,
Color.MAGENTA, Color.CYAN };

int colorIndex = 0;

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 786

Book IX
Chapter 2

Draw
ing Shapes

Letting the User Draw on a Component 787

g2.setStroke(new BasicStroke(2)); ➞ 90
g2.setComposite(AlphaComposite.getInstance(

AlphaComposite.SRC_OVER, 0.50f));

for (Shape s : shapes) ➞ 94
{

g2.setPaint(Color.BLACK);
g2.draw(s);
g2.setPaint(colors[(colorIndex++)%6]);
g2.fill(s);

}

// paint the temporary rectangle
if (startDrag != null && endDrag != null) ➞ 103
{

g2.setPaint(Color.LIGHT_GRAY);
Shape r = makeRectangle(

startDrag.x, startDrag.y,
endDrag.x, endDrag.y);

g2.draw(r);
}

}

private Rectangle2D.Float makeRectangle(➞ 113
int x1, int y1, int x2, int y2)

{
int x = Math.min(x1, x2);
int y = Math.min(y1, y2);
int width = Math.abs(x1 - x2);
int height = Math.abs(y1 - y2);
return new Rectangle2D.Float(

x, y, width, height);
}

}
}

The following paragraphs provide a road map through this program:

➞ 8 The main method creates an instance of the DrawingBoard class.

➞13 The constructor for the DrawingBoard class initializes the frame in
the usual way, adding a new instance of a JComponent class named
PaintSurface.

➞24 The PaintSurface class begins by defining three instance vari-
ables. The first, named shapes, is an ArrayList object that holds
the shapes drawn by the user. The next two are Point objects that
represent the start and end point for the rectangle currently being
drawn by the user.

➞31 The PaintSurface constructor uses anonymous inner classes to
create the mouse listeners. The mousePressed method is invoked
when the user presses a mouse button. It sets the startDrag and

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 787

Letting the User Draw on a Component788

endDrag variables to the current position of the mouse, and then
calls repaint to force the component to be repainted.

➞38 The mouseReleased method is called when the user releases the
mouse, indicating that a rectangle has been drawn. It calls the
makeRectangle method to create a rectangle from the starting x
and y values and the current x and y values. Then, it adds this rectan-
gle to the shapes collection, clears the startDrag and endDrag
points, and calls repaint to force the component to be repainted.

➞52 The mouseDragged method in the MouseMotionAdapter anony-
mous class is called when the mouse moves while the button is held
down. This method simply sets the endDrag variable to the new
mouse location and calls repaint to repaint the component.

➞59 The paint method is where the good stuff happens in this program.
This begins by casting the Graphics object to a Graphics2D
object, turning on antialiasing, and drawing the background grid.
Then, it draws the shapes from the shapes collection.

➞85 To fill each rectangle with a different color, the program creates an
array of Color objects that specifies six different colors. Then, it
defines a variable named colorIndex to index the array. Each time
a rectangle is drawn, this index is incremented.

➞90 The stroke thickness is set to 2, and the setComposite method is
used to set the transparency to 50%.

➞94 An enhanced for loop is used to draw each rectangle. First, the color
is set to black, and the rectangle is drawn. Then, the color is set, and
the rectangle is filled. The modulo division operator (%) is used to
constrain the index from 0 through 5, and the index is incremented so
the next rectangle uses the next color in the array.

➞103 This if statement draws the temporary rectangle while the user is
dragging the mouse. If either startDrag or endDrag is null, the
rectangle isn’t drawn.

➞113 makeRectangle is a helper method that creates a Rectangle2D.
Float object given the points of two opposite corners. It sets the
starting point to the smaller of the two x values and the smaller of
the two y values, and sets the width and height to the absolute value
of the difference between the two x values and the two y values.

57_58961X bk09ch02.qxd 3/29/05 3:30 PM Page 788

Chapter 3: Using Images
and Sound

In This Chapter
� Displaying images in Swing components

� Drawing images directly on a panel

� Scaling images

� Using a file chooser to pick an image

� Adding annoying sound effects and music to your programs

So far in this book, all of the Swing applications have been pretty boring.
They’ve had plenty of labels, text fields, combo boxes, and the like, but

no pictures!

This chapter remedies that. You find out how to incorporate graphic images
(that is, pictures — not necessarily images of a graphic nature) into your
Swing applications. And just to make things interesting, I show you how to
throw in sound effects and music, too.

Java’s support for images and sound is designed assuming that you’re going
to use them in applets that run over a slow Internet connection. As a result,
they go to great lengths to accommodate large files that can take a long time
to download. They included a special class called MediaTracker that’s
designed to let you monitor the progress of a long download so you can
either display a progress bar or display the image or play the sound piece
by piece as it arrives. Fortunately, they also included some shortcut meth-
ods that let you just load an image or sound file and use it without worrying
about the MediaTracker details.

I’m a big believer in shortcuts, except on family vacations. I took a shortcut
once on a family trip to see Mt. Lassen. It turned out the shortcut involved
about five miles on a windy dirt road that took about an hour. We would
have arrived half an hour sooner had we gone the long way. But trust me,
this isn’t that kind of shortcut. You really get there faster if you skip the
MediaTracker details until the end.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 789

Using Images790

Using Images
An image is a file that contains a picture. Java supports pictures in several
different formats, including:

✦ GIF: Graphics Interchange Format, commonly used for small images
such as those used for button icons and such.

✦ JPEG: An organization called the Joint Photographic Experts Group
(hence the name JPEG) devised this format to store photographic
images in a compressed form. JPEG is the preferred form for larger
images.

✦ PNG: The Portable Network Graphics format, which was designed
specifically for portability and network access. You’d think this would be
the most common format for Java applications, because Java too was
designed for portability and network access. But although Java does
indeed support PNG, GIF and JPEG are the more popular choices.

Java does not directly support other common graphics file formats such as
BMP (Windows bitmap), PCX (PC Paintbrush bitmap), or WMF (Windows
Media Format). The easiest way to deal with this limitation is to simply
convert your images to GIF, JPEG, or PNG. Programs that can do that conver-
sion are readily available. If you insist on using images in those formats, you
can get third-party packages that do it. Hop on the Internet and cruise to
your favorite search service and look for “Java” and the format you want
to support.

Using the ImageIcon Class
The easiest way to work with images is to use the ImageIcon class. This
class lets you load an image from a file using a filename or URL. Then, you
can display it by attaching it to a label or button component or painting it
directly. The ImageIcon class shelters you from the details of using the
MediaTracker class by automatically waiting for the entire image to load.

Icons are typically small images used to provide visual cues for what a
button does. However, the ImageIcon class isn’t just for small images. You
can use it to display large images as well, as long as you’re willing to hold up
your program while the image loads. For Swing applications, that’s not usu-
ally a problem. For applets, you may want to consider alternatives for large
image files.

Table 3-1 lists the most important constructors and methods of the classes
you use to work with ImageIcon objects. I describe these constructors and
methods in the following sections.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 790

Book IX
Chapter 3

Using Im
ages

and
Sound

Using the ImageIcon Class 791

Table 3-1 Classes for Working with ImageIcon Objects
ImageIcon Constructors and Methods Description

ImageIcon(String filename) Creates an ImageIcon object from the file
indicated by the specified filename.

ImageIcon(URL url) Creates an ImageIcon object from the file
indicated by the specified URL.

Image getImage() Gets the Image object associated with this
ImageIcon.

JLabel and JButton Constructors Description

JLabel(Icon image) Creates a label with the specified image.
(Note that ImageIcon implements the
Icon interface.)

JButton(Icon image) Creates a button with the specified image.

JButton(String text, Creates a button with the specified text and
Icon image) image.

Using ImageIcon in a Swing application
In a Swing application, you can load an image directly into an ImageIcon
object by specifying the filename in the ImageIcon constructor, like this:

ImageIcon pic = new ImageIcon(“HalfDome.jpg”);

Here, an ImageIcon object is created from a file named HalfDome.jpg.
This file must live in the same directory as the class file. However, you can
just as easily provide a path in the String parameter, like this:

ImageIcon pic = new ImageIcon(“c:\\HalfDome.jpg”);

Here, the file is in the root directory of the C: drive. (Remember that you
have to use two backslashes to get a single backslash in a Java string literal.)

You can then attach the image to a Swing component such as a label or
button to display the image. Many Swing components can display icons
directly, including JLabel, JButton, JCheckBox, and JRadioButton.
If you simply want to display the image, use a JLabel component and
specify the ImageIcon object in its constructor, like this:

JLabel picLabel = new JLabel(pic);

Here, a label is created from the previously created ImageIcon object named
pic. Then, when you add this label to a panel or frame, the image is displayed.

Putting this all together, here’s a complete application that displays the
HalfDome.jpg image in a frame; Figure 3-1 shows the frame displayed
when this program is run.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 791

Using the ImageIcon Class792

import javax.swing.*;

public class PictureApp extends JFrame
{

public static void main(String [] args)
{

new PictureApp();
}

public PictureApp()
{

this.setTitle(“Picture Application”);
this.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

JPanel panel1 = new JPanel();

ImageIcon pic = new ImageIcon(“HalfDome.jpg”);
panel1.add(new JLabel(pic));

this.add(panel1);
this.pack();
this.setVisible(true);

}
}

Although this example shows how to display a large JPEG file, the ImageIcon
class is also commonly used to attach smaller GIF images as icons for various
types of buttons. To do that, you simply pass the ImageIcon object to the
button constructor.

For example, the following code produces the button shown in the margin:

JButton openButton;
ImageIcon openIcon = new ImageIcon(“OpenIcon.gif”);
openButton = new JButton(openIcon);

Figure 3-1:
Displaying
an image in
a Swing
application.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 792

Book IX
Chapter 3

Using Im
ages

and
Sound

Using the Image Class 793

You can also create buttons with both text and an icon. For example, I cre-
ated the button shown in the margin with this code:

openButton = new JButton(“Open”, openIcon);

Using ImageIcon in an applet
If the program is an applet, use a URL instead of a filename to identify the
image file. The only trick is figuring out how to get a URL for a file that lives
in the same location as the applet itself. To do that, you can use this strange
but functional incantation:

URL url = PictureApplet.class.getResource(“HalfDome.
jpg”);

Here, you use the class property of the class that defines your applet
(in this case, PictureApplet) to get its Class object, and then call the
getResource method, which returns a URL object for the specified file.
After you have the URL of the image file, you can create an ImageIcon
from it like this:

pic = new ImageIcon(url);

Then, you can use the ImageIcon object in a label or button component,
or you can use the getImage method to get the underlying Image object
so you can paint it directly to the screen.

Using the Image Class
If you want to paint an image directly to a graphics context (for example,
from the paintComponent method of a panel), you need to use the
Image class to represent the image. You want to create the Image object
in the panel constructor but paint it in the paintComponent method.
As a result, you need to declare the variable that references the image as
an instance variable so you can refer to it from both the constructor and
the paintComponent method. The declaration for the instance variable
looks something like this:

Image img;

Table 3-2 lists the most important constructors and methods of the classes
you use to work with Image objects. I describe these constructors and meth-
ods in the following sections.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 793

Using the Image Class794

Table 3-2 Classes for Working with Image Objects
Image Class Methods and Fields Description

Image getScaledInstance Gets an Image object that has been scaled
(int x, int x, int hints) according to the x and y parameters. If either x or

y is negative, the aspect ratio of the image is pre-
served. The hint parameter can be one of these
fields: DEFAULT, SPEED, or SMOOTH.

int DEFAULT The default scaling method.

int SPEED A scaling method that favors speed over
smoothness.

int SMOOTH A scaling method that favors smoothness over
speed.

Toolkit Class Methods Description

static Toolkit Gets a Toolkit object.
getDefaultToolkit()

Image getImage(String Gets an Image object from the specified
filename) filename.

Graphics Class Methods Description

void drawImage(Image Draws the specified image at the position indi-
img, int x, int y, cated by the x and y parameters. The
ImageObserver observer) observer parameter specifies the object that

listens for image update events.

void drawImage(Image img, Draws the specified image at the position indi-
int x, int y, int width, cated by the x and y parameters using the size
int height, ImageObserver specified by the width and height parame-
observer) ters. The observer parameter specifies the

object that listens for image update events.

Creating an Image object
Image is an abstract class, so it doesn’t have a handy constructor you can
use to create an image from a file or URL. However, you can create an Image
object from a file two fairly simple ways: with the ImageIcon class, as
described in the previous section, or with the Toolkit class.

To create an image from an ImageIcon object, you first create an ImageIcon
object as described in the previous section. Then, you can use the getImage
method to extract the Image from the ImageIcon. For example:

ImageIcon picIcon = new ImageIcon(“c:\\HalfDome.jpg”);
Image picImage = picIcon.getImage();

You want to put this code in the panel constructor so it’s executed only once.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 794

Book IX
Chapter 3

Using Im
ages

and
Sound

Using the Image Class 795

The other way is to use the getImage method of the Toolkit class. First,
you use the static getDefaultToolkit method to get a Toolkit object.
Then, you call getImage to load an image from a file. For example:

Toolkit kit = Toolkit.getDefaultToolkit();
img = kit.getImage(“HalfDome.jpg”);

Again, this code goes in the panel constructor to avoid reloading the image
every time it needs to be painted.

If you’re just loading a single image and the image is small, either technique is
suitable. If you’re loading a lot of images, or if the image is large, the Toolkit
technique is a better choice for two reasons. First, it avoids creating a bunch
of unnecessary ImageIcon objects. And second, it doesn’t tie up the appli-
cation until the entire image is loaded.

Drawing an Image object
After you load an image and create an Image object, you can draw it by
adding code in the paint method:

g.drawImage(img, 0, 0, this);

The drawImage method takes four parameters. The first three are easy
enough to understand: They are the image to be painted and the x and
y coordinates where you want the image to appear. The fourth parameter is
an object that implements the ImageObserver interface. This interface
includes a method called imageUpdate that’s called whenever the status
of the image has changed. For small images or for applications that load
the image from a local file, this method is probably called only once, when
the image has finished loading. However, if you load a large image over the
Internet (for example, in an applet), the imageUpdate method is likely
called several times as each chunk of the image is received.

Fortunately, it turns out that all Swing components including JPanel imple-
ment the ImageObserver interface, and their default implementation of
the imageUpdate method is to simply call repaint. This method in turn
calls the paint method, so the image is automatically drawn again.

Note that there’s another form of the drawImage method that lets you set
the size you want the image drawn. For example:

g.drawImage(img, 0, 0, 200, 200, this);

Here, the image is drawn in a 200 x 200 rectangle starting at the top-left
corner of the panel.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 795

Using the Image Class796

Depending on the size of the original image, this may result in some distortion.
For example, if the original image was 400 x 600, displaying it at 200 x 200
shows the image at half its original width but one third its original height,
making everyone look short and fat. A better way to scale the image is to
call the image’s getScaledInstance method:

img = img.getScaledInstance(200, -1,
Image.SCALE_DEFAULT);

The first two parameters of this method specify the desired width and
height. If you set one of these parameters to a negative value, the
getScaledInstance method calculates the appropriate value while pre-
serving the original image’s aspect ratio. The third parameter is a constant
that indicates what scaling method to use. The three choices you use most
are SCALE_DEFAULT, which uses the default method, SCALE_SPEED,
which favors speed over smoothness, and SCALE_SMOOTH, which favors
smoothness over speed.

An Image example
To show how the elements presented in the last two sections work together,
Listing 3-1 shows a complete program that uses the Image class to display
an image in a panel.

To add a little interest, this application uses a JFileChooser dialog box to let
the user select the image to be displayed, as shown in Figure 3-2. The file
chooser includes a filter so only JPEG, GIF, and PNG files are listed. For more
information about the JFileChooser class, refer to Book VIII, Chapter 1.

Figure 3-2:
The Picture
Frame
application
in action.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 796

Book IX
Chapter 3

Using Im
ages

and
Sound

Using the Image Class 797

LISTING 3-1:THE PICTURE FRAME APPLICATION

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.io.*;

public class PictureFrame extends JFrame
implements ActionListener

{
Image img; ➞ 9
JButton getPictureButton;

public static void main(String [] args)
{

new PictureFrame();
}

public PictureFrame()
{

this.setSize(300, 300);
this.setTitle(“Picture Frame Application”);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel picPanel = new PicturePanel(); ➞ 23
this.add(picPanel, BorderLayout.CENTER);

JPanel buttonPanel = new JPanel(); ➞ 26
getPictureButton = new JButton(“Get Picture”);
getPictureButton.addActionListener(this);
buttonPanel.add(getPictureButton);
this.add(buttonPanel, BorderLayout.SOUTH);

this.setVisible(true);
}

public void actionPerformed(ActionEvent e) ➞ 35
{

String file = getImageFile();
if (file != null)
{

Toolkit kit = Toolkit.getDefaultToolkit();
img = kit.getImage(file);
img = img.getScaledInstance(

300, -1, Image.SCALE_SMOOTH);
this.repaint();

}
}

private String getImageFile() ➞ 48
{

JFileChooser fc = new JFileChooser();
fc.setFileFilter(new ImageFilter());
int result = fc.showOpenDialog(null);
File file = null;
if (result == JFileChooser.APPROVE_OPTION)
{

continued

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 797

Using the Image Class798

LISTING 3-1 (CONTINUED)

file = fc.getSelectedFile();
return file.getPath();

}
else

return null;
}

private class PicturePanel extends JPanel ➞ 63
{

public void paint(Graphics g)
{

g.drawImage(img, 0, 0, this);
}

}

private class ImageFilter ➞ 71
extends javax.swing.filechooser.FileFilter

{
public boolean accept(File f)
{

if (f.isDirectory())
return true;

String name = f.getName();
if (name.matches(“.*((.jpg)|(.gif)|(.png))”))

return true;
else

return false;
}

public String getDescription()
{

return “Image files (*.jpg, *.gif, *.png)”;
}

}
}

The following paragraphs hit the highlights of this program:

➞ 9 The img variable is declared here so the class can access it.

➞23 In the frame class constructor, a new instance of the PicturePanel
class is created and added to the center of the frame.

➞26 Next, a panel is created to hold the button the user clicks to open an
image file. The button specifies this for the action listener, and the
panel is added to the South region of the frame.

➞35 The actionPerformed method is invoked when the user clicks the
Get Picture button. It calls the getImageFile method, which dis-
plays the file chooser and returns the filename of the file selected
by the user. Then, assuming the filename returned is not null, the
Toolkit class is used to load the image. The image is then scaled so

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 798

Book IX
Chapter 3

Using Im
ages

and
Sound

Playing Sounds and Making Music 799

it is 300 pixels wide while preserving the aspect ratio, and the frame
is repainted.

➞48 The getImageFile method creates and displays a file chooser
dialog box that shows only .jpg, .gif, and .png files. If the user
selected a file, the complete path of the file chosen by the user is
returned. Otherwise, null is returned.

➞63 The PicturePanel class defines the panel that displays the pic-
ture. It consists of just one method — paint, which uses the
drawImage method to draw the image.

➞71 The ImageFilter class is used to limit the file chooser display to
just .jpg, .gif, and .png files. It uses the following regular expres-
sion to do so:

.*((.jpg)|(.gif)|(.png))

For more information about file filters, refer to Book VIII, Chapter 1.
And for more information about regular expressions, turn to Book V,
Chapter 3.

Playing Sounds and Making Music
Java provides built-in support for playing sound and music files. You can
play sound and music files in a variety of formats, including wave files in
several formats (WAV, AU, RMF, and AIFF as well as MIDI files). Wave files
are usually used to add specific sound effects to your application, such as
chimes, explosions, or drum rolls. Midi files let you play music while your
application is running.

An audio file is represented by an object that implements the AudioClip
interface, whose methods are listed in Table 3-3. As you can see, this inter-
face is simple: You can play a sound once, play it in a loop, and stop playing
the sound. Note that when you play or loop a sound, your program doesn’t
wait for the sound to finish playing. Instead, the sound is played in a sepa-
rate thread so your program can continue with its other chores.

Table 3-3 The AudioClip Interface
Methods Description

void play() Plays the clip once.

void loop() Plays the clip in a loop.

void stop() Stops playing the clip.

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 799

Playing Sounds and Making Music800

Interestingly enough, the easiest way to create an AudioClip object is to
use a static method of the Applet class called newAudioClip. This is a
little confusing; because it’s a static method, you can use it in non-applet pro-
grams as easily as applets. Go figure. Anyway, the newAudioClip method
requires a URL, not a simple filename, so you must first figure out how to get
a URL for the sound file you want to play.

Here’s a snippet of code that creates an AudioClip from a file named
hit.wav and plays it:

URL url = MyApp.class.getResource(“hit.wav”);
click = Applet.newAudioClip(url);
click.play();

The first line gets the Class object for the current class (assumed here to
be MyApp), and then uses the getResource method to get a URL object for
the specified file, which must be in the same directory as the MyApp class.
Then, the newAudioClip method is called to create an AudioClip object.
Finally, the play method is called to play it.

To make things a little more interesting, Listing 3-2 shows a program that plays
the hit.wav sound every time you click the mouse in the program’s frame.
This program displays an empty frame that has a MouseListener installed.
Then, each time the mouseClicked method is called, the sound is played.

LISTING 3-2:THE MOUSECLICKER PROGRAM

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.applet.*;
import java.net.URL;

public class MouseClicker extends JFrame
{

AudioClip click;

public static void main(String [] args)
{

new MouseClicker();
}

public MouseClicker()
{

this.setSize(400, 400);
this.setTitle(“Mouse Clicker”);
this.addMouseListener(new Clicker());

URL urlClick = MouseClicker.class.getResource(“hit.wav”);

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 800

Book IX
Chapter 3

Using Im
ages

and
Sound

Playing Sounds and Making Music 801

click = Applet.newAudioClip(urlClick);

this.setVisible(true);
}

private class Clicker extends MouseAdapter
{

public void mouseClicked(MouseEvent e)
{

click.play();
}

}
}

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 801

Book IX: Fun and Games802

58_58961X bk09ch03.qxd 3/29/05 3:29 PM Page 802

Chapter 4: Animation and
Game Programming

In This Chapter
� Using threads to control animation

� Creating a bouncing ball

� Creating a whole room full of bouncing balls

� Devising a simple Pong-like game

Because of its powerful drawing capabilities, Java lends itself especially
well to creating game programs — especially games that are created

as applets so they can be played over the Internet. Game programming is a
huge subject, big enough for a whole shelf of books. In this chapter, I just
scratch the surface of creating basic animations and playing simple games.
Specifically, you find out how to get a ball bouncing in an applet, how to
create a paddle to hit the ball, and how to find out when you missed.

In other words, welcome to the 1970s! You’re going to create an applet that
plays Pong!

This chapter combines features that are presented in several different chap-
ters throughout this book. Specifically, you find information about drawing
shapes in Book IX, Chapter 2. For information about working with threads,
refer to Book V, Chapter 1. For information creating event listeners, see
Book VI, Chapter 2. And for details about creating and running applets, see
Book VII, Chapter 1.

Animating a Sprite
In animation and game programming, an object that moves around the
screen is usually called a sprite. The sprite itself can be drawn by various
means. If the sprite is a simple geometric shape such as a circle, you can
just create an Ellipse2D object and use the draw or fill method to
render it. More commonly, the sprite is represented by a small image. Then,
you use the drawImage method to render the sprite.

In some cases, the sprite may have a series of images associated with it.
For example, if the sprite is a little person who walks around in your game
world, you might have several images representing him walking left and

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 803

Animating a Sprite804

right, or in various stages of his little stride. Then, you can put these images
in an array and use an index variable to keep track of which image to draw.

No matter what the sprite looks like, the basic technique for animating the
sprite in Java is the same: Create a thread that periodically repaints the
drawing component, and then calculate a new position for the sprite each
time the component is repainted and draw the sprite in its new position.

For example, suppose you want to create a ball that travels across a compo-
nent, starting at the left side of the component and traveling across to the
right side. To do that, you have to do the following things:

✦ Create the component that the ball is drawn on. Usually, this component
can just extend JComponent.

✦ Create a thread whose run method includes a loop. Inside the loop, call
the sleep method to sleep for a small time interval (typically 10 or
20 milliseconds), then call the drawing component’s repaint method.
Simply creating the drawing component is easiest so it not only extends
JComponent, but also implements Runnable. That way, you can
create the run method as a member of the drawing component class.

✦ In the paint method, recalculate the position of each shape being ani-
mated, and then draw it.

✦ To get the animation going, create an instance of the drawing compo-
nent and add it to a frame or applet. Then, pass this instance to the
Thread class constructor to create a Thread object. And finally, call
the Thread object’s start method.

Sound simple enough? Listing 4-1 shows the first of several versions of an
applet program that animates a moving ball. Figure 4-1 shows this applet in
action when run in the applet viewer.

Figure 4-1:
The
BallRoom
applet in
action.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 804

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Animating a Sprite 805

LISTING 4-1:THE BALLROOM APPLET

import java.applet.*;
import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;

public class BallRoom extends JApplet ➞ 6
{

private final int WIDTH = 350;
private final int HEIGHT = 300;

private PaintSurface canvas;

public void init() ➞ 13
{

this.setSize(WIDTH, HEIGHT);
canvas = new PaintSurface();
this.add(canvas, BorderLayout.CENTER);
Thread t = new AnimationThread(this);
t.start();

}
}

class AnimationThread extends Thread ➞ 23
{

JApplet c;

public AnimationThread(JApplet c) ➞ 27
{

this.c = c;
}

public void run() ➞ 32
{

while (true)
{

c.repaint();
try
{

Thread.sleep(20);
}
catch (InterruptedException ex)
{

// swallow the exception
}

}
}

}

class PaintSurface extends JComponent ➞ 49

continued

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 805

Animating a Sprite806

LISTING 4-1 (CONTINUED)

{
int x_pos = 0; // the starting X position
int y_pos = 150; // the starting Y position
int d = 20; // the diameter of the ball

public void paint(Graphics g) ➞ 55
{

Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

x_pos += 1; // move ball right one pixel

Shape ball = new Ellipse2D.Float(
x_pos, y_pos, d, d);

g2.setColor(Color.RED);
g2.fill(ball);

}
}

The following paragraphs describe the key portions of this program:

➞ 6 The BallRoom class extends JApplet and defines two public static
constants, named WIDTH and HEIGHT. These constants are used to
set the size of the component the ball is animated within. It also defines
a PaintSurface variable named canvas that is used as the canvas
on which the animated ball is drawn.

➞13 The init method is called when the applet starts up. It sets the size
of the applet, and then creates a new instance of the PaintSurface
class on which the ball is animated and adds it to the applet. It then
uses the AnimationThread class to create a thread, and then calls
the thread’s start method to start the animation.

➞23 The AnimationThread class defines the thread that’s used to ani-
mate the ball.

➞27 The constructor for the AnimationThread class accepts a JApplet
object as a parameter and stores it in the c variable so it can be used
later.

➞32 The run method contains the code that controls the animation. As you
can see, it consists of an infinite loop that calls the repaint method
of the JApplet object that was passed to the constructor. Next, the
sleep method is called to put the thread to sleep for 20 milliseconds.
(Because the sleep method can throw InterruptedException, it
must be called inside a try/catch statement. However, the catch
clause simply ignores the exception.)

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 806

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Bouncing the Ball 807

➞49 The PaintSurface class extends JComponent. The instance vari-
ables defined for this class define the characteristics of the ball that
is animated: its x and y position on the component and the ball’s
diameter.

➞55 The paint method is called whenever the PaintSurface component
needs to be redrawn. This method is triggered every 20 milliseconds by
the run method of the AnimationThread class. The paint method
begins by casting the graphics context to a Graphics2D object and
setting antialiasing on. Then, it calculates a new position for the ball by
adding 1 to the x position. It then creates a Shape object to represent
the ball as an ellipse at the current x_pos and y_pos positions, using
the width and height specified by the d variable. Finally, it sets the color
and draws the ball by calling the fill method.

What about Double Buffering?
If you’ve looked into animation and game programming before, you may
have heard of a technique called double buffering that’s required to produce
smooth, flicker-free animation. When you use double-buffering, you don’t
draw shapes directly to the component. Instead, you create an off-screen
image object called a buffer and draw the shapes to it. Then, when all the
shapes are drawn, you transfer the entire buffer image to the component.

Fortunately, any drawing you do on a Swing component is automatically
double-buffered. Before Swing, you had to manually do double buffering by
creating an Image object and creating a graphics context so you could write
to the Image. But with Swing, you don’t have to do anything special to use
double-buffering.

If for some reason you want to turn double-buffering off — maybe just to see
how much it improves the animation for your application — you can do so
by calling the setDoubleBuffered method of the component you’re
drawing to, like this:

this.setDoubleBuffered(false);

Bouncing the Ball
The program shown in Listing 4-1 illustrates the basic framework for a pro-
gram that animates sprites. However, the ball it animates isn’t very interesting:
It just flies across the screen in a straight line and disappears off the right
edge, never to be seen again. To be more interesting, the ball should travel
in different directions and bounce off the edges of the component so it stays
visible.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 807

Bouncing the Ball808

The trick of animating the ball so it travels in other than horizontal (or vertical)
lines and bounces off the walls is calculating the ball’s new (x, y) position for
each animation cycle. This problem has at least two basic approaches:

✦ The most realistic approach is to keep track of two variables for the ball:
the angle it’s traveling at and its speed. Then, you can use high-school
trigonometry to calculate the new (x, y) position of the ball for each
cycle. And if the ball hits one of the edges, you have to calculate the
ball’s new angle. You probably need some sines and cosines and maybe
a square root or a logarithm or something. I’m not sure, I didn’t do so
good in math.

✦ The easier way is to store two variables — call them x_speed and
y_speed — that represent the distance the ball travels horizontally
and vertically for each animation cycle. This technique is much easier
because it doesn’t require any math more complicated than addition.
For each animation cycle, just add x_speed to the x position and add
y_speed to the y position. If the ball hits the left or right edge, negate
x_speed to reverse the ball’s horizontal direction, and if the ball hits
the top or bottom edge, negate y_speed so the ball reverses its vertical
direction. The result is a pretty convincing bounce off the wall.

To add the ability for the ball to bounce, you need to add some instance vari-
ables and modify the paint method a bit. The resulting PaintSurface
class is shown in Listing 4-2.

LISTING 4-2: A BOUNCING VERSION OF THE PAINTSURFACE CLASS

class PaintSurface extends JComponent
{

int x_pos = 0; ➞ 3
int y_pos = 0;
int x_speed = 1;
int y_speed = 2;
int d = 20;
int width = BallRoom.WIDTH;
int height = BallRoom.HEIGHT;

public void paint(Graphics g)
{

Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

if (x_pos < 0 || x_pos > width - d) ➞ 17
x_speed = -x_speed;

if (y_pos < 0 || y_pos > height - d) ➞ 19
y_speed = -y_speed;

x_pos += x_speed; ➞ 21

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 808

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Bouncing a Bunch of Balls 809

y_pos += y_speed;

Shape ball = new Ellipse2D.Float(➞ 24
x_pos, y_pos, d, d);

g2.setColor(Color.RED);
g2.fill(ball);

}
}

The following paragraphs describe the key elements of this class:

➞ 3 For this version of the PaintSurface class, the instance variables
keep track of the ball’s x and y position and speed as well as its diam-
eter and the height and width of the drawing surface.

➞17 This if statement checks to see if the ball has hit the left wall (the
x position is less than zero) or the right wall (the x position is greater
than the width of the component less the diameter of the ball). If so,
the x speed is reversed. (You must take the diameter of the ball into
account on the right wall because the x position indicates the posi-
tion of the left side of the ball, and you want the ball to bounce when
its right side hits the right wall.)

➞19 This if statement applies the same logic to the y speed to see if the
ball has hit the top or bottom wall.

➞21 After the x and y speed values are adjusted for bounces, the next two
statements move the ball. If x_speed is a positive number, the ball
moves right. If it’s negative, the ball moves left. Similarly, if y_speed
is positive, the ball moves down; if it’s negative, the ball moves up.

➞24 These lines draw the ball at its new location.

Bouncing a Bunch of Balls
Most games require that you animate more than one sprite. For example,
more than one ball may be on-screen at one time, or there might be other
sprites besides balls. Thus, the paint method needs to have the ability to
move and draw multiple sprites.

One way to do that is to create a class for the sprites to be animated, and
then add instances of that class to an array list or other collection. Then, the
paint method can use a loop to move and draw each sprite in the collection.

Creating a Ball class
To add the ability to animate more than one ball, start by adding a class that
represents a single ball, as shown in Listing 4-3.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 809

Bouncing a Bunch of Balls810

LISTING 4-3: A BALL CLASS

class Ball extends Ellipse2D.Float ➞ 1
{

private int x_speed, y_speed; ➞ 3
private int d;
private int width = BallRoom.WIDTH;
private int height = BallRoom.HEIGHT;

public Ball(int diameter) ➞ 8
{

super((int)(Math.random() * (BallRoom.WIDTH - 20) + 1),
(int)(Math.random() * (BallRoom.HEIGHT - 20) + 1),
diameter, diameter);

this.d = diameter;
this.x_speed = (int)(Math.random() * 5 + 1);
this.y_speed = (int)(Math.random() * 5 + 1);

}

public void move() ➞ 18
{

if (super.x < 0 || super.x > width - d)
x_speed = -x_speed;

if (super.y < 0 || super.y > height - d)
y_speed = -y_speed;

super.x += x_speed;
super.y += y_speed;

}
}

The following paragraphs point out the highlights of this program:

➞ 1 Because a ball is essentially an ellipse with a few additional char-
acteristics, this class extends the Ellipse2D.Float class. An
advantage of implementing the Ball class this way is that you can
pass a Ball object directly to the draw and fill methods to paint
the ball.

➞ 3 The Ball class defines five private instance variables, representing
the x and y speeds, the diameter of the ball, and the width and height
of the component the balls are animated within. Notice that the x
and y positions of the ball have no instance variables. Because the
Ellipse2D.Float class already keeps track of its x and y positions,
you just use the x and y fields of the superclass when you need those
values.

➞ 8 The Ball class defines a single constructor that accepts the diameter
of the ball to create as a parameter, but calculates the other values at
random. As a result, you can call the Ball constructor several times
to create several balls, and each ball has a different starting position
and trajectory.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 810

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Bouncing a Bunch of Balls 811

➞18 The Ball class also has a move method, which can be called to
move the ball. This method first adjusts the ball’s trajectory if it
has hit one of the edges. Then, it simply adds the x_speed and
y_speed values to the x and y fields of the superclass.

Animating random balls
With the Ball class in hand, Listing 4-4 shows a version of the
PaintComponent class that creates an array list with 10 randomly placed
balls, and then draws each one in the paint method.

LISTING 4-4:THE PAINTSURFACE CLASS FOR BOUNCING BALLS

class PaintSurface extends JComponent
{

public ArrayList<Ball> balls = new ArrayList<Ball>();

public PaintSurface()
{

for (int i = 0; i < 10; i++)
balls.add(new Ball(20));

}

public void paint(Graphics g)
{

Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

g2.setColor(Color.RED);
for (Ball ball : balls)
{

ball.move();
g2.fill(ball);

}
}

}

This class starts by declaring an instance variable named balls that holds
the balls to be animated. Then, in the constructor, it uses a for loop to
create 10 balls and add them to the collection. And in the paint method,
which is called once every 20 milliseconds, a for loop is used to call each
ball’s move method, and then pass the ball to the fill method to paint it
on the component.

Figure 4-2 shows this program in action, with ten balls bouncing around ran-
domly on-screen. If you feel daring, try changing the for statement in the
PaintComponent constructor so it creates 100 balls instead of 10. The
little applet window gets pretty crowded!

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 811

Creating Collidable Balls812

Creating Collidable Balls
The balls created by the Ball class shown previously have one slightly
unrealistic behavior: They’re transparent to each other. If two balls happen
to arrive at the same place at the same time, they simply pass right through
each other without noticing.

If you want to create balls that bounce off each other as well as off the walls,
all you have to do is make a modification to the move method of the Ball
class. Just get a reference to the collection that contains all the other balls
and check each ball to see if the current ball has hit any of the other balls.
If so, adjust the trajectory of each ball accordingly.

Listing 4-5 shows a version of the Ball class in which the balls bounce off
each other.

LISTING 4-5: A BALL CLASS THAT HANDLES COLLISIONS

class Ball extends Ellipse2D.Float
{

public int x_speed, y_speed;
private int d;
private int width = BallRoom.WIDTH;
private int height = BallRoom.HEIGHT;
private ArrayList<Ball> balls;

Figure 4-2:
A room full
of bouncing
balls!

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 812

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Creating Collidable Balls 813

public Ball(int diameter, ArrayList<Ball> balls) ➞ 9
{

super((int)(Math.random() * (BallRoom.WIDTH - 20) + 1),
(int)(Math.random() * (BallRoom.HEIGHT - 20) + 1),
diameter, diameter);

this.d = diameter;
this.x_speed = (int)(Math.random() * 5 + 1);
this.y_speed = (int)(Math.random() * 5 + 1);
this.balls = balls;

}

public void move() ➞ 20
{

// detect collision with other balls
Rectangle2D r = new Rectangle2D.Float(

super.x, super.y, d, d);
for (Ball b : balls)
{

if (b != this && ➞ 27
b.intersects(r))

{
// on collision, the balls swap speeds ➞ 30
int tempx = x_speed;
int tempy = y_speed;
x_speed = b.x_speed;
y_speed = b.y_speed;
b.x_speed = tempx;
b.y_speed = tempy;
break; ➞ 37

}
}
if (super.x < 0) ➞ 40
{

super.x = 0;
x_speed = Math.abs(x_speed);

}
else if (super.x > width - d)
{

super.x = width - d;
x_speed = -Math.abs(x_speed);

}
if (super.y < 0)
{

super.y = 0;
y_speed = Math.abs(y_speed);

}
else if (super.y > height - d)
{

super.y = height - d;
y_speed = -Math.abs(y_speed);

}
super.x += x_speed;
super.y += y_speed;

}
}

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 813

Playing Games814

The following lines describe the high points of this version of the Ball class:

➞ 9 The constructor accepts a reference to the array list that holds the
balls. The Ball class needs this list so each ball can determine if it
has struck any other balls. The reference to the array list is saved in
an instance variable named balls.

➞20 The move method begins by creating a rectangle from the current
ball. You see how this is used in a moment. Then, it uses a for loop
to check for a collision with each of the balls in the balls array list.

➞27 For each ball, an if statement tests two conditions. First, it elimi-
nates the current ball by checking b != this. If you allowed balls
to collide with themselves, the balls wouldn’t be in constant collision
and wouldn’t be able to move.

Next, the if statement checks to see if the current ball has collided
with the other ball. It does that by calling intersects, a method
defined by the Shape interface. This method accepts a rectangle
object and returns true if the shape intersects any part of the
specified rectangle. The rectangle object created before the for
loop began is used as the parameter to this method. (Note that this
isn’t a perfect collision test; it sometimes treats near misses as colli-
sions. But it’s close enough.)

➞30 If a collision is detected, the x and y speed values of the two balls are
swapped. That means that not only do the balls bounce away from
each other, but the slower ball picks up speed, and the faster ball
slows down.

➞37 A break statement is executed if a collision is detected. That’s to
prevent detecting collisions with more than one ball. Without this
break statement, collisions that involve more than two balls usually
result in pretty strange behavior. Try removing the break statement
to see what happens. (Even with this break statement, the balls some-
times behave in unexpected ways. I think it’s kind of fun to watch, but
then again I’m pretty easily entertained.)

➞40 The rest of this method is different from the previous version prima-
rily because when you check for collisions with both the edges of the
component and other balls, the ball always has a chance to collide
with both the edge and another ball. Thus, the if statements that
check for edge collisions force the x and y speed values to be appro-
priate negative or positive numbers.

Playing Games
The key to turning an animation program into a game program is adding user
interaction, either via the mouse or keyboard. Either way, the technique is
the same: You add event listeners to handle keyboard or mouse events.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 814

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Playing Games 815

Then, in the event listeners, you make appropriate changes to the game’s
sprites according to the user’s actions.

For example, suppose you want to create a paddle that the user can move
back and forth by dragging the mouse. To do that, just add a listener for
mouse motion and save the mouse’s x position in an instance variable that
represents the top-left corner of the paddle. Here’s code to do this as an
anonymous inner class:

addMouseMotionListener(new MouseMotionAdapter()
{

public void mouseMoved(MouseEvent e)
{

paddle_x = e.getX() - 30;
}

});

Place this code in the constructor for the component the animation is drawn
on. Notice that I subtracted 30 from the x position. That’s because the width
of the paddle is 60, and you want the mouse position to be the center of the
paddle, not the left edge.

Having stored the mouse position in an instance variable, you can use it to
draw the paddle in the paint method. For example:

Shape paddle = new Rectangle2D.Float(
paddle_x, 360, 60, 8);

g2.setColor(Color.BLACK);
g2.fill(paddle);

Here, the paddle is drawn as a 60 x 8 black rectangle. When the user moves
the mouse over the applet, the paddle moves along with the mouse.

To show how you can incorporate this technique into a program that plays a
simple game, Listing 4-6 shows the complete code for a simple Pong-like game,
where a ball bounces around and the user tries to hit it with the paddle. Each
time the user hits the ball, he or she gets points based on how fast the ball is
moving at the time. If the user misses the ball, 1,000 points are deducted, and
the ball is replaced by a new ball with a random speed and trajectory.

To add a small amount of interest to this admittedly boring game, the player
can put English on the ball by moving the mouse quickly at the moment it hits
the ball. When the program detects this movement, the ball changes color and
its x velocity is increased by 50%. Thus, the ball bounces off the paddle at a
skewed angle and increases its speed. The player scores more points with
each hit, but of course the ball is harder to hit when it’s traveling faster.

Figure 4-3 shows this program in action. As you can see, I’m getting pretty
good at it.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 815

Playing Games816

LISTING 4-6:THE NOTPONG PROGRAM

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.geom.*;

public class NotPong extends JApplet ➞ 7
{

public static final int WIDTH = 400;
public static final int HEIGHT = 400;

private PaintSurface canvas;

public void init() ➞ 15
{

this.setSize(WIDTH, HEIGHT);
canvas = new PaintSurface();
this.add(canvas, BorderLayout.CENTER);
Thread t = new AnimationThread(this);
t.start();

}
}

class AnimationThread extends Thread ➞ 25
{

JApplet c;

public AnimationThread(JApplet c)
{

this.c = c;
}

Figure 4-3:
The
NotPong
game in
action.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 816

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Playing Games 817

public void run()
{

while (true)
{

c.repaint();
try
{

Thread.sleep(20);
}
catch (InterruptedException ex)
{

// swallow the exception
}

}
}

}

class PaintSurface extends JComponent ➞ 51
{

int paddle_x = 0; ➞ 53
int paddle_y = 360;

int score = 0; ➞ 56
float english = 1.0f;

Ball ball; ➞ 59

Color[] color = {Color.RED, Color.ORANGE, ➞ 61
Color.MAGENTA, Color.ORANGE,
Color.CYAN, Color.BLUE};

int colorIndex;

public PaintSurface() ➞ 66
{

addMouseMotionListener(new MouseMotionAdapter()
{

public void mouseMoved(MouseEvent e)
{

if (e.getX() - 30 - paddle_x > 5)
english = 1.5f;

else if (e.getX() - 30 - paddle_x < -5)
english = -1.5f;

else
english = 1.0f;

paddle_x = e.getX() - 30;
}

});
ball = new Ball(20);

}

public void paint(Graphics g) ➞ 84
{

Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint(

RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

continued

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 817

Playing Games818

LISTING 4-6 (CONTINUED)

Shape paddle = new Rectangle2D.Float(➞ 91
paddle_x, paddle_y, 60, 8);

g2.setColor(color[colorIndex % 6]); ➞ 94

if (ball.intersects(paddle_x, paddle_y, 60, 8) ➞ 96
&& ball.y_speed > 0)

{
ball.y_speed = -ball.y_speed;
ball.x_speed = (int)(ball.x_speed * english);
if (english != 1.0f)

colorIndex++;
score += Math.abs(ball.x_speed * 10);

}

if (ball.getY() + ball.getHeight() ➞ 106
>= NotPong.HEIGHT)

{
ball = new Ball(20);
score -= 1000;
colorIndex = 0;

}
ball.move(); ➞ 113
g2.fill(ball);

g2.setColor(Color.BLACK); ➞ 116
g2.fill(paddle);

g2.drawString(“Score: “ + score, 250, 20); ➞ 119
}

}

class Ball extends Ellipse2D.Float ➞ 123
{

public int x_speed, y_speed;
private int d;
private int width = NotPong.WIDTH;
private int height = NotPong.HEIGHT;

public Ball(int diameter)
{

super((int)(Math.random() * (NotPong.WIDTH - 20) + 1),
0, diameter, diameter);

this.d = diameter;
this.x_speed = (int)(Math.random() * 5 + 5);
this.y_speed = (int)(Math.random() * 5 + 5);

}

public void move()
{

if (super.x < 0 || super.x > width - d)
x_speed = -x_speed;

if (super.y < 0 || super.y > height - d)

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 818

Book IX
Chapter 4

Anim
ation and

Gam
e Program

m
ing

Playing Games 819

y_speed = -y_speed;
super.x += x_speed;
super.y += y_speed;

}
}

The following paragraphs explain the gory details of how this program works:

➞ 7 Like the other examples in this chapter, the NotPong class extends
JApplet. However, you can get the program to run as a stand-alone
Swing application with just a few minor changes.

➞15 The init method is called when the applet is started. It sets the
size of the applet, creates a new PaintSurface object and adds it
to the applet, and then creates and starts the thread that controls the
animation.

➞25 The AnimationThread class in this program is the same as in the
other programs in this chapter. In the run method, a while loop
calls the repaint method to force the animation to update itself,
and then sleeps for 20 milliseconds.

➞51 The PaintSurface class extends JComponent. It provides the sur-
face on which the animations are drawn.

➞53 These instance variables define the initial position of the paddle.

➞56 These instance variables keep track of the score and the English
applied to the ball. The English is initially set to 1.0, but as you see
later it is changed to –1.5 or 1.5 if the user moves the paddle quickly
as the ball is hit.

➞59 This instance variable represents the ball.

➞61 An array of Color objects and an index variable are used so the ball
can be drawn with several different colors. Each time the user hits
the ball with English applied, the index variable is incremented so the
ball is drawn with a different color.

➞66 The constructor for the PaintSurface class adds a mouse motion
listener that extends the MouseMotionAdapter class. In this anony-
mous class, the mouseMoved method simply updates the paddle’s
x position. After the listener is added, a new ball object is created.

➞84 The paint method is called each time the component is repainted,
which happens approximately every 20 milliseconds because of the
repaint method called by the loop in the thread’s run method.
This method begins by casting the graphics context object to
Graphics2D and enabling antialiasing to eliminate flicker.

➞91 This statement creates the Shape object that represents the paddle.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 819

Playing Games820

➞ 94 This statement sets the color used to draw the ball. Note that the
remainder division operator is used to provide an index value that’s
always between 0 and 6.

➞ 96 This if statement determines if the ball has struck the paddle. It does
this by calling the intersects method of the ball (the Ball class
inherits this method from its base class Rectangle2D.Float).
(The second part of the if condition makes sure the ball is travel-
ing downward when it hits. Thus, a hit isn’t registered if the ball is
traveling up. This happens on occasion, especially when the ball is
moving fast.)

If the ball has hit the paddle, the y speed is reversed (to make the
ball travel up instead of down), and the x speed is multiplied by the
English amount. Then, if the English amount is other than 1.0, the
color index variable is incremented. And finally, the player’s score is
increased by 10 times the ball’s x speed. Thus, the user scores more
if he or she hits a fast-moving ball.

➞106 This if statement checks to see if the ball has hit the south wall. If so,
a new ball is created, the color index is reset to zero, and 1,000 points
are deducted from the score.

➞113 These statements move the ball and draw it in its new position.

➞116 These statements draw the paddle after setting the color to black.

➞119 This statement draws the score near the top right of the playing area.

➞123 This class defines the ball. As it turns out, this class is nearly identi-
cal to the Ball class shown earlier in this chapter, in the section
“Creating a Ball class.” For an explanation of how it works, refer to
that section.

59_58961X bk09ch04.qxd 3/29/05 3:29 PM Page 820

Symbols and
Numerics

& (ampersand) for and
operators, 154–155

* (asterisk)
in compound assignment

operator (*=), 123, 124
for JavaDoc comments

(/** and */), 347
as multiplication operator,

114, 118
as regular expression

quantifier, 484
as SQL wildcard, 708
for traditional comments

(/* and */), 75
@ (at sign) in doc tags, 348
\ (backslash)

in character classes, 479
in escape sequences, 95,

356, 485
escaping, 485
string problem with, 488

{ } (braces)
for blocks, 72–73
for body of class, 66
for body of method, 67
for do-while loops, 169
with if statements, 145

^ (caret)
for negation in regular

expressions, 483
for xor operator (^),

156–157
: (colon) in IP addresses,

454
$ (dollar sign), avoiding in

names, 74
. (dot)

in names, 74
in regular expressions,

479

= (equals sign)
as assignment operator,

78, 122–123
in compound assignment

operators, 123–124, 356
with JSP expressions, 634
in relational operators,

142, 159–160
! (exclamation mark)

with JSP expressions, 634
in nonequality relational

operator (!=), 142
as not operator, 153–154

> (greater-than sign)
for redirecting standard

output, 106
in relational operators,

142
(hash sign) in class

diagrams, 247
< (less-than sign) in

relational operators,
142

- (minus sign)
in class diagrams, 247
in compound assignment

operator (-=), 123
as decrement operator

(—), 114, 118, 120–121
as subtraction operator,

114, 118
() (parentheses)

enclosing boolean
expressions, 144

enclosing expression with
not operator, 154

in regular expressions,
485–487

% (percent sign)
in compound assignment

operator (%=), 123
with JSP elements, 634
as remainder operator,

114, 115, 116–117, 118
as SQL wildcard, 710

. (period). See . (dot)
+ (plus sign)

as addition operator, 114,
118

in class diagrams, 247
in compound assignment

operator (+=), 123, 124,
356

as concatenation
operator, 99, 356

as increment operator
(++), 114, 118, 120–121

as regular expression
quantifier, 484

? (question mark)
for conditional operator

(?), 159
as regular expression

quantifier, 484–485
; (semicolon)

ending SQL script
statements, 705

ending statements, 71
ending variable

declarations, 84
/ (slash)

in compound assignment
operator (/=), 123

as division operator, 114,
116, 118

for end-of-line comments
(//), 74

for JavaDoc comments
(/** and */), 347

for traditional comments
(/* and */), 75

three-layered design
approach, 244–245

| (vertical bar)
for or operators (| and
||), 155–156, 171

in regular expressions,
487

Index

60_58961X bindex.qxd 3/29/05 3:28 PM Page 821

Java All-in-One Desk Reference For Dummies822

zero
array index numbers

starting with, 371
dividing by, 138–139
exception handling for

dividing by, 221–222
positive versus negative,

139

A
abortCountDown

method, 450, 452
abs method, 126, 128
abstract classes

Abstract Factory class,
294

declaring, 293–294
defined, 293
inheritance and, 293
instantiation prevented

for, 294–295
in Java API, 296
signatures and, 293
subclasses, 295
uses for, 295

Abstract Factory design
pattern, 294

abstract methods, 293, 295,
296

abstract modifier, 293,
295

accept method, 677
Access, ODBC data source

setup for, 717–719
Accessor design pattern,

256
accessors, 254, 255–256
ActionListener

interface, 333
actionPerformed

method (Swing)
for check boxes, 550, 551
ClickListener class,

531
ClickMe program, 527, 528
for combo boxes, 566, 567

event handling and, 525
for labels, 517
for sliders, 561–562
for text areas, 546–547
for text fields, 542–543,

544
Actor class, 258–262
add methods
ArrayList class, 399,

402, 420
DefaultListModel

class (Swing), 572
generics feature and, 420
LinkedList class, 411,

414–415, 417
addActionListener

method, 564, 566
addChoosableFile

Filter method,
674, 676, 678

addFirst method, 411,
414

addItems method, 427,
429

addLast method, 412, 414
addWindowListener

method (Swing),
533–534

alter statement (SQL),
705

ampersand (&) for and
operators, 154–155

and operators, 154–155
animation

animating random balls,
811–812

Ball class, 809–811,
812–814

BallRoom applet,
804–807

bouncing a bunch of balls,
809–812

bouncing ball, 807–809
collidable balls, 812–814
double buffering, 807
PaintSurface class,

807, 808–809, 811
rolling ball, 804–807

sprites for, 803–804
turning into games,

814–820
anonymous classes,

334–336
Apache Tomcat. See

Tomcat servlet engine
Apache Web site, 614
API. See Java API
APPLET HTML tag, 611
applet viewer, 32, 41,

611–612
applets. See also Swing
BallRoom animation,

804–807
creating HTML page for,

611
defined, 13
ImageIcon class in, 793
init method, 605
JApplet class, 605,

606–607
legal problems for, 13
running in TextPad, 41
sample applet, 607–610
security prohibitions for,

606
Sun/Microsoft battles and,

606
as Swing applications, 605
Swing compared to,

605–606
Swing components in, 606
testing in applet viewer,

611–612
viewer for, 32, 41, 611–612

arcs, creating in Java 2D,
774–775

args parameter of main
method, 671–672

argument file for compiler,
27

arithmetic operators
algebra usage versus Java,

115
combining in expressions,

118–119
compound assignment,

123–124

60_58961X bindex.qxd 3/29/05 3:28 PM Page 822

Index 823

decrement, 120–121
with double types,

114–115
increment, 120–121
with int types, 114
order of precedence for,

118
overview, 113–116
remainder, 116–117
table summarizing, 114
unary plus and minus, 119
ArithmeticException,

218
array lists. See also

ArrayList class
accessing elements, 403
adding elements, 398, 402,

410
arrays versus, 398
creating, 401
defined, 398
deleting elements, 398,

407–408, 410
generics feature, 398, 401
iterator with, 404–406
printing, 403–404
resized automatically, 398,

402
specifying initial capacity,

401
specifying type of

elements, 401
updating elements,

406–407
array of arrays. See two-

dimensional arrays
ArrayList class. See also

array lists
add methods, 399, 402,

420
clear method, 399, 407,

408
clone method, 399, 422
constructors, 399, 401
creating an object, 401
formal type parameter,

421–422, 426–427
generics feature with, 420

get method, 399, 403, 420
importing, 401
internal array in, 398
iterator method, 400,

404–406
LinkedList class

versus, 410–411
methods (table), 399–400
remove method, 400,

407–408
removeAll method, 400,

408
removeRange method,

408
retainAll method, 400,

408
set method, 400, 406–407
toString method,

403–404
ArrayList constructor,

399, 401
arrays

array lists versus, 398
ArrayList class use of,

398
collections not suited for,

397
for combo box contents

(Swing), 565
comparing, 394–395
converting to strings, 395
creating, 372–373
defined, 371
elements of, 371
enhanced for loop for,

377–378
finding length of, 372
for loops with, 374–378,

381–382, 383–384
index numbers for, 371
initializing, 373–374, 382,

393
jagged, 382–384
knight moves calculator

using, 385–392
length fixed for, 372
linked lists versus, 409,

410–411

for locker problem
solution, 375–377

methods with, 378–379
multi-dimensional,

nesting, 384–385
as objects, 372
Quicksort technique

using, 497–504
searching, 394
sorting, 393–394
two-dimensional, 379–384
type and, 371
variable declaration for,

372, 373
variable or expression for

length of, 373
Arrays class
binarySearch method,

392, 394
equals method, 392,

394–395
fill method, 393
importing package for, 392
methods (table), 392–393
sort method, 393–394
toString method, 393,

395
arrows in class diagrams,

248
askForAnotherRound

method
GuessingGameMethod2

class, 208, 209, 210
GuessingGameMethod3

class, 214, 215, 216
assignment operator, 78
assignment statements

anonymous classes with,
336

increment or decrement
operators in, 120

initializing variables with,
88–89

association, 248
asterisk (*)

in compound assignment
operator (*=), 123, 124

for JavaDoc comments
(/** and */), 347

60_58961X bindex.qxd 3/29/05 3:28 PM Page 823

Java All-in-One Desk Reference For Dummies824

asterisk (*) (continued)
as multiplication operator,

114, 118
as regular expression

quantifier, 484
as SQL wildcard, 708
for traditional comments

(/* and */), 75
at sign (@) in doc tags, 348
ATTLIST tag (DTDs),

738–739
attributes (XML)
ATTLIST tag, 738–739
child elements versus, 241
defaults, 739
defined, 735
getting values, 746–747
types, 738–739

audio files, playing (Swing),
799–801

AudioClip interface,
799–800

B
backslash (\)

in character classes, 479
in escape sequences, 95,

356, 485
escaping, 485
string problem with, 488

ball animations
bouncing a bunch of balls,

809–812
bouncing ball, 807–809
collidable balls, 812–814
NotPong game, 815–820
rolling ball, 804–807

Ball class
for bouncing balls,

809–811
for collidable balls,

812–814
constructor inheritance

and, 281–282
protected visibility and,

279–280

super keyword in,
280–281

this keyword in, 280
BallFactoryInstance

factory class, 294
BallRoom applet, 804–807
BartClient program,

468–471
BartQuote class, 464–465
BartServer program

BartClient client program
for, 468–471

BartQuote class,
464–465

code listing, 465–467
protocol, 463
status messages, 467–468
testing with telnet, 463
version 2.0, 471–474

base class (superclass or
parent class). See also
inheritance

defined, 243, 274
overriding methods of,

278–279
polymorphism and,

287–289
super keyword

indicating, 280–281, 282
upcasting and, 284–285

Basic, Java versus, 11
batch files, TextPad

creation of, 40–41
beans. See JavaBeans
behaviors, 11–12, 241–242,

274
BetterPlayer class,

287–288
bin folder, 23
binary files, 680
binary operators, 115, 142
binary streams

character streams versus,
680

defined, 680
reading, 692–697
writing, 698–702

binarySearch method,
392, 394

bitwise operator, 157
blocks. See also for loops;

if statements
braces marking, 72–73
declaring local variables

in, 87
defined, 72
with if statements,

145–146
not created by indentation

alone, 145
scope of variables and,

102–103
in try statements,

220–221
BMP (Windows bitmap)

format, 790
BoboAndTheLockers

class, 376–377
bold type in this book, 3
BookCart JavaBean,

659–662
boolean expressions

basic form, 142
combining logical

operators in, 157–158
comparing strings,

159–160
conditional operator, 159
defined, 141
logical operators, 153–158
parentheses enclosing,

144
relational operators, 142
required for if

statements, 141
simple expressions,

141–143
boolean operators. See

logical operators
boolean parameter
FileOutputStream

class, 699
FileWriter class,

687–688
PrintWriter class, 688
boolean type, 95
Border interface, 554

60_58961X bindex.qxd 3/29/05 3:28 PM Page 824

Index 825

Border layout manager
(Swing), 585–586,
588–590

BorderFactory class
(Swing), 554–555

BorderLayout class
(Swing), 588–589

borders (Swing)
BorderFactory class,

554–555
defined, 553
importing interface for,

554
pizza-ordering program,

556–559
BouncingBall subclass,

277–278
bounds checking, 17
Box class (Swing), 589–590
Box layout manager

(Swing), 586, 590–592
braces ({ })

for blocks, 72–73
for body of class, 66
for body of method, 67
for do-while loops, 169
with if statements, 145
break statement

for avoiding infinite loops,
165

continue statement
versus, 167, 168

for ending while loops,
163–164, 165

with for loops, 181–182
omitting from switch

statements, 195–196
with switch statements,

191
breakpoints, 60–61
BufferedInputStream

class, 692
BufferedOutputStream

class, 698, 700
BufferedReader class,

681, 682–683
BufferedWriter class,

686
business rules layer, 245

ButtonGroup class
(Swing), 552–553

buttons (Swing). See also
events (Swing)

adding text to, 519
ClickMe program, 526–528
ClickMe2 program,

528–530
ClickMe3 program,

534–536
controlling appearance of,

519
creating, 519
disabling, 519
Exit button, 530–532,

534–536
BuyMyBook.jsp JSP,

657–659
byte type, 92, 101–102
bytecode, 10

C
C language, Java compared

to, 13–14
-c option (javap

command), 31
calculateNewPos

method, 389, 391–392
calculations, methods for,

200
callbacks, 300–304
capitalization. See also case

sensitivity
compiler error messages

and, 69–70
in final field names, 253
in final variable names, 90
in package names, 341
in Visual Basic, 69–70

Card layout manager
(Swing), 586

caret (^)
for negation in regular

expressions, 483
for xor operator (^),

156–157
CarWashApp class,

195–196

CarWashApp2 class,
196–198

case sensitivity. See also
capitalization

compiler error messages
and, 69–70

of identifiers, 74
of keywords, 69–70
SQL statements and, 705

casting, 102, 314
catch block

for checked exceptions,
229

for custom exception,
291–292

defined, 220
displaying error

messages, 226–227
multiple blocks, 221
variables and, 221

catching exceptions
defined, 218
division by zero example,

221–222
Exception class for,

225–226
integer input example,

222–223
try statement for,

220–221
cbrt method, 126
ceil method, 132–133
ChangeParameters

class, 213
char type

automatic conversions
for, 101–102

characters versus
strings, 94

overview, 94–95
switch statement using,

194–195
character classes. See also

regular expressions
custom, 481–482
defined, 479
predefined, 479–481

character constants, 94–95

60_58961X bindex.qxd 3/29/05 3:28 PM Page 825

Java All-in-One Desk Reference For Dummies826

character matching. See
regular expressions

character streams
binary streams versus,

680
defined, 680
reading, 680–686
writing, 686–691

characters
extracting from strings,

360–361, 370
strings versus, 94
Unicode character set,

94, 95
charAt method

described, 357
extracting characters

with, 360–361
in MarkVowels class,

362–363
charAt method

(CharSequence
interface), 370

CharSequence interface,
369–370

check boxes (Swing),
548–551

checked exceptions
catch block for, 229
catching with try

statement, 230–231
catch-or-throw compiler

error, 229–230
catch-or-throw rule for,

229
defined, 218, 229
swallowing, 232–233
throwing from calling

method, 231–232
throwing from main

method, 232
throws clause for, 229
Chess class, 279
chessboard using arrays,

385–392
child classes. See

subclasses (derived or
child classes)

circle area calculator,
125–126

CircleAreaApp class,
126

Class class, 327–328
class constants, 90
class declarations. See

declaring classes
class diagrams, 246–248
class keyword, 66
class variables. See also

fields; variables
for check boxes (Swing),

548
creating Scanner

variables as, 109
declaring, 84–85
default value, 88
defined, 84
final variables (class

constants), 90
scope of, 103, 104
shadowed, 105
strings, 98

classes. See also Java API;
specific classes

abstract, 293–296
accessor methods,

254–256
adding in Eclipse, 52–55
archiving in JAR files,

343–347
collection classes,

397–398
creating objects from,

77–78
creating packages for,

340–343
data types defined by, 16
declaring, 249–252
declaring class variables,

84–85
event classes, 522
final, 283–284
as fundamental unit of

code, 70
hierarchies of, 276

identifiers, 66, 250
import statements in,

81–82
importing from packages,

339–340
importing Java API

classes, 81–82
inheritance, 243
Java versus C and, 14
for JDBC queries, 721–722
with JSP, 642–646
J2SE API documentation,

32–34
loading, 242
members, 251, 253–254
nested, 251
objects versus, 12, 76
preventing instantiation,

271
public, 66
for reading binary

streams, 692–693
for reading character

streams, 680–681
related, 243–244
in servlets, 627–632
singleton, 270
source files for, 251–252
wrapper classes, 96
for writing binary

streams, 698–699
for writing character

streams, 686–687
ClassNotFound

Exception, 218, 720
-classpath compiler

option, 28
ClassPath environment

variable, 341–342, 346,
642

clear method
ArrayList class, 399,

407, 408
LinkedList class, 418
ClickListener class

(Swing), 529, 530
ClickMe program, 526–528

60_58961X bindex.qxd 3/29/05 3:28 PM Page 826

Index 827

ClickMe2 program, 528–530
ClickMe3 program, 534–536
client programs, 453–454
Clonable interface, 301,

320–321
clone method

(ArrayList class),
399, 422

clone method (Object
class)

Clonable interface for,
301, 320–321

cloning defined, 316
creating deep copies,

321–326
creating shallow copies,

320–321
defined, 307, 308
implementing, 317–320
need for, 316–317
overriding, 317–320
protected access to,

317
CloneNotSupported

Exception, 301,
320–321, 326

CloneTest class, 318–320
CloneTest2 class,

322–326
close method, 695, 700,

721
Closer class (Swing),

532–533
collections. See also array

lists; generics feature;
linked lists

collection classes,
397–398

enhanced for loop for,
377

queues, 410, 427–430
stacks, 410, 421–425

colon (:) in IP addresses,
454

Color Chooser program,
763–765

Color class, 760
Color constructor,

760–761
colors for Java 2D shapes,

769
colors (Swing)
Color class, 760
Color constructor,

760–761
creating Color objects,

760–761
setting for components,

763
system colors, 761–762
using a color chooser,

763–765
column functions (SQL),

710–711
combo boxes (Swing)

adding items, 565
creating, 565–566
defined, 563
getting items from, 566
handling events, 567
initializing contents, 565
JComboBox class, 564
lists versus, 568
removing items, 565–566

command-line parameters
for files, 671–672

command-line tools
applet viewer, 32, 41,

611–612
jar command, 32,

343–346
java command, 25, 29–30
javac compiler, 25–28
javadoc command, 32,

350–352
javap command, 31–32
list online, 32
overview, 21

comments, 74–76, 347–350
comparison operators. See

relational operators
compile method, 490

compiler
argument file for, 27
bytecode produced by, 10
error messages, 26
interpreted versus

compiled languages, 11
javac command, 25–28
JRE separate from, 10
JVM and, 10
limiting to previous Java

version, 28
options, 27–28
white space and, 72

compiler errors. See error
messages (compiler)

compiling
by Eclipse, 57
final methods and, 283
multiple files with javac

command, 26–27
programs in TextPad,

38–39
programs with javac

command, 26–28
complement (not) operator,

153–154
Component class (Swing),

509
compositing rule (Java 2D),

777–778
compound assignment

operators, 123–124
compound expressions, 153
concatenation

defined, 99
examples, 99
inefficiency with String

class, 365–366
operator for, 99, 356
with println method,

99, 107
concatenation operator, 99,

356
concurrency issues for

threads, 446
conditional and operator

(&&), 154, 155

60_58961X bindex.qxd 3/29/05 3:28 PM Page 827

Java All-in-One Desk Reference For Dummies828

conditional operator (?),
159

conditional or operator
(||), 155, 156, 171

configuring. See also
installing

DOM document builder
factory, 742

TextPad text editor,
35–36 38

Tomcat servlet engine,
615–616, 642

Connection class (JDBC),
724–725

const keyword, 69
constants. See also final

variables or fields
(constants)

class constants, 90
final keyword for, 69
initializing arrays with,

373–374
Math class, 125–126
special, of float and

double classes, 139
constructors

adding in Eclipse, 53–54
anonymous classes

missing, 336
ArrayList class, 399,

401
basic, creating, 258–259
basic form, 258
BorderLayout class

(Swing), 589
Box class (Swing), 590
BufferedInputStream

class, 692
BufferedOutput
Stream class, 698

BufferedReader class,
681

BufferedWriter class,
686

calling other constructors,
260–262

in class declarations, 250
for colors, 760–761

DataInputStream
class, 692

DataOutputStream
class, 698

default, 259–260, 262
DefaultListModel

class (Swing), 572
DefaultMutableTree
Node class (Swing), 576

defined, 242, 258
File class, 666
FileInputStream

class, 692
FileOutputStream

class, 698
FileWriter class,

686–687
FlowLayout class

(Swing), 587
for fonts, 753–755
GradientPaint class,

778
GridLayout class

(Swing), 593
ImageIcon class, 791
inheritance and, 281–282
JApplet class, 607
for JavaBeans, empty, 647
JButton class (Swing),

518, 791
JCheckBox class

(Swing), 549
JComboBox class

(Swing), 564
JFileChooser class

(Swing), 673
JFrame class (Swing), 510
JLabel class (Swing),

516, 791
JList class (Swing), 568
JPanel class (Swing), 515
JRadioButton class

(Swing), 552
JScrollPane class

(Swing), 547
JSlider class (Swing),

560
JSpinner class (Swing),

573

JTextArea class
(Swing), 546

JTextField class
(Swing), 538

JTree class (Swing), 579
LinkedList class, 411,

413
methods compared to,

258
overloading, 259
PrintWriter class,

686–687
private, for preventing

instantiation, 271
private, for singleton

classes, 270
public keyword for, 258
ServerSocket class,

462
for shapes (Java 2D),

771–772
Socket class, 461
SpinnerModel classes

(Swing), 573–574
super keyword in

subclass constructors,
281, 282

this keyword with,
260–263

Thread class, 435
Container class (Swing),

509
context.xml file, 615–616
continue statement
do-while loops, 169
for loops, 181, 182
while loops, 167–168

converting
arrays to strings, 395
automatic conversions,

101–102
numeric data between

types, 101–102
primitives to strings,

99–100, 356
random method result to
int value, 129–130

60_58961X bindex.qxd 3/29/05 3:28 PM Page 828

Index 829

strings to primitives,
100–101, 357

type casting for, 102
convertPosToSquare

method, 389, 391
convertSquareToPos

method, 388, 391
COPYRIGHT file, 24
count expression (for

loops)
defined, 174
ForUpdate Expression

name for, 175
multiple expressions with,

179–180
omitting, 181
CountBothWays class,

179
CountDown class, 177–178
CountDownApp class,

440–441, 442–445,
449–452

CountDownClock class
aborting the countdown

and, 449–450, 451
described, 435
first version, 436–437
with getTime method,

442–444, 445
run method, 437
using for loop, 442

counter variable (for
loops), 173, 176

CountForever class, 164
CountTest class, 268–269
CountTestApp class,

268–269
CountToTen class,

174–175
CountToTenError class,

176
CountToTenErrorFixed

class, 176
-cp compiler option, 28
CrazyWithZeros class,

227–229
create table statement

(SQL), 705, 706, 707,
711–712

createNewFile method,
666, 668

createStatement
method (JDBC), 721,
722–723

custom exceptions,
289–292

D
\d character class, 479, 480
\D character class, 479, 480
D suffix for floating-point

literals, 93–94
data types. See also specific

types
of abstract classes, 295
of array list elements, 401
arrays and, 371
in class diagrams, 247
defined, 90
defining in classes, 16
determining an object’s

type, 286
element types, 421–422
formal type parameter,

421–422, 426–427
generic, abstract classes

for, 295
inheritance, 16
interfaces used as,

298–299
Java as strongly typed, 90
for list selections (Swing),

570
Object class used as,

306–307
primitive types, 90–96
primitive versus

reference, 90–91
reading binary streams

and, 692
reference types, 90–91,

96–97
switch statement and,

190
type casting, 102
type checking, 15–16

database layer, 245
databases. See JDBC (Java

DataBase
Connectivity);
relational databases;
SQL (Structured Query
Language)

DataInputStream class,
692–694

DataOutputStream
class, 698–699, 700

DateJSP.jsp JSP,
637–638

debugging programs. See
also error messages
(compiler); error
messages (runtime)

in Eclipse, 57–61
inspecting variables,

59–80
setting breakpoints, 60–61
stepping, 57–59
suspending threads, 58–59
types of bugs, 57

decimal data
bonus chapter about, 19
floating-point types for,

93–94
Java weakness for

handling, 18–19
declaration statements, 71
declarations (JSP), 634,

640–642
declaring classes

for abstract classes,
293–294

basic form, 249
class body, 250–251
identifiers, 250
for inner classes, 329–333
public keyword, 249
required in Java, 249

declaring methods
basic form, 200
body of method, 201
Hello! World example,

201–202
naming methods, 201
order for, 202

60_58961X bindex.qxd 3/29/05 3:28 PM Page 829

Java All-in-One Desk Reference For Dummies830

declaring methods
(continued)

parameter list, 201
private keyword, 254
public keyword,

200–201, 253
return type, 201, 205
static keyword, 201

declaring variables
for array lists, 401
for arrays, 372, 373
basic form, 84
class variables, 84–85
counter variable of for

loops, 175
explicitly, reasons for, 83
fields, 253
final variables

(constants), 89–90
instance variables, 85–86
for linked lists, 413
local variables, 86–87
reference types and, 96–97
Scanner variables, 109
semicolon ending, 84
strings, 98
two or more in one

statement, 84
using abstract class type,

295
decrement operator, 118,

120–121
DefaultListModel class

(Swing), 571–572
DefaultMutableTree

Node class (Swing),
576–578

defaults
class variable value, 88
constructor, 259–260, 262
instance variable value, 88
package, 340
switch statement
default group, 191

XML attributes, 739
Delegation design pattern,

277
Delegation Event Model,

332

delete method, 666,
670–671

delete statement (SQL),
705, 713–715

deleteRow method,
730–731

deleting
array list elements, 398,

407–408, 410
combo box items (Swing),

565–566
database rows with JDBC,

730–731
database rows with SQL,

713–715
database tables with SQL,

714
files, 670–671
linked list items, 410, 416,

417–418
demo folder, 23
-depreciation compiler

option, 28
dequeue method, 427, 428
derived classes. See

subclasses (derived or
child classes)

Design Pattern icon, 6
design patterns

Abstract Factory, 294
Accessor, 256
Delegation, 277
Façade, 458
Factory, 555
Immutable, 356
Iterator, 405
Marker Interface, 301
Observer, 332
Singleton, 270

design, three-layered
approach for, 244–245

development environments,
21. See also Eclipse IDE

dialog boxes
JOptionPane class for,

80–81, 111–112
Open (Swing), 672–678
Save (Swing), 676

DialogApp class, 112
Dice class, 251–252
dice rolling program

example, 129–131
DiceApp class, 129–131
DiceGame class, 251–252
directives. See page

directives (JSP)
directories

adding root directory to
ClassPath, 341–342

checking existence of, 668
displaying using

recursion, 494–497
for File objects, 667
getting contents of, 669
for jar command, 343
JDK, 23
listing files in, 672
root directory for

packages, 341
for Tomcat servlet engine,

615, 616, 642
Directory Listing

application, 494–497
displaying images (Swing)

attaching images to
components, 791

creating an Image object,
794–795

drawing an Image object,
795–796

file formats supported,
790

Halfdome example,
791–793

Image class for, 793–799
ImageIcon class for,

790–793
Java support for, 789
MediaTracker class for,

789
Picture Frame application,

796–799
distinct keyword (SQL),

713
DivideByZero class,

221–222

60_58961X bindex.qxd 3/29/05 3:28 PM Page 830

Index 831

divideTheseNumbers
method, 227, 228

division
order of precedence for,

118
precedence and, 118–119
remainder operator for,

115, 116–117
by zero, exception

handling for, 221–222
by zero, results of,

138–139
DNS (Domain Name

System), 454, 455
docs folder, 23
DOCTYPE tag for DTDs, 737
Document interface, 744,

745–746
Document Object Model.

See DOM
Document Type Definitions

(DTDs), 736–739
documentation for Java

complete, 32
Java Language

Specification, 34
J2SE API, 32, 33–34

documentation for
programs

class constants for, 90
JavaDoc comments,

75–76, 347–350
JavaDoc pages, 347,

350–352
DocumentBuilder

Factory class (DOM),
741–743

doGet method, 620, 623
dollar sign ($), avoiding in

names, 74
DOM (Document Object

Model)
defined, 739
document tree, 740
Movie Listing program

example, 748–750

reading a DOM document,
741–743

reading DOM nodes,
743–747

domain name, naming
packages with
reversed, 340–341

Domain Name System
(DNS), 454, 455

dot (.)
in names, 74
in regular expressions,

479
dotted-decimal notation,

454
double buffering, 807
double type

arithmetic operators with,
114–115

automatic conversions
for, 101–102

converting to int, 102,
129–130

precision of, 93
rounding functions for,

131–133
do-while loops

basic form, 168
braces for, 169
break statement for, 169
continue statement for,

169
counting even numbers

using, 169
flowchart for, 169, 170
initializing variables in,

169
nesting, 183–186
statements always

executed, 169
for validating user input,

170–173
downloading. See also

Internet resources
Eclipse IDE, 43
Java documentation, 32
JDK, 22
JRE, 22

MediaTracker class for
monitoring, 789, 790

MySQL database server,
705

Tomcat servlet engine,
614, 615

draw method, 768
drawImage method

(Swing), 795–796
drawing shapes. See

Java 2D
DrawingBoard program,

782–788
drawString method, 782
drop statement

(SQL), 705
DTDs (Document Type

Definitions), 736–739
dump, 217
Duodecaphobia class,

164, 165
Duodecaphobia2 class,

167–168

E
E constant, 125
Eclipse IDE

adding a class file, 52–55
adding desktop shortcut

for, 43
compiling by, 57
creating a simple project,

47–52
Debug perspective, 45–46,

58–59
debugging programs,

57–61
described, 21, 43
downloading and

installing, 43
editor, 44
Extract Local Variable

command, 62
Extract Method

command, 62
further information, 43
Inline command, 62

60_58961X bindex.qxd 3/29/05 3:28 PM Page 831

Java All-in-One Desk Reference For Dummies832

Eclipse IDE (continued)
inspecting variables,

59–80
Java perspective, 44, 45
New Java Class dialog

box, 50
New Java Project dialog

box, 48–49
New Project dialog box,

48, 49
perspective defined, 44
projects overview, 46–47
refactoring, 61–62
Rename command, 62
running, 43
running a program, 56–57
Save Resources dialog

box, 51
setting breakpoints, 60–61
simple versus large

projects, 47
stepping through

programs, 57–59
suspending threads, 58–59
switching projects, 47
views, 44
workbench, 43–44
Workspace Launcher

dialog box, 47–48
editor (Eclipse), 44
EJBs (Enterprise

JavaBeans), 647
Element interface, 744,

745, 746–747
element method, 412, 416
ELEMENT tags (DTDs),

737–738
ellipses, creating in Java 2D,

774
else-if statements, 149,

151–152, 187–188
e-mail address, naming

packages with
reversed, 341

end condition for recursion,
492

end-of-line comments,
74–75

enhanced for loop,
377–378, 404–406

enqueue method, 427, 428
Enterprise JavaBeans

(EJBs), 647
EOFException, 694
equality operator, 239,

311–312, 394
equals method (Arrays

class), 392, 394–395
equals method (Object

class)
conditions for overriding,

313–314
defined, 307, 308
equality operator

limitations and,
311–312

overriding, 313–316
using, 312–313
equals method (String

class), 160
equals sign (=)

as assignment operator,
78, 122–123

in compound assignment
operators, 123–124, 356

with JSP expressions, 634
in relational operators,

142, 159–160
equalsIgnoreCase

method, 160
Error class, 289, 290
error messages (compiler).

See also debugging
programs

for capitalization errors,
69–70

for catch-or-throw errors,
229–230

from javac command, 26
for missing abstract

modifier, 294
missing return
statement, 207–208

non-static variable
messages, 86

in TextPad, 38–39
for undeclared local

variables, 87
for uninitialized variables,

88
for using counter variable

outside loop, 176
error messages (runtime).

See also debugging
programs; exception
handling

Exception class for
displaying, 226–227

for incorrectly named
class, 29–30

program crash and, 57
escape sequences

for character constants,
95

in regular expressions,
485

in strings, 356
EvenCounter class, 162
EvenCounter2 class, 169
event listeners (Swing). See

also events (Swing)
for action versus item

events, 550–551
adapter classes, 534
for check boxes, 550–551
defined, 300, 523
implementing interface

for, 525
implementing methods

for, 525
inner classes for, 528–530
interfaces, 522
methods, 523–524
for mouse events, 783–784
Observer design pattern

and, 332
overview, 521–522
registering with event

source, 526
for sliders, 562
tree selection listeners,

581

60_58961X bindex.qxd 3/29/05 3:28 PM Page 832

Index 833

event source (Swing)
defined, 300, 523
registering listener with,

526
variable referring to, 525

events (Swing). See also
event listeners (Swing)

action versus item events,
550–551

ClickMe program, 526–528
ClickMe2 program (using

inner class), 528–530
ClickMe3 program (with

Exit button), 534–536
defined, 521, 523
event classes, 522
Exit button, 530–532
handling events, 524–526
listener interfaces, 522
low-level, 523
mouse events, 782–784
semantic, 523
WindowClosing event,

532–534
Exception class

custom class extending,
290–291

defined, 290
displaying error

messages, 226–227
methods, 226
throw statement and, 233
Throwable hierarchy

and, 289, 290
try statements using,

225–226
exception handling

catching exceptions, 218,
220–223

for checked exceptions,
229–233

checked versus
unchecked exceptions,
218

creating an exception
class, 290–291

custom exceptions,
289–292

displaying error
messages, 226–227

Exception class for,
225–226

exception objects, 17,
217–218

finally block for, 221,
227–229

finding the statement
causing exceptions,
219–220

inheritance and, 289–292
need for, 17
overview, 17–18
packages for exception

classes, 221
preventing exceptions,

223–225
reading binary streams,

694, 695
swallowing exceptions,

232–233
Throwable hierarchy

and, 289–290
throwing a custom

exception, 281–282
throwing an exception,

218, 233–234
typical exceptions, 218

exception objects, 17, 217,
218

exclamation mark (!)
with JSP expressions, 634
in nonequality relational

operator (!=), 142
as not operator, 153–154

exclusive or operator (^),
156–157

executeQuery methods,
722

executing. See running
Exit button (Swing)

ClickMe3 program,
534–536

overview, 530–532
exp method, 126
exponential notation, 93, 94
exposing fields and

methods, 254

ExpressionGanging
class, 180

expressions. See also
regular expressions

for array length, 373
combining operators in,

118–119
compound, 153
defined, 71
for for loops, 174
increment or decrement

operators and, 121
JSP, 634, 636–637
with return statement,

206
semicolon ending, 71

extending classes. See
inheritance; subclasses
(derived or child
classes)

extending interfaces,
299–300

extends keyword
for custom exception

class, 291
with formal type

parameter, 426–427
for interfaces, 299–300
Object class and,

305–306
for subclasses, 277–278

Extract Local Variable
command (Eclipse), 62

Extract Method command
(Eclipse), 62

F
F suffix for floating-point

literals, 93–94
Façade design pattern, 458
factorials, 491–493
factory classes, 294
Factory design pattern, 555
fields. See also class

variables
accessors for, 254–256
adding to interfaces, 299

60_58961X bindex.qxd 3/29/05 3:28 PM Page 833

Java All-in-One Desk Reference For Dummies834

fields (continued)
BorderLayout class

(Swing), 589
calculated values for, 255
in class declarations, 250,

251
declaring, 253
defined, 253
File class, 666
final, 253
GridBagConstraints

class (Swing), 596
Image class, 794
inheritance and, 274, 278
JScrollPane class

(Swing), 547
Node interface, 744–745
private, 253, 255–256
public, 241, 253, 254, 256
for state of objects, 241
static, class loading and,

242
static initializers for, 242
visibility, 254

file chooser dialog box. See
Open dialog box
(Swing)

File class
checking file existence,

668
constructor, 666
creating a file, 668
creating an object, 667
deleting files, 670–671
field, 666
getting directory

contents, 669
getting file information,

668–669
importing, 665
methods, 666–667
reading binary streams

and, 692
reading character streams

and, 680
renaming files, 670

file extensions (TextPad),
36, 38

file filters (Swing), 676–678

FileFilter abstract
class (Swing), 676–678

FileInputStream class,
692

FileNotFound
Exception

catching with try
statement, 230–231

catch-or-throw compiler
error for, 229–230

swallowing, 232–233
throws clause in calling

method for, 231–232
throws clause in main

method for, 232
FileOutputStream

class, 698, 699
FileReader class, 680
files. See also directories;

I/O streams
argument file for compiler,

27
binary, 680
checking existence of, 668
choosing in Swing

applications, 672–678
command-line parameters

and, 671–672
compiling multiple files,

26–27
creating a File object,

667
creating with

createNewFile, 668
deleting, 670–671
File class, 665–671
getting information about,

668–669
image files, 790
in JDK root folder, 24
redirecting standard

output to, 106
renaming, 670
FileWriter class,

686–688
fill method
Arrays class, 393
Java 2D, 769, 777

final classes, 283–284

final fields. See final
variables or fields
(constants)

final keyword
abstract modifier

forbidden with, 295
for classes, 283–284
for fields, 253
for final variables

(constants), 69, 89
for methods, 283

final methods, 283, 284
final variables or fields

(constants). See also
constants

class constant
advantages, 90

class variables, 90
declaring, 89–90, 253
defined, 89
final keyword for, 89
in interfaces, 296, 299
uses for, 90
finalize method, 307,

308
finally block, 221,

227–229
float type

automatic conversions for,
101–102

precision of, 93
rounding functions for,

131–133
floating-point data. See

decimal data
floating-point types. See

also specific types
accuracy problems with,

137–138
automatic conversions for,

101–102
decimal point used with

literals, 93
dividing by zero and,

138–139
floating-point numbers

defined, 93
literals, 93–94

60_58961X bindex.qxd 3/29/05 3:28 PM Page 834

Index 835

positive versus negative
zero, 139

precision of, 93
scientific notation for, 93

floor method, 132–133
Flow layout manager

(Swing), 585, 587–588
flowcharts
do-while loop, 169
else-if statement, 152
for loop, 175
if statement, 144, 145
if-else statement, 147
for procedural logic, 245
switch statement, 192
while loop, 163

FlowLayout class
(Swing), 520, 587–588

flush method, 700
folders. See directories
Font class constructor,

753–755
Fonts program, 756–759
fonts (Swing)
Font class constructor,

753–755
listing available fonts, 756
names, 754
program demonstrating,

756–759
setting for components,

755–756
styles, 754–755
for loops. See also blocks

with array lists, 403
with arrays, 374–378,

381–382, 383–384
basic form, 174
break statement with,

181–182
continue statement

with, 181, 182
count expression

(ForUpdate
Expression), 174, 175

counter variable, defined,
173

counting backwards
using, 177–178

counting even numbers
using, 177

declaring the counter
variable, 175

enhanced for loop,
377–378, 404–406

for factorials, 491–492
flowchart for, 175
initialization expression

(ForInit Expression),
174, 175

for locker problem
solution, 375–377

in LoopyJSP.jsp,
639–640

multiple expressions with,
179–180

nesting, 182–183, 383–384,
385

omitting expressions, 181
overview, 173
simple example, 174–175
test expression

(Expression), 174, 175
without bodies, 178–179
ForDuodecaphobia2

class, 182
ForEvenCounter class,

177
format method, 134
formatting numbers

creating NumberFormat
object as class
variable, 135–136

need for, 133–134
NumberFormat class

methods for, 134
using NumberFormat

class, 134–135
Forte for Java (Sun), 21
Frame class (Swing), 509
frames (Swing). See also

JFrame class (Swing);
layout managers
(Swing)

adding panels to, 517
creating, 511
Exit button, 530–532

positioning on-screen,
513–514

setting layout manager
for, 587

size settings, 511, 512–513
as top-level component,

510
from clause (SQL), 708,

712
functions. See methods

G
Game class, 278
games. See also guessing

game program
base class for board

games, 275
designing, inheritance

and, 275
knight moves calculator,

385–392
NotPong program,

815–820
as simulations, 237–238
user interaction for,

814–815
garbage collector, 17, 242
generics feature
ArrayList class using,

420
creating a generic class,

421–422
formal type parameter

and, 421–422, 426–427
Java versions and, 398
need for, 420
queue class using,

427–430
specifying type of

elements, 401
stack class using, 421–425
technical nature of, 419
wildcard parameters,

426–427
GenQueue class, 427–430
GenQueueTest program,

429–430

60_58961X bindex.qxd 3/29/05 3:28 PM Page 835

Java All-in-One Desk Reference For Dummies836

GenStack class, 422–425
GenStackTest program,

424–425
get accessors, 254, 255–256
get method
ArrayList class, 399,

403, 420
generics feature and, 420
LinkedList class, 412,

416
GET requests with servlets,

623
GetABet class, 171
GetABet2 class, 172
GetABet3 class, 172–173
getAllByName method,

457, 458, 460
getAttribute method

(XML), 746–747
getAvailableFont

FamilyNames
method, 756

getCanonicalPath
method, 666, 669

getClass method
comparing Class

objects, 327–328
defined, 307, 308
overriding toString

method and, 311
getCurrencyInstance

method, 134
getDaysOfWeek method,

378
getDefaultToolkit

method, 514
getDescription

method, 677
getDocument method

(XML), 743, 750
getFirst method, 412, 416
getFirstChild method

(XML), 747
getGuess method
GuessingGameMethod2

class, 208, 209, 210
GuessingGameMethod3

class, 214, 215, 216

GetInteger class,
222–223

GetInteger2 class,
224–225

getLast method, 412, 416
getLocalGraphics

Environment
method, 756

getName method
Class class, 327–328
File class, 666, 668
getNextSibling method

(XML), 747
getNumberInstance

method, 134
getPercentInstance

method, 134
getProperty method

(JavaBeans), 647–648
getRandomNumber

method
accepting parameters,

211–212
GuessingGameMethod

class, 205–206
GuessingGameMethod2

class, 208, 209, 210
GuessingGameMethod3

class, 214, 215
getScreenSize method,

514
getSelectedFile

method, 674, 676
getSelectedIndex

method
JComboBox class, 564,

566
JList class, 569, 571
getSelectedItem

method, 564, 566
getSelectedValue

method, 569, 570
getSelectedValues

method, 569, 570, 571
getSuperclass method,

327
getters (get accessors), 254,

255–256

getTextValue method
(XML), 747, 750

getYorN method, 389–390,
392

GIF (Graphics Interchange
Format) format, 790

glue (Swing), 592
goto keyword, 69
GradientPaint class,

778–780
Graphics class, 794
graphics context for Java

2D, 767–768
Graphics Interchange

Format (GIF) format,
790

GraphicsEnvironment
class, 756

Graphics2 class, 768
greater-than sign (>)

for redirecting standard
output, 106

in relational operators,
142

Greeter class
importing Java API

classes, 81–82
original example, 79–80
using JOptionPane,

80–81
Grid layout manager

(Swing), 586, 592–593
GridBag layout manager

(Swing)
adding components,

595–597
defined, 586
GridBagConstraints

class, 596, 597–598
layout example, 598–601
sketching out a plan,

594–595
special features, 593–594
GridBagConstraints

class (Swing), 596,
597–598

GridLayout class
(Swing), 592–593

60_58961X bindex.qxd 3/29/05 3:28 PM Page 836

Index 837

guessing game program
with do-while loop,

183–186
exceptions and, 219
with four methods,

208–210
with methods accepting

parameters, 214–216
with one method, 202–204

GuessingGame class,
183–186

GuessingGameMethod
class, 202–204

GuessingGameMethod2
class, 208–210

GuessingGameMethod3
class, 214–216

H
handling exceptions. See

exception handling
hash code for objects, 239
hash sign (#) in class

diagrams, 247
hashCode method, 307,

308
hasItems method
GenQueue class, 427, 429
GenStack class, 423, 424

hasNext method, 404–406
Hello! World example. See

also HelloApp.java
program

declaring methods,
201–202

Swing, 511–513
HelloApp class, 50, 55, 66
HelloApp.java program

adding a class file in
Eclipse, 52–55

compiler options and, 27
compiling in TextPad,

38–39
compiling with javac

command, 26, 68
creating in Eclipse, 47–51

example using an object,
78–80

Greeter class, 79–81
HelloApp class, 50, 55,

66
HelloApp2 class, 78–79
HelloSayer class, 52–55
javap command with,

31–32
main method, 51, 55,

67–68
running in Eclipse, 51
running in TextPad, 40–41
running with java

command, 29, 68
HelloApp2 class, 78–79
HelloFrame class

(Swing), 512–513
HelloFrame constructor

(Swing), 517
HelloSayer class, 52–55
HelloServlet class,

624–625
HelloWorld servlet

dynamic version, 623–625
static version, 619–622

HelloWorldMethod
class, 201–202

help. See also
documentation for Java

-help compiler option,
28

for javac command, 28
for telnet, 456

hierarchies of classes. See
also inheritance

collection classes,
397–398

overview, 276
in Swing API, 508–509
Throwable class, 289,

290
host names

defined, 455
localhost, 455, 456
lookup program for,

458–460

HostLookup program,
458–460

HTML. See also JSP (Java
Server Pages)

APPLET tag, 611
creating pages for applets,

611
further information, 621
servlet response using,

620–622
tags in this book (table),

622
XML versus, 735

HTTP (HyperText Transfer
Protocol), 613–614,
623, 625

HttpServlet class,
619–620

HyperText Transfer
Protocol (HTTP),
613–614, 623, 625

hypot method, 126, 128

I
icons

defined, 790
ImageIcon class, 790,

791–793
in margins of this book,

5–6
identifiers. See also names

for classes, 66, 250
defined, 66, 73
elements using, 73
for interfaces, 297
for methods, 67, 201
names versus, 74
rules for creating, 74, 84
for variables, 84

identity, 239
IDEs (Integrated

Development
Environments), 21.
See also Eclipse IDE

60_58961X bindex.qxd 3/29/05 3:28 PM Page 837

Java All-in-One Desk Reference For Dummies838

if statements. See also
blocks

basic form, 144
blocks with, 145–146
boolean expressions

needed for, 141
braces for blocks, 73
comparing strings,

159–160
conditional operator for,

159
declaring variables in,

87, 104
for displaying error

messages, 171–172
else-if statements,

151–152, 187–188
empty else statement

with, 150
flowcharts for, 144, 145,

147, 152
if-else statements,

146–147
importance of, 144
indenting, 144, 145
instanceof operator

with, 286
logical operators for,

153–158
NaN constant and

comparisons in,
139–140

nested, 147–150, 385
return statement within,

206–208
rule for pairing else

keywords with, 150
semicolon and, 71
simple statements,

144–146
within switch

statements, 193–194
IllegalArgument

Exception, 218
Image class

creating an object, 794
drawing an Image object,

795–796

methods and fields, 794
paintComponent

method and (Swing),
793

ImageIcon class,
790, 791–793

images. See displaying
images (Swing)

Immutable design pattern,
356

immutable objects, 356,
359, 365

implements clause, 297
implicit objects (JSP), 636
import page directive

(JSP), 635
import statement. See

also importing
for exception class

packages, 221
for Java API classes, 81–82
for packages, 339–340
rules for using, 82

importing
ArrayList class, 401
Border interface, 554
classes from packages,

339–340
exception class packages,

221
File class, 665
InetAddress class, 457
Iterator interface, 404
Java API classes, 81–82
java.io package, 619,

665, 680
java.net package, 457
java.sql package, 721
java.text package, 134
java.util package, 108,

392, 401, 404
packages, 339–340
packages not requiring,

82, 340
Scanner class, 108
servlet packages, 619
Swing-related packages,

509, 554

using import statement,
81, 82

without using import
statement, 82

include folder, 23
increment operator, 118,

120–121
indenting code, 144, 145, 148
indexes for arrays

initializing arrays using,
373

maximum value for, 372
two-dimensional arrays,

381–382
zero as starting number

for, 371
index.html page

(JavaDoc), 351–352
IndexOutOfBounds

Exception,
402, 415, 416

InetAddress class
Façade design pattern

and, 458
host name lookup

program using, 458–460
overview, 456–457

infinite loops, 164, 165–167
inheritance. See also base

class (superclass or
parent class);
subclasses (derived or
child classes)

abstract classes and, 293
behaviors and, 274
in class diagrams, 248
constructors and, 281–282
custom exceptions using,

289–292
defined, 16, 243, 274
Delegation design pattern

versus, 277
hierarchies, 276
interface advantages over,

296
interfaces versus, 244
for is-a-type-of

relationships, 274
members and, 278

60_58961X bindex.qxd 3/29/05 3:28 PM Page 838

Index 839

non-computer meanings,
273–274

Object class and,
305–306

overriding methods and,
278–279

polymorphism, 287–289
real-world examples,

274–276
type checking and, 16
upcasting and, 284–285
uses for, 243
visibility and, 278
init method for applets,

605
initialization expression

(for loops)
defined, 174
ForInit Expression name

for, 175
multiple expressions with,

179–180
omitting, 181

initializers
for arrays, 374, 384
for classes, 250
order of execution for, 264
overview, 89
static, 264, 271–272
static versus instance, 250
for strings, 98
using, 263–264

initializing arrays
assigning values

individually, 373
with constant values,

373–374
fill method for, 393
two-dimensional arrays,

382
initializing variables

with assignment
statements, 88–89

booleans, 95
in do-while loops, 169
with initializers, 89
need for, 88
strings, 98

Inline command
(Eclipse), 62

inner classes
access to outer class

fields and methods, 330
anonymous, 334–338
basic form, 329
declaring, 329–333
defined, 251
for event listeners,

528–530
example implementing
Ticker class, 330–333

key points, 330
multiple classes in source

file versus, 252
outer class reference in,

330
private, 330
referring to outer class

instance in, 330
static, 333–334

inner if statement, 148
Inprise’s JBuilder, 21
InputJSP.jsp JSP, 637
InputMismatch

Exception,
218, 222–223

InputServlet servlet,
626–627

insert statement (SQL),
705, 707

inserting database rows
with JDBC, 732
with SQL, 705, 707

installing. See also
configuring

Eclipse IDE, 43
JDK, 23
TextPad text editor, 35
Tomcat servlet engine,

615–616
instance classes

preventing instantiation,
271

singleton classes and, 270
tracking number created,

268–269

instance variables. See also
variables

declaring, 85–86
default value, 88
defined, 85
determining type of, 286
scope of, 103, 104
static methods and, 86
strings, 98

instanceof operator, 286
int type

arithmetic operators with,
114

automatic conversions
for, 101–102

converting double to,
102, 129–130

hash code for objects, 239
integer overflow, 136–137
overview, 91–92
promoting, 92

integer overflow, 136–137
integer types. See also

specific types
automatic conversions

for, 101–102
dividing by zero and, 138
integer defined, 91
integer overflow, 136–137
in Java versus other

languages, 92
overview, 91–92
promoting, 92

Integrated Development
Environments (IDEs),
21. See also Eclipse IDE

interfaces. See also specific
interfaces

adding fields to, 299
advantages over

inheritance, 296
basic, creating, 296–297
for callbacks, 300–304
in class declarations, 251
in class diagrams, 248
defined, 242, 244
extending, 299–300
final fields in, 296, 299
implementation of, 244

60_58961X bindex.qxd 3/29/05 3:28 PM Page 839

Java All-in-One Desk Reference For Dummies840

interfaces (continued)
implementing, 297–298
inheritance versus, 244
for JDBC, 722, 724–725
listener, 522, 523–524, 534
marker interface, 301
naming, 297
public, 254
for reading DOM nodes,

743–745
signatures and, 293
using as types, 298–299

Internet, Java’s association
with, 12–13

Internet resources
Apache site, 614
command-line tools

information, 32
Eclipse site, 43
Java API

documentation, 12
Java complete

documentation, 32
Java Language

Specification, 34
javadoc command

information, 350
JDK download site, 22
JRE download site, 22
J2SE API documentation,

32, 33–34
MySQL site, 705, 719
servlet samples, 618
Snopes.com, 257
Sun’s Java site, 21
for testing Tomcat servlet

engine, 618
Tomcat servlet engine,

614
Unicode site, 95
Web site for this book, 5,

9, 433
interpreted languages

versus Java, 11
interrupt method, 447,

448
InterruptedException,

437, 447–448, 451, 452

IntValidationResult
class (Swing), 543

I/O streams
character versus binary,

680
defined, 679
importing package for, 680
overview, 105–106
reading binary streams,

692–697
reading character

streams, 680–686
System class and, 106
writing binary streams,

698–702
writing character streams,

686–691
IOException, 218, 694,

695
IP addresses

defined, 454
dotted-decimal notation,

454
InetAddress class for,

456–460
managed by DNS, 454, 455
port numbers in, 454

is-a-type-of relationships,
274

isDirectory method,
666, 668, 669

isFile method, 666, 668
isInt method (Swing), 542
Iterator design pattern, 405
Iterator interface,

404–406
iterator method, 400,

404–406
iterators, 404–406

J
jagged arrays, 382–384
JApplet class, 605, 607
jar command

archiving a package,
345–346

basic form, 344

described, 32
directory for, 343
options, 344–345

JAR (Java archive) files
adding to ClassPath, 346
archiving packages in,

345–346
defined, 343
manifest file in, 344,

346–347
rt.java file, 343
running programs from,

346–347
Zip files versus, 343–344
icons in margins, 5–6
organization, 3–6
overview, 1–2
typographical

conventions, 3
using, 1, 3, 6
Web site, 5, 9, 433

Java API
abstract classes in, 296
documentation online, 12,

32–34
folders in JDK root folder,

23
importing classes, 81–82
in J2SE versus J2EE, 20
overview, 12
reference types defined

by, 90, 91
rt.java file for, 343
size of, 12, 18
weaknesses, 18

Java archive files. See JAR
files

Java basics
acronyms, 20
API, 12
automatic memory

management, 17
documentation, 32–34
exception handling, 17–18
identity, 239
the Internet and Java,

12–13

60_58961X bindex.qxd 3/29/05 3:28 PM Page 840

Index 841

interpreted versus
compiled languages, 11

Java defined, 9
Java Language

Specification, 34
object orientation, 11–12,

14
other languages

compared to Java,
13–14

platform independence,
10–11

strongly typed language,
90

Sun Web site, 21
type checking, 15–16
types of Java programs,

13
versions, 19–20
weaknesses, 18–19

java command, 25, 29–30.
See also JRE (Java
Runtime Environment)

Java DataBase Connectivity.
See JDBC

Java Development Kit. See
JDK

java file extension,
TextPad and, 36

Java Language
Specification, 34

Java Runtime Environment
(JRE), 10, 20, 22. See
also java command

Java 2 Enterprise Edition
(J2EE), 20

Java 2 Standard Edition.
See J2SE

Java 2D
classes for basic shapes,

771–772
colors for shapes, 769
compositing rule, 777–778
creating arcs, 774–775
creating ellipses, 774
creating lines, 772–773
creating rectangles,

773–774

creating transparent
shapes, 777–778

drawing shapes, 768–771
drawing text, 782
DrawingBoard program,

782–788
gradient fills, 778–780
graphics context for,

767–768
letting users draw on

components, 782–788
rotate method, 780–782
ShapeMaker program,

775–777
SimpleShape program,

769–771
solid fills, 769, 777
translate method, 780

Java Virtual Machine
(JVM), 10, 11, 17, 20

java.awt package, 221,
522

java.awt.event
package, 221

JavaBeans. See also Swing
BookCart example,

659–662
creating instances,

651–652
defined, 647–648
empty constructor for, 647
Enterprise (EJBs), 647
getting property values,

652–653
with JSP pages, 651–662
jsp:getProperty tag,

651, 652–653
jsp:setProperty tags,

651, 653–654
jsp:useBean tag,

651–652
methods required for,

647–648
properties, 647–648
public instance

variables forbidden for,
647

scope of, 656–657

setting property values,
653–654

shopping cart example,
657–659

Triangle example,
648–651

Triangle.jsp example,
654–656

javac command. See also
compiler

argument file for, 27
compiler options, 27–28
compiling a program, 26
compiling multiple files,

26–27
defined, 25
error messages, 26–27
javadoc command

creating JavaDoc pages,
350

described, 32
further information, 350
viewing pages created

with, 351–352
JavaDoc comments

adding to source files,
347–348

creating documentation
pages from, 347, 350

defined, 75–76
doc tags, 348
Employee class example,

348–350
locations for, 347

JavaDoc pages
creating from comments,

347, 350
viewing, 351–352

JavaDoodle. See Java 2D
javaFilter class, 678
JAVA_HOME environment

variable, 615
java.io package, 619,

665, 680
java.lang package, 82,

125, 340
java.net package, 457
javap command, 31–32

60_58961X bindex.qxd 3/29/05 3:28 PM Page 841

Java All-in-One Desk Reference For Dummies842

java.sql package, 721
java.text package, 134
java.util package, 108,

223, 392, 401, 404
javax.servlet package,

619
javax.servlet.http

package, 619
javax.swing package,

509
javax.swing.border

package, 554
JBuilder (Inprise), 21
JButton class (Swing),

518–519, 791
JCheckBox class (Swing),

548–549
JColorChooser class

(Swing), 763–765
JComboBox class (Swing),

564
JComponent class

(Swing), 509
JDBC (Java DataBase

Connectivity)
classes for queries,

721–722
connecting to a database,

720–721
defined, 717
deleting a row, 730–731
driver setup, 717–720
inserting a row, 732
Movie Listing program

example, 725–728
MySQL connector,

719–720
ODBC data source setup,

717–719
querying databases,

721–728
registering the driver

class, 720
ResultSet interface,

722, 723–725
SQL knowledge needed

for, 703
Statement interface, 722

updating SQL data,
728–729

using updatable RowSet
object, 729–732

JDK (Java Development Kit)
defined, 20
downloading, 22
files in root folder, 24
folders, 23
installing, 23
license agreement, 22, 24
need for, 21
online versus offline

version, 22
path setting for, 24–25

JFileChooser class
(Swing)

addChoosableFile
Filter method, 674,
676, 678

constructors and methods
(table), 673–674

getSelectedFile
method, 674, 676

in Picture Frame
application, 796

setAcceptAllFile
FilterUsed method,
674, 678

setChoosableFile
Filter method, 678

setDialogTitle
method, 674, 675

setFileHidingEnable
d method, 674, 675

setFileSelectionMod
e method, 674, 675

setMultiple
SelectionEnabled
method, 674, 675

showOpenDialog
method, 672–673,
674–675, 676

showSaveDialog
method, 674, 675

JFrame class (Swing)
constructors, 510
described, 509

frame position methods,
513–514

JApplet class compared
to, 605

methods, 510–511
JLabel class (Swing), 509,

516–517, 791
JList class (Swing),

568–569
Joint Photographic Experts

Group (JPEG) format,
790

JOptionPane class
displaying messages with,

80–81
getting input with,

111–112
Greeter class using,

80–81
showInputDialog

method, 111–112
TickTock program

using, 302, 304, 331, 332
JPanel class (Swing), 509,

515–516
JPEG (Joint Photographic

Experts Group) format,
790

jre folder, 23
JRE (Java Runtime

Environment), 10, 20,
22. See also java
command

JScrollPane class
(Swing), 545, 547–548

JSlider class (Swing), 560
JSP (Java Server Pages).

See also JavaBeans
BuyMyBook.jsp

example, 657–659
classes with, 642–646
DateJSP.jsp example,

637–638
declarations, 634, 640–642
defined, 633
elements, 634
expressions, 634, 636–637
implicit objects, 636

60_58961X bindex.qxd 3/29/05 3:28 PM Page 842

Index 843

InputJSP.jsp example,
637

JavaBeans with, 651–662
jsp:getProperty tag,

651, 652–653
jsp:setProperty tags,

651, 653–654
jsp:useBean tag,

651–652
LoopyJSP.jsp example,

639–640
overview, 633–634
page directives, 634, 635
scriptlets, 634, 638–640
servlet code embedded

in, 633
Triangle.jsp example,

654–656
jsp:getProperty tag,

651, 652–653
JSpinner class (Swing),

573, 574
jsp:setProperty tags,

651, 653–654
jsp:useBean tag,

651–652
JTextArea class (Swing),

545–547
JTextField class

(Swing), 537–538
JTree class (Swing),

579–580
J2EE (Java 2 Enterprise

Edition), 20
J2SE (Java 2 Standard

Edition)
API documentation, 32,

33–34
defined, 20

JVM (Java Virtual
Machine), 10, 11, 17, 20

K
keywords. See also

operators; specific
keywords

case sensitivity of, 69–70
defined, 68

forbidden for
identifiers, 74

in Java (table), 69
literals compared to, 69
operands, 113

knight moves calculator,
385–392

L
labels (Swing), 516–518
Last-In, First-Out (LIFO)

lists, 425
late binding, 289
LaunchControl class,

178
LaunchEvent class,

439–440, 442–443, 444,
445, 450–451

layout managers (Swing)
Border, 585–586, 588–590
Box, 586, 590–592
Card, 586
combining, 587
Flow, 585, 587–588
Grid, 586, 592–593
GridBag, 586, 593–601
key points, 520
Spring, 586

legal issues for applets, 13
length

finding for arrays, 372
finding for strings, 359,

370
fixed for arrays, 372
variable or expression for

arrays, 373
length method
CharSequence

interface, 370
String class, 358, 359

less-than sign (<) in
relational operators,
142

lib folder, 23
license agreement for JDK,

22, 24
LICENSE file, 24
LICENSE.rtf file, 24

life cycle of objects, 242
LIFO (Last-In, First-Out)

lists, 425
like keyword (SQL), 710
lines, creating in Java 2D,

772–773
linked lists. See also

LinkedList class
adding items, 410, 414–415
arrays versus, 409,

410–411
creating, 413
defined, 409
memory usage by, 411
queues, 410, 427–430
removing items, 410, 416,

417–418
retrieving items, 416–417
stacks, 410, 421–425
for strings, 413
updating items, 417
LinkedList class. See

also linked lists
add methods, 411,

414–415, 417
addFirst method, 411,

414
addLast method, 412,

414
ArrayList class versus,

410–411
clear method, 418
constructors, 411, 413
creating an object, 413
element method, 412,

416
GenQueue class using,

427–430
GenStack class using,

422–425
get method, 412, 416
getFirst method, 412,

416
getLast method, 412,

416
methods (table), 411–413
offer method, 412, 415
peek method, 412, 416
poll method, 416

60_58961X bindex.qxd 3/29/05 3:28 PM Page 843

Java All-in-One Desk Reference For Dummies844

LinkedList class
(continued)

remove methods,
412–413, 416, 417–418

removeFirst method,
413, 416, 417

removeLast method,
413, 416, 417

ListDirectory class,
672

listener interfaces, 522,
523–524, 534

listeners. See event
listeners (Swing)

listFiles method, 666,
669

ListMovies servlet class,
628, 631–632

ListMovies.jsp JSP,
643–644

ListMoviesXML class,
748–750

lists (Swing)
changing items, 571–572
combo boxes versus, 568
controlling type for

selections, 570
creating, 569–570
DefaultListModel

class, 571–572
defined, 567
getting items from,

570–571
JList class, 568–569
ListSelectionModel

class, 570
ListSelectionModel

class (Swing), 570
literals

floating-point, 93–94
keywords compared to, 69

loading classes, 242
local variables. See also

variables
blocks and, 87
declaring, 86–87
defined, 86

initialization needed for, 88
position for declaration, 87
scope of, 103, 104
shadowing by, 104–105
strings, 98

localhost host name,
455, 456

locker problem, 375–377
log method, 127
logarithms, 125, 127
logic layer, 245
logical operators

and (& and &&), 154–155
combining, 157–158
defined, 153
not (!), 153–154
or (| and ||), 155–156
table summarizing, 153
xor (^), 156–157
log10 method, 127
long type

automatic conversions for,
101–102

for factorials, 492
overview, 91–92
for preventing integer

overflow, 136–137
loops. See also for loops;

specific statements
break statement for,

163–164
conditional expressions

needed for, 161
continue statement for,

167–168
do-while loops,

168–173, 183–186
flowcharts for, 163, 169,

175
infinite, 165–167
nesting, 182–186
overview, 161
simplifying with methods,

200
for validating user input,

170–173
while loops, 162–167

LoopyJSP.jsp JSP,
639–640

low-level events (Swing),
523

M
main method
args parameter, 671–672
calling methods from, 199
HelloApp.java

program, 51, 55, 67–68
HelloApp2 class, 79
static keyword required

for, 67, 267
in Swing, 511, 512, 513
throwing an exception

from, 232
manifest file in JAR files,

344, 346–347
MarblesApp class,

116–117
Marker Interface design

pattern, 301
MarkVowel program,

362–363, 369
MarkVowels class,

362–363
Matcher class, 477,

489–490
matcher method, 490
matches method, 489
matching characters. See

regular expressions
Math class

constants, 125–126
creating random numbers,

129–131
instantiation prevented

for, 271
java.lang package for,

125
mathematical functions,

126–129
methods declared as

static, 125

60_58961X bindex.qxd 3/29/05 3:28 PM Page 844

Index 845

rounding functions,
131–133

usefulness of, 124–125
MathFunctionsApp

class, 127–129
max method, 127
MediaTracker class

(Swing), 789, 790
members of classes

defined, 243, 251
inheritance and, 278

memory management, 17
messages, error. See error

messages (compiler);
error messages
(runtime)

methods. See also specific
methods

abstract, 293
accessors, 254–256
ArrayList class,

399–400
Arrays class, 392–393
arrays with, 378–379
BorderFactory class

(Swing), 554
Box class (Swing),

589–590
BufferedReader class,

681
calling from main

method, 199
calling from switch

statement, 196–198
CharSequence

interface, 369–370
in class declarations, 250
constructors compared

to, 258
for converting strings to

primitives, 100–101
DataInputStream

class, 692–693
DataOutputStream

class, 698–699
declaring local variables,

86–87
declaring methods,

200–204, 253–254

DefaultListModel
class (Swing), 572

DefaultMutableTree
Node class (Swing), 577

defined, 11–12, 67, 199
Element interface, 745
of event listener

interfaces, 523–524
extracting in Eclipse, 62
File class, 666–667
FileFilter class

(Swing), 677
final, 283, 284
Graphics class, 794
HttpServlet class, 619
identifiers, 67
Image class, 794
ImageIcon class, 791
InetAddress class, 457
inheritance and, 274, 278
Iterator interface,

404–406
JApplet class, 607
JavaBean requirements,

647–648
JButton class (Swing),

518–519
JCheckBox class

(Swing), 549
JComboBox class

(Swing), 564
JFileChooser class

(Swing), 674
JFrame class (Swing),

510–511
JLabel class (Swing),

517
JList class (Swing), 569
JPanel class (Swing),

515
JRadioButton class

(Swing), 552
JSlider class (Swing),

560
JSpinner class (Swing),

573
JTextArea class

(Swing), 546

JTextField class
(Swing), 538

JTree class (Swing), 579
late binding, 289
LinkedList class,

411–413
Math class, for rounding,

131–133
Math class, mathematical,

126–129
Node interface, 744
NumberFormat class,

134
overloading, 257
overriding, 278–279, 295
pass-by-value, 213
PrintWriter class, 687
private, 254, 283
public, 67, 200–201, 253
recursive, 491
ResultSet interface

(JDBC), 722, 724–725,
730, 731–732

return statement for,
205–208

returning values, 204–210
rules for naming, 201
scope of parameters,

212–213
ServerSocket class,

462
signatures, 257, 278
Socket class, 461
String class, 357–359
StringBuilder class,

367–368
SystemColor class,

761–762
taking parameters,

211–216
this keyword in body,

263
Thread class, 436
throwing exceptions from,

231–232, 233–234
Toolkit class (Swing),

794
uses for, 199–200

60_58961X bindex.qxd 3/29/05 3:28 PM Page 845

Java All-in-One Desk Reference For Dummies846

methods (continued)
visibility, defined, 254
visibility indicators in

class diagrams, 247
void keyword for, 14, 67

Microsoft, Sun battles with,
13, 18, 606

Microsoft Windows
adding desktop shortcut

for Eclipse, 43
setting ClassPath in XP,

341–342
setting path for JDK, 25

min method, 127
minus sign (-)

in class diagrams, 247
in compound assignment

operator (-=), 123
as decrement operator

(—), 114, 118, 120–121
as subtraction operator,

114, 118
missing return

statement message,
207–208

modal dialog boxes, 675
modulus (remainder)

operator, 115, 116–117
mouse events and listeners

(Swing), 782–784
MouseClicker program,

800–801
Movie class

with JSP, 644–645
with servlets, 628–629

Movie Listing examples
JDBC, 725–728
JSP, 643–644
reading binary streams,

695–697
reading character

streams, 681–682,
683–686

servlet, 628, 631–632
writing binary streams,

700–702

writing character streams,
681–682, 689–691

XML, 748–750
MovieIO class

with JSP, 645–646
with servlets, 628, 629–631
movies.dat file

reading, 695–697
writing, 700–702

movies.txt file
connecting
PrintWriter object
to, 687–688

contents, 681–682
reading, 683–686
writing, 689–691
movies.xml file

contents, 735–736
DOM document tree, 740
DTD file for, 737
Movie Listing program,

748–750
MyException class,

233–234
MySQL database server

downloading, 705
JDBC connector, 719–720
MySQL Command Line

Client, 705
Web site, 705, 719

N
Namer class (Swing),

539–541
names. See also identifiers

dots in, 74
for fonts, 754
identifiers versus, 74
for packages, 340–341
Rename command

(Eclipse), 62
renaming files, 670
for source files, 251

Naming of Parts (Reed,
Henry), 239

NaN constant, 139–140
negation in regular

expressions, 483
NEGATIVE_INFINITY

constant, 139
nested arrays

multi-dimensional,
384–385

two-dimensional, 379–384
nested classes. See inner

classes
nested if statements

defined, 147
else-if statements, 149,

151–152, 187–188
examples, 148–149
general form, 147–148
indenting, 148
inner if statement, 148
with multi-dimensional

arrays, 385
outer if statement, 148
rule for pairing else

keywords with, 150
NestedLoop class,

182–183
nesting loops

with arrays, 383–384, 385
do-while loops, 183–186
for loops, 182–183,

383–384, 385
network programming. See

also specific forms of
programming

BartServer program
example, 463–474

client programs, 453
DNS, 454, 455
forms of, 453
host names, 455
InetAddress class,

456–460
IP addresses and ports,

454–455
server applications,

460–463
server programs, 453

60_58961X bindex.qxd 3/29/05 3:28 PM Page 846

Index 847

telnet, 455–456
URLs, 455

network server
applications

BartServer program
example, 463–474

overview, 460–461
ServerSocket class for,

462–463
Socket class for, 461–462

New Java Class dialog box
(Eclipse), 50

New Java Project dialog
box (Eclipse), 48–49

new keyword
for anonymous classes,

335
for creating arrays, 373
for creating object

instances, 77, 242
New Project dialog box

(Eclipse), 48, 49
newAudioClip method,

800
next method, 404–406
nextInt method, 109–110
Node interface, 744–745
NodeList interface, 744
not operator, 153–154
notify method, 307, 447
notifyAll method, 307,

447
NotPong game, 815–820
NumberFormat class,

134–136, 492
NumberFormatClassApp

class, 135–136
NumberPhobia class,

165–166
NumberPhobia2 class,

166–167
numbers. See also floating-

point types; integer
types

arithmetic operators,
113–124

character class for, 479,
480

converting data between
types, 101–102

dividing by zero, 138–139
factorials, 491–493
formatting, 133–136
Math class for, 124–133
special constants, 139–140
weirdness in Java,

136–140

O
Object class (Java). See

also specific methods
inheritance and, 305–306
methods, 307–308
as mother of all classes,

305
primitive types and,

308–309
synchronized objects and,

447
using as a type, 306–307

Object class (Swing), 509
object orientation of Java,

11–12, 14
object-oriented

programming
classes versus objects, 76
creating objects from

classes, 77–78
designing programs with

objects, 244–245
diagramming classes with

UML, 245–248
example program using an

object, 78–80
object life cycle, 242
objects overview, 238–242
related classes in, 243–244
simulation as premise of,

237–238
static methods in, 76–77

objects
arrays as, 372
basic characteristics,

11–12

behavior, 11–12, 241–242
classes versus, 12, 76
creating from classes,

77–78
designing programs with,

244–245
determining type of, 286
example program using,

78–80
hash code for, 239
identity, 239
immutable, 356
instances, 239
life cycle, 242
new keyword for creating

instances, 77, 242
observable and observer,

332
overview, 238–242
primitive types not

objects, 308–309
state, 11, 240–241
type of, 240

observable object, 332
Observer design pattern,

332
observer object, 332
ODBC, 717–720
offer method, 412, 415
Olivetti Programma 101, 11
Open dialog box (Swing)

controlling appearance of,
675

creating, 672–673, 674–675
getting selected files,

675–676
as modal dialog box, 675
setting selection options,

675
using file filters, 676–678

operands
categorizing operators by,

115
defined, 113
postfix operators and,

115, 120–121

60_58961X bindex.qxd 3/29/05 3:28 PM Page 847

Java All-in-One Desk Reference For Dummies848

operators. See also specific
operators

arithmetic, 113–116
assignment, 78, 122–123
bitwise, 157
categorizing by operands,

115
combining in expressions,

118–119
compound assignment,

123–124
concatenation, 99
conditional, 159
decrement, 120–121
defined, 113
increment, 120–121
instanceof, 286
logical, 153–158
postfix, 115, 120–121
prefix, 120–121
remainder, 116–117
as separators, 116
unary plus and minus, 119
white space and, 116

or operators (| and ||),
155–156, 171, 487

order by clause (SQL),
708, 709

order of execution for
initializers, 264

order of precedence for
arithmetic operators,
118

outer if statement, 148
overloading

constructors, 259
methods, 257

overriding methods
abstract class subclasses

and, 295
clone method, 317–320
doGet method, 620
equals method,

313–316
overview, 278–279
toString method,

310–311

P
package statement, 342
packages. See also

importing; specific
packages

adding root directory to
ClassPath, 341–342

archiving in JAR files,
345–346

for Arrays class, 392
creating, 340–343
default, 340
defined, 339
distributing, 341
example of custom

package, 342–343
for exception classes, 221
for File class, 665
importing classes from,

340
importing packages,

339–340
for Iterator interface,

404
naming, 340–341
root directory for, 341
for servlets, 619
for SQL databases, 721
for Swing, 509

page directives (JSP), 634,
635

paint method (Swing),
767–768

paintComponent method
(Swing), 793

PaintSurface class
for bouncing ball, 808–809
for multiple bouncing

balls, 811
for rolling ball, 807

panels (Swing)
adding labels, 517
adding to frames, 517
applying borders to, 555
creating, 515–516
defined, 514

displaying controls on,
514

setting layout manager
for, 520, 587

parameters
anonymous classes and,

336
in class diagrams, 247
command-line, for files,

671–672
declaring in parameter

list, 67, 201, 211–212
defined, 211
formal type parameter,

421–422, 426–427
getRandomNumber

method example,
211–212

method signatures and,
257

pass-by-value, 213
scope of, 212–213
this keyword for

passing, 262, 263
wildcard, generics feature

and, 426–427
ParameterScope class,

212–213
parent class. See base class

(superclass or parent
class)

parentheses [()]
enclosing boolean

expressions, 144
enclosing expression with

not operator, 154
in regular expressions,

485–487
parse methods, 100–101,

357
partition method,

500–501
pass-by-value, 213
path, setting for JDK, 24–25
Pattern class, 477,

489–490
PCX (PC Paintbrush

bitmap) format, 790

60_58961X bindex.qxd 3/29/05 3:28 PM Page 848

Index 849

peek method
GenStack class, 423, 424
LinkedList class, 412,

416
percent sign (%)

in compound assignment
operator (%=), 123

with JSP elements, 634
as remainder operator,

114, 115, 116–117, 118
as SQL wildcard, 710

period. See dot (.)
Perl, Java versus, 11
perspectives (Eclipse)

Debug perspective, 45–46,
58–59

defined, 44
Java perspective, 44, 45

PI constant, 125–126
Picture Frame application,

796–799
PictureApp class,

792–793
pizza-ordering program

applet version, 607–610
Swing versions, 556–559,

598–601
platform independence of

Java, 10–11
Playable interface,

296–298
playARound method
GuessingGameMethod

class, 203–204
GuessingGameMethod2

class, 208, 209, 210
GuessingGameMethod3

class, 214–215
Player class, 255, 287
playing sound and music

files (Swing), 799–801
plus sign (+)

as addition operator, 114,
118

in class diagrams, 247

in compound assignment
operator (+=), 123, 124,
356

as concatenation
operator, 99, 356

as increment operator
(++), 114, 118, 120–121

as regular expression
quantifier, 484

PNG (Portable Network
Graphics) format, 790

poll method, 416
polymorphism, 287
pop method, 422, 424
port numbers, 454
Portable Network Graphics

(PNG) format, 790
POSITIVE_INFINITY

constant, 139
POST requests with

servlets, 623
postfix operators, 115,

120–121
pow method, 127, 128
precedence for arithmetic

operators, 118
predefined variables (JSP),

636
Preferences dialog box

(TextPad), 35–36
prefix operators, 120–121
presentation layer, 245
PrimeClass class,

263–264
primitive types. See also

specific types
automatic conversions

for, 101–102
boolean type, 95
char type, 94–95
converting strings to,

100–101, 357
converting to strings,

99–100, 356
defined, 90
floating-point types, 93–94
integer types, 91–92

not objects, 308–309
reference types versus,

90–91
table summarizing, 91
type casting, 102
as value types, 91
wrapper classes, 96
print method

numeric data converted
to string by, 133

println method versus,
107

prompting for input with,
110

with servlets, 620
using, 107
writing character streams,

688–689
printBoard method, 389,

392
printing. See also print

method; println
method

array lists, 403–404
println versus print

method for, 107
System.out for, 105–107
to Web page using

servlets, 620
println method

concatenation with, 99,
107

displaying text on
console, 14, 67–68

numeric data converted
to string by, 133

as overloaded, 257
print method versus,

107
with servlets, 620
this keyword with, 263
writing character streams,

688–689
PrintStream class, 14
printStringArray

method, 379

60_58961X bindex.qxd 3/29/05 3:28 PM Page 849

Java All-in-One Desk Reference For Dummies850

PrintWriter class. See
also print method;
println method

boolean parameter, 688
connecting to a text file,

687–688
constructors, 686–687
creating an object, 687
methods, 687
methods for writing to

console, 107
overloaded methods in,

257
overview, 686
with servlets, 620

private keyword
for fields, 253
for inner classes, 330
for methods, 254

private methods
in class diagrams, 247
declaring, 254
as final, 283
not allowed to be

abstract, 295
private variables

in class diagrams, 247
fields, 253, 255–256

ProductDataException
class, 290–291

ProductDDB class,
291–292

projects (Eclipse)
creating a simple project,

47–52
overview, 46–47
simple versus large, 47
switching, 47

promoting integer types, 92
properties (JavaBeans)

defined, 647–648
getting values, 652–653
setting values, 653–654

protected visibility
in class diagrams, 247
of clone method, 317
defined, 278, 279
example, 279–280

protocols. See also specific
protocols

for client and server
programs, 454

defined, 453, 460
for sockets, 460

public classes
defined, 66
source files and, 251–252

public fields
avoiding, 254, 255, 256
defined, 241
examples, 253

public interfaces, 254
public keyword

for classes, 66, 249, 252
for constructors, 258
for fields, 241, 253
for interfaces, 296
for methods, 67, 200–201,

253
public methods

in class diagrams, 247
declaring, 200–201, 253
defined, 67
required for a program, 67

public variables
in class diagrams, 247
forbidden for JavaBeans,

647
push method, 422, 424
Pythagorean Theorem
hypot method and, 126,

128
JavaBean using, 648–651
JSP using, 654–656

Q
querying databases with

JDBC
classes for queries,

721–722
createStatement

method, 721, 722–723
getting data from result

sets, 723–725
Movie Listing program

example, 725–728

navigating result sets, 723
select statement, 723

querying databases with
SQL. See also select
statement (SQL)

basic select, 707–709
confirming deletes,

714–715
defined, 707
eliminating duplicates,

713
excluding rows, 709
from multiple tables,

711–712
narrowing down queries,

709
singleton selects, 709–710
using column functions,

710–711
using wildcards, 708, 710
verifying updates, 715, 716

question mark (?)
for conditional operator

(?), 159
as regular expression

quantifier, 484–485
queues. See also linked lists

defined, 410, 427
GenQueue class, 427–430

Quicksort technique
algorithm for, 498
partition method,

500–501
partitioning in, 498–499
pivot point, 497–504
QuickSortApp class,

502–504
sample run, 502
sort method, 499–500
technical nature of, 498

R
radio buttons (Swing),

551–553
random method

converting double value
to int, 129–130

defined, 127

60_58961X bindex.qxd 3/29/05 3:28 PM Page 850

Index 851

dice rolling program
example, 129–131

different results for each
call, 128

double value returned
by, 129

getRandomNumber
method using, 206

RandomNumber class,
205–206

ranges in regular
expressions, 482–483

ReadBinaryFile class,
695–697

ReadFile class, 683–686
reading binary streams

classes for, 692–693
closing the stream, 695
creating a

DataInputStream
object, 693

exception handling, 694,
695

reading the movies.dat
file, 695–697

string handling, 695
types and, 692
using

DataInputStream
read methods, 694

while loop for, 694
reading character streams

classes for, 680–681
creating a

BufferedReader
object, 682

movies.txt file for
examples, 681–682

reading the movies.txt
file, 683–686

using readLine method,
682–683

reading DOM documents
code listing, 741
configuring the document

builder factory, 742
creating a document

builder and document,
742–743

creating a document
builder factory, 741

getDocument method,
743

reading DOM nodes
getting attribute values,

746–747
getting child element

values, 747
interfaces for, 743–745
processing elements,

745–746
readLine method, 681,

682–683
README.html file, 24
README.txt file, 24
read-only property, creating

with accessors, 255
rectangles, creating in Java

2D, 773–774
recursion

defined, 491
for displaying directories,

494–497
end condition, 492
for factorial problem,

491–493
recursive methods, 491
for sorting routine,

497–504
redirecting standard

output, 106
Reed, Henry (Naming of

Parts), 239
refactoring, 61–62
reference types, 90–91,

96–97. See also strings
Regex Tester program,

476–478
registering

event listeners (Swing),
526

JDBC driver class, 720
regular expressions

defined, 475
grouping characters with

parentheses, 485–487

in Java programs, 488–490
with Matcher class,

489–490
matching multiple

characters, 483–485
matching single

characters, 479
mini-language for, 475–476
with Pattern class,

489–490
program experimenting

with, 476–478
quantifiers, 484
with String class, 489
string problem with, 488
uses for, 475, 478
using | symbol, 487
using custom character

classes, 481–482
using escapes, 485
using negation, 483
using predefined

character classes,
479–481

using ranges, 482–483
relational databases. See

also JDBC (Java
DataBase
Connectivity); SQL
(Structured Query
Language)

creating, 705–707
defined, 703–704
deleting rows, 713–715
deleting tables, 714
querying, 707–713
updating, 715–716

relational operators
as binary operators, 142
comparing strings,

159–160
NaN constant and,

139–140
table summarizing, 142

remainder operator, 115,
116–117

Remember icon, 5

60_58961X bindex.qxd 3/29/05 3:28 PM Page 851

Java All-in-One Desk Reference For Dummies852

remove methods
ArrayList class, 400,

407–408
Iterator interface, 404,

405
LinkedList class,

412–413, 416, 417–418
removeAll method, 400,

408
removeAllItems

method, 564, 566
removeFirst method,

413, 416, 417
removeItemAt method,

564, 565
removeLast method, 413,

416, 417
removeRange method,

408
removing. See deleting
Rename command

(Eclipse), 62
renameTo method, 667,

670
renaming. See also

identifiers; names
Eclipse command for, 62
files, 670

replaceAll method, 358,
365

replaceFirst method,
358, 365

ResultSet interface
(JDBC)

executeQuery methods,
722

get methods, 724–725
getting data from result

sets, 723–725
navigating result sets, 723
overview, 722
scrollable result set

methods, 730
updatable result set

methods, 730
updatable result sets,

729–732
update methods,

731–732

retainAll method, 400,
408

return statement
basic form, 205
expressions with, 206
within if statements,

206–208
random number example,

205–206
required for non-void

return type, 205,
206–208

return type
in class diagrams, 247
declaring, 201, 205
formal type parameter

and, 421
not part of method

signature, 257
return statement for,

205–208
using methods with, 206

rigid areas (Swing), 591–592
rint method, 132–133
root directory for packages,

341
rotate method, 780–782
round method, 131–133
rounding functions in Math

class, 131–133
RoundingApp class,

132–133
rt.java file, 343
run method
CountDownClock class,

437
LaunchEvent class, 440
Runnable object, 438
Runnable interface,

438–440
running. See also specific

commands
applets in TextPad, 41
Eclipse IDE, 43
programs from JAR files,

346–347
programs in Eclipse, 56–57

programs in TextPad,
40–41

servlets, 623
SQL scripts in MySQL, 707
Tomcat servlet engine,

617
runtime environment
java command, 25, 29–30
JRE (Java Runtime

Environment), 10, 20, 22
runtime errors. See error

messages (runtime)
RunTimeException

class, 289, 290

S
\s character class, 479,

480–481
\S character class, 479, 481
Save dialog box (Swing),

676
Save Resources dialog box

(Eclipse), 51
SAX (Simple API for XML),

740
sayHello method
Greeter class, 79, 80
HelloSayer class, 54
HelloWorldMethod

class, 201–202
Scanner class, 107–111
ScannerApp class, 108
scientific notation, 93, 94
scope of JavaBeans,

656–657
scope of parameters,

212–213
scope of variables

defined, 102–103
for loop counter

variable, 176
program demonstrating,

103–104
shadowed variables,

104–105
ScopeApp class, 103–104

60_58961X bindex.qxd 3/29/05 3:28 PM Page 852

Index 853

scriptlets (JSP), 634,
638–640

scripts (SQL), 705, 706–707
SDK (Software

Development Kit), 20
searching arrays, 394
security prohibitions for

applets, 606
select statement (JDBC),

723
select statement (SQL).

See also querying
databases with SQL

basic usage, 707–709
from clause, 708, 712
column functions, 710–711
confirming deletes,

714–715
described, 705
distinct keyword, 713
like keyword, 710
for multiple tables,

711–712
order by clause, 708,

709
verifying updates, 715, 716
where clause, 709–710,

711, 712
wildcards with, 708, 710

semantic events (Swing),
523

semicolon (;)
ending SQL script

statements, 705
ending statements, 71
ending variable

declarations, 84
separators, operators as,

116
server programs, 453–454
ServerSocket class,

462–463
servlet engines, 614. See

also Tomcat servlet
engine (Apache)

servlet-api.jar file,
615

servlets. See also JSP (Java
Server Pages)

declarations in (JSP), 634,
640–642

defined, 13
doGet method, 620, 623
doPost method, 623
dynamic content provided

by, 614
extending the
HttpServlet class,
619–620

GET and POST requests,
623, 625

getting user input,
625–627

HelloWorld servlet,
dynamic, 623–625

HelloWorld servlet,
simple, 619–622

importing packages for,
619

InputServlet servlet,
626–627

JSP and, 633
page directives for (JSP),

634, 635
printing to a Web page,

620
responding with HTML,

620
run once per request, 614
running, 623
scriptlets in, 634, 638–640
Tomcat servlet engine,

614–618
using classes in, 627–632
Web servers and, 613–614

set accessors, 254, 255–256
set method, 400, 406–407
setAcceptAllFile

FilterUsed method,
674, 678

setBorderPainted
method, 518, 519

setBounds method
(Swing), 520

setCharAt method, 368,
369

setChoosableFileFilt
er method, 678

setColor method, 769
setContentAreaFilled

method, 519
setDialogTitle

method, 674, 675
setDoubleBuffered

method (Swing), 807
setEditable method,

564, 565
setEnabled method, 519
setFileHidingEnabled

method, 674, 675
setFileSelectionMode

method, 674, 675
setFont method (Swing),

755–756
setIgnoringComments

method (DOM), 742
setIgnoringElement

ContentWhitespace
method (DOM), 742

setLayout method, 515,
520, 587

setLocation method,
510, 513–514

setMaximumFraction
Digits method, 134

setMinimumFraction
Digits method, 134

setMultipleSelection
Enabled method, 674,
675

setPaint method, 777
setProperty method

(JavaBeans), 647–648
setRenderingHint

method, 768
setResizable method,

511, 520
setSize method, 511
setStroke method, 769
setters (set accessors), 254,

255–256
setText method, 519
setValidating method

(DOM), 742

60_58961X bindex.qxd 3/29/05 3:28 PM Page 853

Java All-in-One Desk Reference For Dummies854

setVisible method
JButton class (Swing),

519
JFrame class (Swing), 511
setVisibleRowCount

method, 569
ShadowApp class, 104–105
shadowed variables,

104–105
Shape object, 768
ShapeMaker program,

775–777
shapes. See Java 2D
shopping cart application
BookCart bean for,

659–662
JSP for, 657–659
short type

automatic conversions for,
101–102

integer overflow, 136–137
overview, 92
promoting, 92

showInputDialog
method, 111–112

showKnightMoves
method, 387–388,
390–391

showOpenDialog
method, 672–673,
674–675, 676

showSaveDialog
method, 674, 675

shutting down Tomcat
servlet engine, 618

signatures of methods, 257,
278–279, 293

signnum method, 127, 128
Simple API for XML (SAX),

740
SimpleShape program,

769–771
simplification, methods for,

199–200
simulation, 237–238
singleton classes, 270
Singleton design pattern,

270

SingletonClass class,
270

size method
GenQueue class, 427, 429
GenStack class, 423, 424

slash (/)
in compound assignment

operator (/=), 123
as division operator, 114,

116, 118
for end-of-line comments

(//), 74
for JavaDoc comments

(/** and */), 347
for traditional comments

(/* and */), 75
sleep method, 436, 437,

440
SliderListener class,

562
sliders (Swing), 559–562
Snopes.com, 257
Socket class, 461–462
sockets

creating, 461
defined, 460
ServerSocket class for,

462–463
Socket class for, 461–462

Software Development Kit
(SDK), 20

sort method
Arrays class, 393–394
Quicksort technique,

499–500
sorting

arrays, 393–394
Quicksort technique for,

497–504
recursive routine for,

497–504
-source compiler option,

28
source files

adding JavaDoc
comments, 347–348

defined, 21
editing in TextPad, 36–38

folder for Java API classes,
23

multiple classes in,
251–252

naming, 251
package statement in,

342
space shuttle countdown

program
aborting the countdown,

449–452
CountDownApp class,

440–441, 442–445,
449–452

CountDownClock class,
435, 436–437, 442–444,
445, 449–450, 451

LaunchEvent class,
439–440, 442–443, 444,
445, 450–451

problem statement,
434–435

timing problems for, 442
SpinnerModel classes

(Swing), 573–575
spinners (Swing), 573–575
Spin-Off program (Swing),

581–584
split method, 489, 695
Spring layout manager

(Swing), 586
SQL scripts, 705, 706–707
SQL (Structured Query

Language). See also
querying databases
with SQL

alter statement, 705
create table

statement, 705, 706,
707, 711–712

defined, 703, 704
delete statement, 705,

713–715
drop statement, 705
insert statement, 705,

707
invention of, 704
JDBC and, 703
pronouncing, 704

60_58961X bindex.qxd 3/29/05 3:28 PM Page 854

Index 855

select statement, 705,
707–713

update statement, 705,
715–717

use statement, 705
SQLException, 721
sqrt method, 127
src folder, 23
stack orientation of JVM, 11
stack trace, 219–220
stacks. See also linked lists

defined, 410, 422
GenStack class, 422–425
as LIFO lists, 425

standard error, 106
standard input

defined, 106
getting with

JOptionPane class,
111–112

getting with Scanner
class, 107–111

standard output, 106
start method, 436,

438–439
startGame method,

298–299
starting. See running
state of objects, 11, 240–241
Statement interface

(JDBC), 722
statements. See also

specific statements
blocks, 72–73
importance of, 70–71
semicolon ending, 71
types of, 71
white space in, 71–72

static, definitions of, 265
static fields

class loading and, 242
declaring, 266
defined, 265, 266
uses for, 266
using, 266–267

static initializers, 242, 264,
271–272

static inner classes,
333–334

static keyword
calling methods declared

with, 76
for class variables, 85
for fields, 266–267
for final class variables, 90
for initializers, 272
instance variables and, 85
local variables and, 87
for methods, 201, 267
required for main

method, 67, 267
static methods

arrays with, 378–379
calling, 76
defined, 265, 267
instance variables and, 86
main method as, 267
Math class methods as,

125
non-static methods

versus, 77
uses for, 266
using, 267–268

static variables, 268–269
StaticInit class, 272
stepping through programs

(Eclipse), 57–59
stopping

infinite loops, 165
Tomcat servlet engine,

618
streams. See I/O streams
String class. See also

specific methods
CharSequence interface

for, 369–370
concatenation inefficient

with, 365–366
initializing string

variables, 98
methods, 357–359
objects as immutable, 359,

365
regular expressions with,

489

StringBuffer class, 366,
369–370

StringBuilder class
CharSequence interface

for, 369–370
creating an object,

366–367
example, 369
Java versions and, 366
methods, 367–368
not safe for threads, 366
StringBuffer class

versus, 366
StringBuilderApp

class, 369
strings. See also

concatenation; regular
expressions

characters versus, 94
comparing, 159–160
converting arrays to, 395
converting primitives to,

99–100, 356
converting to primitives,

99–100
declaring, 98
defined, 98
extracting characters

from, 360–361, 370
extracting substrings

from, 361–363, 370
finding length of, 359, 370
initializers for, 98
initializing, 98
linked lists for, 413
making simple

modifications, 360
overview, 355–357
problems with regular

expressions, 488
as reference type, 98
replacing parts of, 365
splitting, 363–365
String objects

immutable, 359, 365
structure charts, 245
Structured Query

Language. See SQL

60_58961X bindex.qxd 3/29/05 3:28 PM Page 855

Java All-in-One Desk Reference For Dummies856

struts (Swing), 591
styles for fonts, 754–755
subclasses (derived or

child classes). See also
inheritance

of abstract classes, 295
basic form, 277
creating, 277–278
for custom exceptions,

289–292
defined, 243, 274
implementing interfaces,

297
overriding methods by,

278–279
polymorphism and,

287–289
super keyword and,

280–281, 282
this keyword and, 280
upcasting and, 284–285

subclassing, 274
subinterfaces, 299–300
subSequence method

(CharSequence
interface), 370

substring method, 359,
361–363

Sun Microsystems
Forte for Java, 21
Java Web site, 21, 32
license agreement for JDK,

22, 24
Microsoft battles with, 13,

18, 606
super keyword, 280–281,

282
superclass. See base class

(superclass or parent
class)

super.clone method,
320, 321–322

superinterfaces, 299–300
suspending threads

(Eclipse), 58–59
swallowing exceptions,

232–233

Swing. See also applets;
events (Swing); Java
2D; specific classes and
components

applets as applications,
605

applets compared to,
605–606

Border layout manager,
585–586, 588–590

borders, 553–559
Box layout manager, 586,

590–592
buttons, 518–519
callbacks using Timer

class, 301–304
Card layout manager, 586
check boxes, 548–551
choosing files in

applications, 672–678
colors, 760–765
combining layout

managers, 587
combo boxes, 563–567
components in applets,

606
creating Save dialog box,

675
defined, 507
displaying images,

790–799
double buffering by, 807
event classes, 522
Flow layout manager, 585,

587–588
fonts, 753–759
frames, 510–511, 512–514
glue, 592
Grid layout manager, 586,

592–593
GridBag layout manager,

586, 593–601
Hello! World example,

511–513
hierarchy of classes,

508–509
importing packages for,

509

labels, 516–518
layout of components, 520
letting users draw on

components, 782–788
list boxes, 567–572
main method in, 511, 512,

513
panels, 514–516, 517, 520
pizza-ordering program,

556–559, 598–601
playing sound and music

files, 799–801
radio buttons, 551–553
rigid areas, 591–592
scroll bars, 547–548
sliders, 559–562
spinners, 573–575
Spring layout manager,

586
struts, 591
text areas, 544–548
text fields, 537–544
trees, 575–584
typical window created

with, 507–508
switch statement

basic form, 190
break statement with,

191
calling methods from,

196–198
case groups in, 191
char variable with,

194–195
commission rate

examples, 191–195
data types and, 190
default group, 191
flowchart for, 192
if statements within,

193–194
omitting the break

statement, 195–196
uses for, 187
synchronized keyword,

446–447
System class, 106

60_58961X bindex.qxd 3/29/05 3:28 PM Page 856

Index 857

SystemColor class,
761–762

System.err object, 107
System.out object, 106,

107. See also println
method

T
tags

doc tags (JavaDoc), 348
HTML, 611, 622
jsp:getProperty tag,

651, 652–653
jsp:setProperty tags,

651, 653–654
jsp:useBean tag,

651–652
XML, 734–735

Technical Stuff icon, 5
telnet, 455–456, 463
ternary operators, 115
TerseCoder class, 179
test expression (for loops)

compound conditions
with, 180

defined, 174
Expression name for, 175
omitting, 181
TestEquality1 class,

311–312
TestEquality2 class,

315–316
testing equality

equality operator for, 239
equality operator

limitations and,
311–312, 394

equals method (Arrays
class) for, 394–395

equals method (Object
class) for, 307, 308,
312–316

TestToString class
overriding toString

method, 310–311
using toString method,

309–310

text areas (Swing)
creating, 544–545
defined, 544
JScrollPane class, 545,

547–548
JTextArea class,

545–547
scroll bars for, 547–548

text, drawing, 782
text fields (Swing)

creating, 538
defined, 537
example program,

539–541
JTextField class,

537–538
key points, 538–539
for numeric entry,

541–543
validation class for,

543–544
Text interface, 744, 747
TextPad text editor

batch files created by,
40–41

compiling a program,
38–39

configuring, 35–36, 38
described, 21, 35
downloading, 35
editing source files, 36–38
error messages in, 38–39
features, 37–38
installing, 35
running a program, 40–41
running an applet, 41
workspaces, 38
this keyword

for calling other
constructors, 260–262

by itself, 263
in method body, 263
for passing parameters,

262, 263
for qualifying variable

references, 262
subclasses and, 280
testing equals method

with, 314

Thread class
constructors, 435
CountDownClock class

extending, 436–437
methods, 436
Runnable interface for,

438–439
threads. See also space

shuttle countdown
program

challenges for using, 433
code listings online, 433
common examples, 434
concurrency issues, 446
creating, 437
creating threads that work

together, 442–445
defined, 433
interrupting, 447–452
main thread, 433–434
Runnable interface for,

438–439
starting, 437–438
StringBuilder versus
StringBuffer class
and, 366

suspending, 58–59
synchronizing methods,

446–447
three-layered design

approach, 244–245
throw statement, 233–234,

291
Throwable class, 289–290
throwing an exception

from calling method,
231–232

custom exception,
281–282

defined, 218
from main method, 232
throw statement for,

233–234
throws clause for, 229,

231–232
throws clause, 229,

231–232

60_58961X bindex.qxd 3/29/05 3:28 PM Page 857

Java All-in-One Desk Reference For Dummies858

Tick Tock application
using anonymous class,

336–338
using inner class, 330–333
using static inner class,

333–334
using Timer class

(Swing), 302–304
TicTacToe class, 297
TicTacToeApp class,

288–289
Timer class (Swing)

callbacks using, 301–302
TickTock program

using, 302–304
Tip icon, 5
toLowerCase method,

359, 360
Tomcat servlet engine

(Apache)
downloading, 614, 615
installing and configuring,

615–616
Java 1.5 not supported by,

634
setting up to work with

classes, 642
shutting down, 618
starting, 617
testing, 618
Toolkit class (Swing),

514, 794, 795
toString method
ArrayList class,

403–404
Arrays class, 393, 395
CharSequence interface,

370
for combo box items, 565
File class, 667, 668
Object class, 100,

307–311
toString method

(Object class)
defined, 307
overriding, 310–311

prevalence of, 308
using, 309–310
wrapper class for, 100,

308–309
toUpperCase method,

359, 360
traditional comments, 75
translate method, 780
TreeListener class

(Swing), 581
trees (Swing)

building, 576–579
creating a JTree

component, 579–580
DefaultMutableTreeN
ode class, 576–578

defined, 575
getting the selected node,

580–581
JTree class, 579–580
program demonstrating,

581–584
terminology, 576
tree selection listener, 581
TreeSelection

Listener interface,
581

Triangle JavaBean,
648–651

Triangle.jsp JSP,
654–656

trim method, 359, 360
try block, 220, 221
try statements
catch block, 220, 221,

226–227
for custom exception,

291–292
displaying error

messages, 226–227
division by zero example,

221–222
Exception class with,

225–226
for FileNotFound
Exception, 230–231

finally block, 221,
227–229

general form, 220
integer input example,

222–223
try block, 220, 221

two-dimensional arrays
accessing elements, 381
creating, 380
defined, 379
initializing, 382
jagged, 382–384
knight moves calculator

using, 385–392
for tables or

spreadsheets, 379–380
tws file extension, 38
type checking, 15–16
types. See data types
typographical conventions

in this book, 3

U
UML (Unified Modeling

Language), 246–248
unary operators, 115, 118
unchecked exceptions, 218,

289, 290
Unicode character set, 94,

95
Unified Modeling Language

(UML), 246–248
upcasting, 284–285
update methods, 731–732
update statement (SQL),

705, 715–717
updating

array list elements,
406–407

databases with JDBC,
728–732

databases with SQL,
715–716

URLs (Uniform Resource
Locators), 455, 793

60_58961X bindex.qxd 3/29/05 3:28 PM Page 858

Index 859

use statement (SQL), 705
user input with servlets,

625–627
user input with Swing

check boxes for, 548–551
combo boxes for, 563–567
letting users draw on

components, 782–788
list boxes for, 567–572
pizza-ordering program,

556–559
radio buttons for, 551–553
sliders for, 559–562
spinners for, 573–575
text areas for, 544–548
text fields for, 537–544
trees for, 575–584

V
validating input

checking number in range,
170–173

do-while loops for,
170–173

exception handling for,
222–223

if statements for error
messages, 171–172

for integer input, 222–223,
224–225

preventing exceptions,
224–225

Scanner class methods
for, 110–111

set accessors for, 255–256
validation class for,

543–544
Validation class

(Swing), 543–544
value types. See primitive

types
variables. See also data

types; fields; strings;
specific kinds

for array length, 373
declaring class variables,

84–85

declaring instance
variables, 85–86

declaring local variables,
86–87

for event source (Swing),
525

extracting local, in
Eclipse, 62

final variables
(constants), 89–90

implicit objects (JSP), 636
initializing, 88–89
inspecting in Eclipse,

59–80
local variables, 88
polymorphism and,

287–289
predefined (JSP), 636
rules for naming, 84
scope, 102–105
shadowed, 104–105
this keyword for,

262–263
visibility indicators in

class diagrams, 247
Vector objects with

combo boxes (Swing),
565

-verbose option (javap
command), 31

versions of Java
enhanced for loop and,

378, 404
generics feature and, 398
limiting compiler to

previous versions, 28
overview, 19–20
Scanner class and, 107
StringBuilder class

and, 366
Tomcat and, 634

vertical bar (|)
for or operators (| and

||), 155–156, 171
in regular expressions,

487
viewing

applets, 32, 41, 611–612
JavaDoc pages, 351–352

views (Eclipse), 44
visibility

in class diagrams, 247
of fields and methods, 254
inheritance and, 278
protected, 247, 278,

279–280, 317
void keyword, 14, 67
Voter Machine Error

Decoder program,
188–190

VoterApp class, 188
VoterApp2 class, 189–190

W
\w character class, 479, 481
\W character class, 479, 481
wait methods, 307, 447
Warning! icon, 5
Web programming. See

applets; JavaBeans; JSP
(Java Server Pages);
servlets

web.xml file, 616
where clause (SQL)

column functions with,
711

with delete statement,
713–714

for excluding rows, 709
like keyword with, 710
for multiple tables, 712
for narrowing down

queries, 709
with select statement,

709–710, 711, 712
for singleton selects,

709–710
with update statement,

715
while loops

basic form, 162
break statement for,

163–164, 165
counting even numbers

using, 162–163
flowchart for, 163

60_58961X bindex.qxd 3/29/05 3:28 PM Page 859

Java All-in-One Desk Reference For Dummies860

while loops (continued)
infinite, 164–167
for printing even

numbers, 162–163
for reading binary

streams, 694
simplifying with methods,

200
testing input string in
while condition,
166–167

white space
character class for, 479,

480–481
operators and, 116
in statements, 71–72
using for readability, 72

wildcards
generics feature, 426–427
with javac command, 27
in regular expressions,

479
with SQL select

statement, 708, 710
Window class (Swing), 509
windowClosing method

(Swing), 533–534, 535,
536

Windows. See Microsoft
Windows

Windows bitmap (BMP)
format, 790

Windows Media Format
(WMF), 790

WMF (Windows Media
Format), 790

word characters, 479, 481
workbench (Eclipse), 43–44

Workspace Launcher dialog
box (Eclipse), 47–48

workspaces (TextPad), 38
wrapper classes

converting primitives to
strings, 100

converting strings to
primitives, 100–101

defined, 96
parse methods, 100–101,

357
table summarizing, 96
for toString method,

100, 308–309
write methods, 699, 700
WriteBinaryFile class,

700–702
WriteFile class, 689–691
writing binary streams

classes for, 698–699
closing the file, 700
connecting to a file, 699
creating a
DataOutputStream
object, 699

writing the movies.dat
file, 700–702

writing character streams
classes for, 686–687
connecting to a text file,

687–688
movies.txt file for

examples, 681–682
using print and

println methods,
688–689

writing the movies.txt
file, 689–691

X
XML

attributes, 735
defined, 734
DOM approach, 739,

740–747
DTDs, 736–739
elements, 734
HTML versus, 735
Movie Listing program

example, 748–750
movies.xml file listing,

735–736
promise of, 733
reading DOM documents,

741–743
reading DOM nodes,

743–747
root element, 734
SAX approach, 740
tags, 734–735

xor operator (^), 156–157

Z
zero

array index numbers
starting with, 371

dividing by, 138–139
exception handling for

dividing by, 221–222
positive versus negative,

139

60_58961X bindex.qxd 3/29/05 3:28 PM Page 860

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

61_58961x bob.qxd 3/29/05 3:28 PM Page 861

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

61_58961x bob.qxd 3/29/05 3:28 PM Page 862

	Java All-in-One Desk Reference For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	How to Use This Book
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Book I: Java Basics
	Chapter 1: Welcome to Java
	What Is Java, and Why Is It So Great?
	Comparing Java to Other Languages
	Important Features of the Java Language
	On the Downside: Java’s Weaknesses
	Java Version Insanity
	What’s in a Name?

	Chapter 2: Installing and Using Java Tools
	Downloading and Installing the Java Development Kit
	Using Java’s Command-Line Tools
	Using Java Documentation

	Chapter 3: Working with TextPad
	Downloading and Installing TextPad
	Editing Source Files
	Compiling a Program
	Running an Applet

	Chapter 4: Using Eclipse
	Understanding Projects
	Creating a Simple Project
	Adding a Class File
	Running a Program
	Debugging a Java Program
	Refactoring Your Code

	Book II: Programming Basics
	Chapter 1: Java Programming Basics
	Looking At the Infamous Hello, World! Program
	Dealing with Keywords
	Working with Statements
	Working with Blocks
	Creating Identifiers
	Crafting Comments
	Introducing Object-Oriented Programming
	Importing Java API Classes

	Chapter 2: Working with Variables and Data Types
	Declaring Variables
	Initializing Variables
	Using Final Variables (Or Constants)
	Working with Primitive Data Types
	Using Reference Types
	Working with Strings
	Converting and Casting Numeric Data
	Understanding Scope
	Shadowing Variables
	Printing Data with System. out
	Getting Input with the Scanner Class
	Getting Input with the JOptionPane Class

	Chapter 3: Working with Numbers and Expressions
	Working with Arithmetic Operators
	Dividing Integers
	Combining Operators
	Using the Unary Plus and Minus Operators
	Using Increment and Decrement Operators
	Using the Assignment Operator
	Using Compound Assignment Operators
	Using the Math Class
	Formatting Numbers
	Weird Things about Java Math

	Chapter 4: Making Choices
	Using Simple Boolean Expressions
	Using If Statements
	Mr. Spock’s Favorite Operators (The Logical Ones, of Course)
	Using the Conditional Operator
	Comparing Strings

	Chapter 5: Going Around in Circles (Or, Using Loops)
	Your Basic while Loop
	Breaking Out of a Loop
	Looping Forever
	Using the continue Statement
	do-while Loops
	Validating Input from the User
	The Famous for Loop
	Nesting Your Loops

	Chapter 6: Pulling a Switcheroo
	else-if Monstrosities
	A Better Version of the Voter Machine Error Decoder Program
	Using the switch Statement
	A Boring Business Example Complete with Flowchart
	Putting if Statements Inside switch Statements
	Creating Character Cases
	Falling through the Cracks

	Chapter 7: Adding Some Methods to Your Madness
	The Joy of Methods
	The Basics of Making Methods
	Methods That Return Values
	Using Methods That Take Parameters

	Chapter 8: Handling Exceptions
	Understanding Exceptions
	Catching Exceptions
	Handling Exceptions with a Pre-emptive Strike
	Catching All Exceptions at Once
	Displaying the Exception Message
	Using a finally Block
	Handling Checked Exceptions
	Throwing Your Own Exceptions

	Book III: Object-Oriented Programming
	Chapter 1: Understanding Object-Oriented Programming
	What Is Object-Oriented Programming?
	Understanding Objects
	The Life Cycle of an Object
	Working with Related Classes
	Designing a Program with Objects
	Diagramming Classes with UML

	Chapter 2: Making Your Own Classes
	Declaring a Class
	Working with Members
	Getters and Setters
	Overloading Methods
	Creating Constructors
	More Uses for this
	Using Initializers

	Chapter 3: Working with Statics
	Understanding Static Fields and Methods
	Working with Static Fields
	Using Static Methods
	Counting Instances
	Preventing Instances
	Using Static Initializers

	Chapter 4: Using Subclasses and Inheritance
	Introducing Inheritance
	Creating Subclasses
	Overriding Methods
	Protecting Your Members
	Using this and super in Your Subclasses
	Inheritance and Constructors
	Using final
	Casting Up and Down
	Determining an Object’s Type
	Poly What?
	Creating Custom Exceptions

	Chapter 5: Using Abstract Classes and Interfaces
	Using Abstract Classes
	Using Interfaces
	More Things You Can Do with Interfaces

	Chapter 6: Using the Object and Class Classes
	The Mother of All Classes: Object
	The toString Method
	The equals Method
	The clone Method
	The Class Class

	Chapter 7: Using Inner Classes
	Declaring Inner Classes
	Using Static Inner Classes
	Using Anonymous Inner Classes

	Chapter 8: Packaging and Documenting Your Classes
	Working with Packages
	Putting Your Classes in a JAR File
	Using JavaDoc to Document Your Classes

	Book IV: Strings, Arrays, and Collections
	Chapter 1: Working with Strings
	Reviewing Strings
	Using the String Class
	Using the StringBuilder and StringBuffer Classes
	Using the CharSequence Interface

	Chapter 2: Using Arrays
	Understanding Arrays
	Creating Arrays
	Initializing an Array
	Using for Loops with Arrays
	Solving Homework Problems with Arrays
	Using the Enhanced for Loop
	Using Arrays with Methods
	Using Two-Dimensional Arrays
	A Fun but Complicated Example: A Chess Board
	Using the Arrays Class

	Chapter 3: Using the ArrayList Class
	The ArrayList Class
	Creating an ArrayList Object
	Adding Elements
	Accessing Elements
	Printing an ArrayList
	Using an Iterator
	Updating Elements
	Deleting Elements

	Chapter 4: Using the LinkedList Class
	The LinkedList Class
	Creating a LinkedList
	Adding Items to a LinkedList
	Retrieving Items from a LinkedList
	Updating LinkedList Items
	Removing LinkedList Items

	Chapter 5: Creating Generic Collection Classes
	Why Generics?
	Creating a Generic Class
	A Generic Stack Class
	Using Wildcard Type Parameters
	A Generic Queue Class

	Book V: Programming Techniques
	Chapter 1: Programming Threads
	Understanding Threads
	Creating a Thread
	Implementing the Runnable Interface
	Creating Threads That Work Together
	Synchronizing Methods
	Threadus Interruptus

	Chapter 2: Network Programming
	Understanding Network Programming
	Getting Information about Internet Hosts
	Creating Network Server Applications
	Introducing BART
	BartServer 2.0

	Chapter 3: Using Regular Expressions
	A Program for Experimenting with Regular Expressions
	Basic Character Matching
	Using Regular Expressions in Java Programs

	Chapter 4: Using Recursion
	The Classic Factorial Example
	Displaying Directories
	Writing Your Own Sorting Routine

	Book VI: Swing
	Chapter 1: Swinging into Swing
	Some Important Swing Concepts You Need to Know
	I’ve Been Framed!
	Hello, World! in Swing
	Positioning the Frame On-Screen
	Using the JPanel Class
	Using Labels
	Creating Buttons
	A Word about the Layout of Components

	Chapter 2: Handling Events
	Examining Events
	Handling Events
	The ClickMe Program
	Using Inner Classes to Listen for Events
	Adding an Exit Button
	Catching the WindowClosing Event
	The ClickMe Program Revisited

	Chapter 3: Getting Input from the User
	Using Text Fields
	Using Text Areas
	Using Check Boxes
	Using Radio Buttons
	Using Borders
	Designing a Pizza-Ordering Program
	Using Sliders

	Chapter 4: Choosing from a List
	Using Combo Boxes
	Using Lists
	Using Spinners
	Using Trees

	Chapter 5: Using Layout Managers
	Introducing Layout Managers
	Using Flow Layout
	Using Border Layout
	Using Box Layout
	Using Grid Layout
	Using GridBag Layout

	Book VII: Web Programming
	Chapter 1: Creating Applets
	Understanding Applets
	The JApplet Class
	Looking At a Sample Applet
	Creating an HTML Page for an Applet
	Testing an Applet

	Chapter 2: Creating Servlets
	Understanding Servlets
	Using Tomcat
	Creating a Simple Servlet
	Running a Servlet
	An Improved HelloWorld Servlet
	Getting Input from the User
	Using Classes in a Servlet

	Chapter 3: Using Java Server Pages
	Understanding Java Server Pages
	Using Page Directives
	Using Expressions
	Using Scriptlets
	Using Declarations
	Using Classes

	Chapter 4: Using JavaBeans
	What Is a JavaBean?
	Looking Over a Sample Bean
	Using Beans with JSP Pages
	Scoping Your Beans

	Book VIII: Files and Databases
	Chapter 1: Working with Files
	Using the File Class
	Using Command-Line Parameters
	Choosing Files in a Swing Application

	Chapter 2: Using File Streams
	Understanding Streams
	Reading Character Streams
	Writing Character Streams
	Reading Binary Streams
	Writing Binary Streams

	Chapter 3: Database for $100, Please
	What Is a Relational Database?
	What Is SQL, and How Do You Pronounce It?
	SQL Statements
	Creating a SQL Database
	Querying a Database
	Updating and Deleting Rows

	Chapter 4: Using JDBC to Connect to a Database
	Setting Up a Driver
	Connecting to a Database
	Querying a Database
	Updating SQL Data
	Using an Updatable RowSet Object

	Chapter 5: Working with XML
	What Exactly Is XML, Anyway?
	Using a DTD
	Processing XML in Two Ways
	Reading a DOM Document
	Reading DOM Nodes
	Putting It All Together: A Program That Lists Movies

	Book IX: Fun and Games
	Chapter 1: Fun with Fonts and Colors
	Working with Fonts
	Working with Color

	Chapter 2: Drawing Shapes
	Getting a Graphics Context
	Drawing Shapes
	Creating Shapes
	Filling Shapes
	Rotating and Translating
	Drawing Text
	Letting the User Draw on a Component

	Chapter 3: Using Images and Sound
	Using Images
	Using the ImageIcon Class
	Using the Image Class
	Playing Sounds and Making Music

	Chapter 4: Animation and Game Programming
	Animating a Sprite
	What about Double Buffering?
	Bouncing the Ball
	Bouncing a Bunch of Balls
	Creating Collidable Balls
	Playing Games

	Index

